Blog
/
/
June 27, 2021

Post-Mortem Analysis of a SQL Server Exploit

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
27
Jun 2021
Learn about the post-mortem analysis of a SQL Server exploit. Discover key insights and strategies to enhance your cybersecurity defenses.

While SaaS and IoT devices are increasingly popular vectors of intrusion, server-side attacks remain a serious threat to organizations worldwide. With sophisticated vulnerability scanning tools, attackers can now pinpoint security flaws in seconds, finding points of entry across the attack surface. Human security teams often struggle to keep pace with the constant wave of newly documented vulnerabilities and patches.

Darktrace recently stopped a targeted cyber-attack by an unknown attacker. After the initial entry, the attacker exploited an unpatched vulnerability (CVE-2020-0618), granting a low-privileged credential the ability to remotely execute code. This enabled the attacker to spread laterally and eventually establish a foothold in the system by creating a new user account.

The server-side attack cycle: authenticates user; scans network; infects three servers; downloads malware; c2 traffic; creates new user.

Figure 1: Overview of the server-side attack cycle.

This blog breaks down the intrusion and explores how Darktrace’s Autonomous Response technology took three surgical actions to halt the attacker’s movements.

Unknown threat actors exploit a vulnerability

Initial compromise

At a financial firm in Canada with around 3,000 devices, Cyber AI detected the use of a new credential, ‘parents’. The attacker used this credential to access the company’s internal environment through the VPN. From there, the credential authenticated to a desktop using NT LAN Manager (NTLM). No further suspicious activity was observed.

NTLM is a popular attack vector for cyber-criminals as it is vulnerable to multiple methods of compromise, including brute-force and ‘pass the hash’. The initial access to the credential could have been obtained via phishing before Darktrace had been deployed.

Figure 2: The credential was first observed on the device five days prior to reconnaissance. The attacker performed reconnaissance and lateral movement for two days, until the compromised devices were taken down.

Internal reconnaissance

Five days later, the ‘parents’ credential was seen logging onto the desktop. The desktop began scanning the network – over 80 internal IPs – on Port 443 and 445.

Shortly after the scan, the device used Nmap to attempt to establish SMBv1 sessions to 139 internal IPs, using guest / user credentials. 79 out of the 278 sessions were successful, all using the login.

Figure 3: New failed internal connections performed by an initially infected desktop, in a similar incident. The graph highlights a surge in failed internal connections and model breaches.

The network scan was the first stage after intrusion, enabling the attacker to find out which services were running, before looking for unpatched vulnerabilities.

Nmap has multiple built-in functionalities which are often exploited for reconnaissance and lateral movement. In this case, it was being used to establish the SMBv1 sessions to the domain controller, saving the attacker from having to initiate SMBv1 sessions with each destination one by one. SMBv1 has well-known vulnerabilities and best practice is to disable it where possible.

Lateral movement

The desktop began controlling services (svcctl endpoint) on a SQL server. It was observed both creating and starting services (CreateServiceW, StartServiceW).

The desktop then initiated an unencrypted HTTP connection to a SQL Reporting server. This was the first HTTP connection between the two devices and the first time the user agent had been seen on the device.

A packet capture of the connection reveals a POST that is seen in an exploit of CVE-2020-0613. This vulnerability is a deserialization issue, whereby the server mishandles carefully crafted page requests and allows low-privileged accounts to establish a reverse shell and remotely execute code on the server.

Figure 4: A partial PCAP of the HTTP connection. The traffic matches the CVE-2020-0618 exploit, which enables Remote Code Execution (RCE) in SQL Server Reporting Services (SSRS).

Most movements were seen in East-West traffic, with readily-available remote procedure call (RPC) methods. Such connections are abundant in systems. Without learning an organization’s ‘pattern of life’, it would have been near-impossible to highlight the malicious connections.

Cyber AI detected connections to the svcctl endpoint, via the DCE-RPC endpoint. This is called the 'service control' endpoint and is used to remotely control running processes on a device.

During the lateral movement from the desktop, the HTTP POST request revealed that the desktop was exploiting CVE-2020-0613. The attacker had managed to find and exploit an existing vulnerability which hadn’t been patched.

Darktrace was the only tool which alerted to the HTTP connection, revealing this underlying (and concluding) exploit. The AI determined that the user agent was unusual for the device and for the wider organization, and that the connection was highly anomalous. This connection would have gone otherwise amiss, since HTTP connections are common in most digital environments.

Because the attacker on the desktop used readily-available tools and protocols, such as Nmap, DCE-RPC, and HTTP, the device went undetected by all the other cyber defenses. However, Cyber AI noticed multiple scanning and lateral movement anomalies – triggering high-fidelity detections which would have been alerted to with Proactive Threat Notifications.

Command and control (C2) communication

The next day, the attacker connected to an SNMP server from the VPN. The connection used the ‘parents’ RDP cookie.

Immediately after the RDP connection began, the server connected to Pastebin and downloaded small amounts of encrypted data. Pastebin was likely being used as a vector to drop malicious scripts onto the device.

The SNMP server then started controlling services (svcttl) on the SQL server: again, creating and starting services.

Following this, both the SQL server and the SNMP server made a high volume of SSL connections to a rare external domain. One upload to the destination was around 21 MB, but otherwise the connections were mostly the same packet size. This, among other factors, indicated that the destination was being used as a C2 server.

Figure 5: Example Cyber AI Analyst investigation into beaconing activity by a SQL server.

With just one compromised credential, the attacker was now connecting to the VPN and infecting multiple servers on the company’s internal network.

The attacker dropped scripts onto the host using Pastebin. Darktrace alerted on this because Pastebin is highly rare for the organization. In fact, these connections were the first time it had been seen. Most security tools would miss this, as Pastebin is a legitimate site and would not be blocked by open-source intelligence (OSINT).

Even if a lesser-known Pastebin alternative had been used – say, in an environment where Pastebin was blocked on the firewall but the alternative not — Darktrace would have picked up on it in exactly the same way.

The C2 beaconing endpoint – dropbox16[.]com – has no OSINT information available online. The connections were on Port 443 and nothing about them was notable except from their rarity on the company’s system. Darktrace sent alerts because of its high rarity, rather than relying on known signatures.

Achieve persistence

After another Pastebin pull, the attacker attempted to maintain a greater foothold and escalate privileges by creating a new user using the SamrCreateUser2InDomain operation (endpoint: samr).

To establish persistence, the attacker now created a new user through a specific DCE-RPC command to the domain controller. This was highly unusual activity for the device, and was given a 100% anomaly score for ‘New or Uncommon Occurrence’.

If Darktrace had not alerted on this activity, the attacker would have continued to access files and make further inroads in the company, extracting sensitive data and potentially installing ransomware. This could have led to sensitive data loss, reputational damage, and financial losses for the company.

The value of Autonomous Response

The organization had Antigena in passive mode, so although it was not able to respond autonomously, we have visibility into the actions that it would have taken.

Antigena would have taken three actions on the initially infected desktop, as shown in the table below. The actions would have taken effect immediately in response to the first scan and the first service control requests.

During the two days of reconnaissance and lateral movement activity, these were the only steps Antigena suggested. The steps were all directly relevant to the intrusion – there was no attempt to block anything unrelated to the attack, and no other Antigena actions were triggered during this period.

By surgically blocking connections on specific ports during the scanning activity and enforcing the ‘pattern of life’ on the infected desktop, Antigena would have paralyzed the attacker’s reconnaissance efforts.

Furthermore, unusual service control attempts performed by the device would have been halted, minimizing the damage to the targeted destination.

Antigena would have delivered these blocks directly or via whatever integration was most suitable for the customer, such as firewall integrations or NAC integrations.

Lessons learned

The threat story above demonstrates the importance of controlling the access granted to low-privileged credentials, as well as remaining up-to-date with security patches. Since such attacks take advantage of existing network infrastructure, it is extremely difficult to detect these anomalous connections without the use of AI.

There was a delay of several days between the initial use of the ‘parents’ credentials and the first signs of lateral movement. This dormancy period – between compromise and the start of internal activities – is commonly seen in attacks. It likely indicates that the attacker was checking initially if their access worked, and then re-visiting the victim for further compromise once their schedule allowed for it.

Stopping a server-side attack

This compromise is reflective of many real-life intrusions: attacks cannot be easily attributed and are often conducted by sophisticated, unidentified threat actors.

Nevertheless, Darktrace managed to detect each stage of the attack cycle: initial compromise, reconnaissance, lateral movement, established foothold, and privilege escalation, and had Antigena been in active mode, it would have blocked these connections, and even prevented the initial desktop from ever exploiting the SQL vulnerability, which allowed the attacker to execute code remotely.

One day later, after seeing the power of Autonomous Response, the company decided to deploy Antigena in active mode.

Thanks to Darktrace analyst Isabel Finn for her insights on the above threat find.

Darktrace model detections:

  • Device / Anomalous Nmap SMB Activity
  • Device / Network Scan - Low Anomaly Score
  • Device / Network Scan
  • Device / ICMP Address Scan
  • Device / Suspicious Network Scan Activity
  • Anomalous Connection / New or Uncommon Service Control
  • Device / Multiple Lateral Movement Model Breaches
  • Device / New User Agent To Internal Server
  • Compliance / Pastebin
  • Device / Repeated Unknown RPC Service Bind Errors
  • Anomalous Server Activity / Rare External from Server
  • Compromise / Unusual Connections to Rare Lets Encrypt
  • User / Anomalous Domain User Creation Or Addition To Group

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Author
Max Heinemeyer
Global Field CISO

Max is a cyber security expert with over a decade of experience in the field, specializing in a wide range of areas such as Penetration Testing, Red-Teaming, SIEM and SOC consulting and hunting Advanced Persistent Threat (APT) groups. At Darktrace, Max is closely involved with Darktrace’s strategic customers & prospects. He works with the R&D team at Darktrace, shaping research into new AI innovations and their various defensive and offensive applications. Max’s insights are regularly featured in international media outlets such as the BBC, Forbes and WIRED. Max holds an MSc from the University of Duisburg-Essen and a BSc from the Cooperative State University Stuttgart in International Business Information Systems.

Book a 1-1 meeting with one of our experts
Share this article

More in this series

No items found.

Blog

/

OT

/

March 25, 2025

Darktrace Recognized as the Only Visionary in the 2025 Gartner® Magic Quadrant™ for CPS Protection Platforms

Default blog imageDefault blog image

We are thrilled to announce that Darktrace has been named the only Visionary in the inaugural Gartner® Magic Quadrant™ for Cyber-Physical Systems (CPS) Protection Platforms. We feel This recognition highlights Darktrace’s AI-driven approach to securing industrial environments, where conventional security solutions struggle to keep pace with increasing cyber threats.

A milestone for CPS security

It's our opinion that the first-ever Gartner Magic Quadrant for CPS Protection Platforms reflects a growing industry shift toward purpose-built security solutions for critical infrastructure. As organizations integrate IT, OT, and cloud-connected systems, the cyber risk landscape continues to expand. Gartner evaluated 17 vendors based on their Ability to Execute and Completeness of Vision, establishing a benchmark for security leaders looking to enhance cyber resilience in industrial environments.

We believe the Gartner recognition of Darktrace as the only Visionary reaffirms the platform’s ability to proactively defend against cyber risks through AI-driven anomaly detection, autonomous response, and risk-based security strategies. With increasingly sophisticated attacks targeting industrial control systems, organizations need a solution that continuously evolves to defend against both known and unknown threats.

AI-driven security for CPS environments

Securing CPS environments requires an approach that adapts to the dynamic nature of industrial operations. Traditional security tools rely on static signatures and predefined rules, leaving gaps in protection against novel and sophisticated threats. Darktrace / OT takes a different approach, leveraging Self-Learning AI to detect and neutralize threats in real time, even in air-gapped or highly regulated environments.

Darktrace / OT continuously analyzes network behaviors to establish a deep understanding of what is “normal” for each industrial environment. This enables it to autonomously identify deviations that signal potential cyber threats, providing early warning and proactive defense before attacks can disrupt operations. Unlike rule-based security models that require constant manual updates, Darktrace / OT improves with the environment, ensuring long-term resilience against emerging cyber risks.

Bridging the IT-OT security gap

A major challenge for organizations protecting CPS environments is the disconnect between IT and OT security. While IT security has traditionally focused on data

protection and compliance, OT security is driven by operational uptime and safety, leading to siloed security programs that leave critical gaps in visibility and response.

Darktrace / OT eliminates these silos by providing unified visibility across IT, OT, and IoT assets, ensuring that security teams have a complete picture of their attack surface. Its AI-driven approach enables cross-domain threat detection, recognizing risks that move laterally between IT and OT environments. By seamlessly integrating with existing security architectures, Darktrace / OT helps organizations close security gaps without disrupting industrial processes.

Proactive OT risk management and resilience

Beyond detection and response, Darktrace / OT strengthens organizations’ ability to manage cyber risk proactively. By mapping vulnerabilities to real-world attack paths, it prioritizes remediation actions based on actual exploitability and business impact, rather than relying on isolated CVE scores. This risk-based approach enables security teams to focus resources where they matter most, reducing overall exposure to cyber threats.

With autonomous threat response capabilities, Darktrace / OT not only identifies risks but also contains them in real time, preventing attackers from escalating intrusions. Whether mitigating ransomware, insider threats, or sophisticated nation-state attacks, Darktrace / OT ensures that industrial environments remain secure, operational, and resilient, no matter how threats evolve.

AI-powered incident response and SOC automation

Security teams are facing an overwhelming volume of alerts, making it difficult to prioritize threats and respond effectively. Darktrace / OT’s Cyber AI Analyst acts as a force multiplier for security teams by automating threat investigation, alert triage, and response actions. By mimicking the workflow of a human SOC analyst, Cyber AI Analyst provides contextual insights that accelerate incident response and reduce the manual workload on security teams.

With 24/7 autonomous monitoring, Darktrace / OT ensures that threats are continuously detected and investigated in real time. Whether facing ransomware, insider threats, or sophisticated nation-state attacks, organizations can rely on AI-driven security to contain threats before they disrupt operations.

Trusted by customers: Darktrace / OT recognized in Gartner Peer Insights

Source: Gartner Peer Insights (Oct 28th)

Beyond our recognition in the Gartner Magic Quadrant, we feel Darktrace / OT is one of the highest-rated CPS security solutions on Gartner Peer Insights, reflecting strong customer trust and validation. With a 4.9/5 overall rating and the highest "Willingness to Recommend" score among CPS vendors, organizations across critical infrastructure and industrial sectors recognize the impact of our AI-driven security approach. Source: Gartner Peer Insights (Oct 28th)

This strong customer endorsement underscores why leading enterprises trust Darktrace / OT to secure their CPS environments today and in the future.

Redefining the future of CPS security

It's our view that Darktrace’s recognition as the only Visionary in the Gartner Magic Quadrant for CPS Protection Platforms validates its leadership in next-generation industrial security. As cyber threats targeting critical infrastructure continue to rise, organizations must adopt AI-driven security solutions that can adapt, respond, and mitigate risks in real time.

We believe this recognition reinforces our commitment to innovation and our mission to secure the world’s most essential systems. This recognition reinforces our commitment to innovation and our mission to secure the world’s most essential systems.

® Download the full Gartner Magic Quadrant for CPS Protection Platforms

® Request a demo to see Darktrace OT in action.

Gartner, Magic Quadrant for CPS Protection Platforms , Katell Thielemann, Wam Voster, Ruggero Contu 12 February 2025

Gartner does not endorse any vendor, product or service depicted in its research publications and does not advise technology users to select only those vendors with the highest ratings or other designation. Gartner research publications consist of the opinions of Gartner’s research organization and should not be construed as statements of fact. Gartner disclaims all warranties, expressed or implied, with respect to this research, including any warranties of merchantability or fitness for a particular purpose.

GARTNER is a registered trademark and service mark of Gartner and Magic Quadrant and Peer Insights are a registered trademark, of Gartner, Inc. and/or its affiliates in the U.S. and internationally and are used herein with permission. All rights reserved. Gartner Peer Insights content consists of the opinions of individual end users based on their own experiences with the vendors listed on the platform, should not be construed as statements of fact, nor do they represent the views of Gartner or its affiliates. Gartner does not endorse any vendor, product or service depicted in this content nor makes any warranties, expressed or implied, with respect to this content, about its accuracy or completeness, including any warranties of merchantability or fitness for a particular purpose.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance

Blog

/

AI

/

March 25, 2025

Survey Findings: AI Cybersecurity Priorities and Objectives in 2025

Default blog imageDefault blog image

AI is changing the cybersecurity field, both on the offensive and defensive sides. We surveyed over 1,500 cybersecurity professionals from around the world to uncover their attitudes, understanding, and priorities when it comes to AI cybersecurity in 2025. Our full report, unearthing some telling trends, is available now.  

Download the full report to explore these findings in depth

It is clear that security professionals know their field is changing fast, and that AI will continue to influence those changes. Our survey results show that they are aware that the rise of AI will require them to adopt new tools and learn to use them effectively. Still, they aren’t always certain about how to plan for the future, or what to invest in.

The top priorities of security stakeholders for improving their defenses against AI-powered threats include augmenting their existing tool stacks with AI-powered solutions and improving integration among their security tools.

Figure 1: Year-over-year changes to the priorities of securitystakeholders.

Increasing cybersecurity staff

As was also the case last year, security stakeholders are less interested in hiring additional staff than in adding new AI-powered tools onto their existing security stacks, with only with 11% (and only 8% of executives) planning to increase cybersecurity staff in 2025.

This suggests that leaders are looking for new methods to overcome talent resource shortages.

Adding AI-powered security tools to supplement existing solutions

Executives are particularly enthusiastic about adopting AI-driven tools. Within that goal, there is consensus about the qualities cyber professionals are looking for when purchasing new security capabilities or replacing existing products.

  • 87% of survey respondents prefer solutions that are part of a broader platform over individual point products

These results are similar to last year’s, where again, almost nine out of ten agreed that a platform-oriented security solution was more effective at stopping cyber threats than a collection of individual products.

  • 88% of survey respondents agree that the use of AI within the security stack is critical to freeing up time for security teams to become more proactive, compared to reactive

AI itself can contribute to this shift from reactive to proactive security, improving risk prioritization and automating preventative strategies like Attack Surface Management (ASM) and proactive exposure management.

  • 84% of survey respondents prefer defensive AI solutions that do not require the organization’s data to be shared externally

This preference may reflect increasing attention to the data privacy and security risks posed by generative AI (gen AI) adoption. It may also reflect growing awareness of data residency requirements and other restrictions that regulators are imposing.

Improving cybersecurity awareness training for end users

Based on the survey results, practitioners in SecOps are more interested in improving security awareness training.

This goal is not necessarily mutually exclusive from the addition of AI tools. For example, teams can leverage AI to build more effective security awareness training programs, and as gen AI tools are adopted, users will need to be taught about data privacy and associated security risks.

Looking towards the future

One conclusion we can draw from the attitudinal shifts from last year’s survey to this year’s: while hiring more security staff might be a nice-to-have, implementing AI-powered tools so that existing employees can work smarter is increasingly viewed as a must-have.

However, trending goals are not just about managing resources, whether headcount or AI investments, to keep up with workloads. Existing end users must also be trained to follow safe practices while using established and newly adopted tools.

Security professionals, including executives, SecOps, and every role in between, continue to shift their identified challenges and priorities as they gear up for the coming year in the Era of AI.

State of AI report

Download the full report to explore these findings in depth

The full report for Darktrace’s State of AI Cybersecurity is out now. Download the paper to dig deeper into these trends, and see how results differ by industry, region, organization size, and job title.  

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI