Prevent Brand Abuse with Darktrace | Protect Your Brand
Prevent brand abuse with Darktrace's AI-powered solution. Detect and stop impersonation attacks before they harm your reputation. Read to learn more here.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Elliot Stocker
Product SME
Share
13
Nov 2022
Brand abuse refers to the unauthorized imitation of an organization's brand. Its discovery is often a reminder to organizations that they need to protect more than just their data and IP – their reputation is at stake. But brand impersonation can also be used to launch a direct attack against the organization – and those around it.
During a first demonstration meeting recently, Darktrace PREVENT discovered a website deploying a classic trick: the letters ‘rn’ were used in sequence in an attempt to imitate the letter ‘m’ in the company’s name (e.g. “exarnple-brand.com”). Whilst obvious when you’re looking out for it, for an unsuspecting employee this goes easily unnoticed.
This website was set up by an attacker two weeks before the PREVENT demo. The website was taken down immediately, and the company was also advised to launch an internal investigation to find out if somebody had received an email from this address. The company also launched an information campaign informing their supply chain of this attack, and this last activity resulted in the discovery that one of their suppliers had been scammed through the same email domain and had transferred a large sum of money towards a shell company that was not related to the main brand. By alerting that supplier, additional money transfers were prevented.
This example is part of a broader trend being seen across the industry. ZDNET’s Fraud Trends Report found that roughly 250,000 attacks in Q2 of 2021 involved some form of brand abuse. These attacks harm companies by inflicting reputational damage, incurring financial losses from fraudulent competition, or serving as steppingstones for larger threats like supply chain attacks.
Organizations work hard to cultivate brand identities that differentiate themselves from competitors and build relationships with consumers. Yet, the stronger and more recognizable a brand is, the more often it is targeted for abuse as malicious actors take advantage of their success to reach more victims. Companies with greater online presences or international operations across multiple channels are also at higher risk.
Brand abuse takes many forms. It can be a website designed to look like it belongs to the brand to collect personal information such as email addresses and passwords. It can be an invoice sent by a vendor with a slight typo in its name. It can be an unauthorized branded webshop that never ships products to buyers. It can be a fake social media account directing customers to malicious websites that distribute malware or spreading fake news. It can be as simple as copyright or trademark infringement.
Figure 1: The general pattern malicious actors use for brand abuse.
Responding to Brand Abuse
Reconquering brand reputation after a brand abuse incident can prove to be much more difficult and costly than investing beforehand to help secure the brand. Risk detection and monitoring require a holistic approach to cover the diverse forms of brand abuse, and requires patrolling the internet for copycats, typo squatters, and other malicious appropriations.
Figure 2: Mapping to the stages of brand abusein Figure 1, the security team has a set of signals to look for and actions totake to stop brand abuse before it is too late.
Protecting the brand identity and external attack surface can seem like a daunting task for security teams, especially in an age where monitoring internal systems proves enough of a challenge itself. Moreover, how often should the team perform this brand abuse monitoring? Companies can try to search every six months, every quarter, even every month, however there would still be gaps between when a threat actor launches an attack and when the security team discovers it. This is when AI becomes a tremendous ally, as it works at a speed and scale that human teams cannot.
The Power of PREVENT
PREVENT/Attack Surface ManagementTM works autonomously and continuously to uncover instances of brand abuse, and proactively hardens defenses against any attack that might be launched as a result.
It uses AI to distinguish a company’s external assets from the rest of the global internet. Its processing features learn brand-related assets such as logos and domain names. It also leverages natural language processing and image classification algorithms to tackle even the most ambiguous and error-prone assets encountered to identify and stop copycats and typosquatters.
PREVENT/ASM carries out this comprehensive level of monitoring continuously, closing the gap between when an attacker spins up malicious infrastructure and when the security team identifies it. With PREVENT, should an attacker create a malicious website tomorrow morning, the security team will be alerted tomorrow morning.
In addition to identifying brand abuse, PREVENT/ASM helps the team to collect all the relevant data needed to support a Notice and Takedown procedure. It also integrates with the rest of Darktrace’s security ecosystem to ensure that cyber defense is hardened ahead of time, should malicious assets discovered by PREVENT/ASM be used to launch an attack.
For example, identifying a webpage impersonating a brand is useful data for email security. PREVENT forewarns Darktrace/Email of malicious domains, which in turn heightens its sensitivity against emails sent from this site. The same is true with regards to network traffic as well as endpoint security: an endpoint device visiting this host will have Darktrace DETECTTM + Darktrace RESPONDTM on higher alert – ready to immediately neutralize threatening activity when it occurs.
This is the power of the Cyber AI Loop, a virtuous feedback cycle in which AI engines continuously feed into and strengthen one another.
And PREVENT not only identifies instances of brand abuse (along with Shadow IT, misconfigurations, supply chain risk, and other vulnerabilities), but it also prioritizes these risks according to exposure and potential damage and impact. With PREVENT/End-to-EndTM using Darktrace’s understanding of every device and connection inside an organization – every user and their interactions, every possible attack path – insights from the internal and external attack surface combine to give security teams a fully informed understanding of how they can spend their time most effectively to reduce cyber risk.
In these ways, PREVENT not only monitors for brand abuse at a scope and scale far beyond the capabilities of human security teams, but it also integrates with DETECT + RESPOND to harden a company’s cyber security.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents
This blog introduces new innovations in Darktrace / Proactive Exposure Management that bring precision and clarity to vulnerability prioritization. Learn how No-Telemetry Endpoints provide real device context without network data and how new Cost-Benefit Analysis capabilities quantify patching ROI—helping teams cut noise, act faster, and strengthen proactive risk management.
Darktrace Announces Extended Visibility Between Confirmed Assets and Leaked Credentials from the Deep and Dark Web
This blog explores how Continuous Threat Exposure Management (CTEM) is reshaping defense strategies and how new Darktrace / Attack Surface Management capabilities, including Exploit Prediction Assessment and Deep & Dark Web Monitoring, help organizations turn CTEM from strategy into action.
Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability
Darktrace leverages AI-driven anomaly detection to identify cyber threats before public CVE disclosures. By analyzing behavioral patterns, Darktrace can help organizations detect and contain zero-day exploits early. This proactive approach strengthens cybersecurity posture against nation-state actors, ransomware gangs, and evolving threats across the threat landscape.
React2Shell: How Opportunist Attackers Exploited CVE-2025-55182 Within Hours
What is React2Shell?
CVE-2025-55182, also known as React2Shell is a vulnerability within React server components that allows for an unauthenticated attacker to gain remote code execution with a single request. The severity of this vulnerability and ease of exploitability has led to threat actors opportunistically exploiting it within a matter of days of its public disclosure.
Darktrace security researchers rapidly deployed a new honeypot using the Cloudypots system, allowing for the monitoring of exploitation of the vulnerability in the wild.
Cloudypots is a system that enables virtual instances of vulnerable applications to be deployed in the cloud and monitored for attack. This approach allows for Darktrace to deploy high-interaction, realistic honeypots, that appear as genuine deployments of vulnerable software to attackers.
This blog will explore one such campaign, nicknamed “Nuts & Bolts” based on the naming used in payloads.
Analysis of the React2Shell exploit
The React2Shell exploit relies on an insecure deserialization vulnerability within React Server Components’ “Flight” protocol. This protocol uses a custom serialization scheme that security researchers discovered could be abused to run arbitrary JavaScript by crafting the serialized data in a specific way. This is possible because the framework did not perform proper type checking, allowing an attacker to reference types that can be abused to craft a chain that resolves to an anonymous function, and then invoke it with the desired JavaScript as a promise chain.
This code execution can then be used to load the ‘child_process’ node module and execute any command on the target server.
The vulnerability was discovered on December 3, 2025 with a patch made available on December 3 [1]. Within 30 hours of the patch, a publicly available proof of concept emerged that could be used to exploit any vulnerable server. This rapid timeline left many servers remaining unpatched by the time attackers began actively exploiting the vulnerability.
Initial access
The threat actor behind the “Nuts & Bolts” campaign uses a spreader server with IP 95.214.52[.]170 to infect victims. The IP appears to be located in Poland and is associated with a hosting provided known as MEVSPACE. The spreader is highly aggressive, launching exploitation attempts, roughly every hour.
When scanning, he spreader primarily targets port 3000, which is the default port for a NEXT.js server in a default or development configuration. It is possible the attacker is avoiding port 80 and 443, as these are more likely to have reverse proxies or WAFs in front of the server, which could disrupt exploitation attempts.
When the spreader finds a new host with port 3000 open, it begins by testing if it is vulnerable to React2Shell by sending a crafted request to run the ‘whoami’ command and store the output in an error digest that is returned to the attacker.
The above snippet is the core part of the crafted request that performs the execution. This allows the attacker to confirm that the server is vulnerable and fetch the user account under which the NEXT.js process is running, which is useful information for determining if a target is worth attacking.
From here, the attacker then sends an additional request to run the actual payload on the victim server.
This snippet attempts to deploy several payloads by using wget (or curl if wget fails) into the /dev directory and execute them. The x86 binary is a Mirai variant that does not appear to have any major alterations to regular Mirai. The ‘nuts/bolts’ endpoint returns a bash script, which is then executed. The script includes several log statements throughout its execution to provide visibility into which parts ran successfully. Similar to the ‘whoami’ request, the output is placed in an error digest for the attacker to review.
In this case, the command-and-control (C2) IP, 89[.]144.31.18, is hosted on a different server operated by a German hosting provider named myPrepaidServer, which offers virtual private server (VPS) services and accepts cryptocurrency payments [2].
Figure 1: Logs observed in the NEXT.JS console as a result of exploitation. In this case, the honeypot was attacked just two minutes after being deployed.
Nuts & Bolts script
This script’s primary purpose is to prepare the box for a cryptocurrency miner.
The script starts by attempting to terminate any competing cryptocurrency miner processes using ‘pkill’ that match on a specific name. It will check for and terminate:
xmrig
softirq (this also matches a system process, which it will fail to kill each invocation)
watcher
/tmp/a.sh
health.sh
Following this, the script will checks for a process named “fghgf”. If it is not running, it will retrieve hxxp://89[.]144.31.18/nuts/lc and write it to /dev/ijnegrrinje.json, as well as retrieving hxxp://89[.]144.31.18/nuts/x and writing it to /dev/fghgf. The script will the executes /dev/fghgf -c /dev/ijnegrrinje.json -B in the background, which is an XMRig miner.
Figure 2: The XMRig deployment script.
The miner is configured to connect to two private pools at 37[.]114.37.94 and 37[.]114.37.82, using “poop” as both the username and password. The use of a private pool conceals the associated wallet address. From here, a short bash script is dropped to /dev/stink.sh. This script continuously crawls all running processes on the system and reads their /proc/pid/exe path, which contains a copy of the original executable that was run. The ‘strings’ utility is run to output all valid ASCII strings found within the data and checks to see if contains either “xmrig”, “rondo” or “UPX 5”. If so, it sends a SIGKILL to the process to terminate it.
Additionally, it will run ‘ls –l’ on the exe path in case it is symlinked to a specific path or has been deleted. If the output contains any of the following strings, the script sends a SIGKILL to terminate the program:
(deleted) - Indicates that the original executable was deleted from the disk, a common tactic used by malware to evade detection.
xmrig
hash
watcher
/dev/a
softirq
rondo
UPX 5.02
Figure 3: The killer loop and the dropper. In this case ${R}/${K} resolves to /dev/stink.sh.
Darktrace observations in customer environments
Following the public disclosure of CVE‑2025‑55182 on December 3rd, 2025 Darktrace observed multiple exploitation attempts across customer environments beginning around December 4. Darktrace triage identified a series of consistent indicators of compromise (IoCs). By consolidating indicators across multiple deployments and repeat infrastructure clusters, Darktrace identified a consistent kill chain involving shell‑script downloads and HTTP beaconing.
In one example, on December 5, Darktrace observed external connections to malicious IoC endpoints (172.245.5[.]61:38085, 5.255.121[.]141, 193.34.213[.]15), followed by additional connections to other potentially malicious endpoint. These appeared related to the IoCs detailed above, as one suspicious IP address shared the same ASN. After this suspicious external connectivity, Darktrace observed cryptomining-related activity. A few hours later, the device initiated potential lateral movement activity, attempting SMB and RDP sessions with other internal devices on the network. These chain of events appear to identify this activity to be related to the malicious campaign of the exploitation of React2Shell vulnerability.
Generally, outbound HTTP traffic was observed to ports in the range of 3000–3011, most notably port 3001. Requests frequently originated from scripted tools, with user agents such as curl/7.76.1, curl/8.5.0, Wget/1.21.4, and other generic HTTP signatures. The URIs associated with these requests included paths like /nuts/x86 and /n2/x86, as well as long, randomized shell script names such as /gfdsgsdfhfsd_ghsfdgsfdgsdfg.sh. In some cases, parameterized loaders were observed, using query strings like: /?h=<ip>&p=<port>&t=<proto>&a=l64&stage=true.
Infrastructure analysis revealed repeated callbacks to IP-only hosts linked to ASN AS200593 (Prospero OOO), a well-known “bulletproof” hosting provider often utilized by cyber criminals [3], including addresses such as 193.24.123[.]68:3001 and 91.215.85[.]42:3000, alongside other nodes hosting payloads and staging content.
Darktrace model coverage
Darktrace model coverage consistently highlighted behaviors indicative of exploitation. Among the most frequent detections were anomalous server activity on new, non-standard ports and HTTP requests posted to IP addresses without hostnames, often using uncommon application protocols. Models also flagged the appearance of new user agents such as curl and wget originating from internet-facing systems, representing an unusual deviation from baseline behavior.
Additionally, observed activity included the download of scripts and executable files from rare external sources, with Darktrace’s Autonomous Response capability intervening to block suspicious transfers, when enabled. Beaconing patterns were another strong signal, with detections for HTTP beaconing to new or rare IP addresses, sustained SSL or HTTP increases, and long-running compromise indicators such as “Beacon for 4 Days” and “Slow Beaconing.”
Conclusion
While this opportunistic campaign to exploit the React2Shell exploit is not particularly sophisticated, it demonstrates that attackers can rapidly prototyping new methods to take advantage of novel vulnerabilities before widespread patching occurs. With a time to infection of only two minutes from the initial deployment of the honeypot, this serves as a clear reminder that patching vulnerabilities as soon as they are released is paramount.
Credit to Nathaniel Bill (Malware Research Engineer), George Kim (Analyst Consulting Lead – AMS), Calum Hall (Technical Content Researcher), Tara Gould (Malware Research Lead, and Signe Zaharka (Principal Cyber Analyst).
Organizations are built on increasingly complex digital estates. Nowadays, the average IT ecosystem spans across a large web of interconnected domains like identity, network, cloud, and email.
While these domain-specific technologies may boost business efficiency and scalability, they also provide blind spots where attackers can shelter undetected. Threat actors can slip past defenses because security teams often use different detection tools in each realm of their digital infrastructure. Adversaries will purposefully execute different stages of an attack across different domains, ensuring no single tool picks up too many traces of their malicious activity. Identifying and investigating this type of threat, known as a cross-domain attack, requires mastery in event correlation.
For example, one isolated network scan detected on your network may seem harmless at first glance. Only when it is stitched together with a rare O365 login, a new email rule and anomalous remote connections to an S3 bucket in AWS does it begin to manifest as an actual intrusion.
However, there are a whole host of other challenges that arise with detecting this type of attack. Accessing those alerts in the respective on-premise network, SaaS and IaaS environments, understanding them and identifying which ones are related to each other takes significant experience, skill and time. And time favours no one but the threat actor.
Figure 1: Anatomy of a cross domain attack
Diverse domains and empty grocery shelves
In April 2025, the UK faced a throwback to pandemic-era shortages when the supermarket giant Marks & Spencer (M&S) was crippled by a cyberattack, leaving empty shelves across its stores and massive disruptions to its online service.
The threat actors, a group called Scattered Spider, exploited multiple layers of the organization’s digital infrastructure. Notably, the group were able to bypass the perimeter not by exploiting a technical vulnerability, but an identity. They used social engineering tactics to impersonate an M&S employee and successfully request a password reset.
Once authenticated on the network, they accessed the Windows domain controller and exfiltrated the NTDS.dit file – a critical file containing hashed passwords for all users in the domain. After cracking those hashes offline, they returned to the network with escalated privileges and set their sights on the M&S cloud infrastructure. They then launched the encryption payload on the company’s ESXi virtual machines.
To wrap up, the threat actors used a compromised employee’s email account to send an “abuse-filled” email to the M&S CEO, bragging about the hack and demanding payment. This was possibly more of a psychological attack on the CEO than a technically integral part of the cyber kill chain. However, it revealed yet another one of M&S’s domains had been compromised.
In summary, the group’s attack spanned four different domains:
Identity: Social engineering user impersonation
Network: Exfiltration of NTDS.dit file
Cloud: Ransomware deployed on ESXI VMs
Email: Compromise of user account to contact the CEO
Adept at exploiting nuance
This year alone, several high-profile cyber-attacks have been attributed to the same group, Scattered Spider, including the hacks on Victoria’s Secret, Adidas, Hawaiian Airlines, WestJet, the Co-op and Harrods. It begs the question, what has made this group so successful?
In the M&S attack, they showcased their advanced proficiency in social engineering, which they use to bypass identity controls and gain initial access. They demonstrated deep knowledge of cloud environments by deploying ransomware onto virtualised infrastructure. However, this does not exemplify a cookie-cutter template of attack methods that brings them success every time.
According to CISA, Scattered Spider typically use a remarkable variety of TTPs (tactics, techniques and procedures) across multiple domains to carry out their campaigns. From leveraging legitimate remote access tools in the network, to manipulating AWS EC2 cloud instances or spoofing email domains, the list of TTPs used by the group is eye-wateringly long. Additionally, the group reportedly evades detection by “frequently modifying their TTPs”.
If only they had better intentions. Any security director would be proud of a red team who not only has this depth and breadth of domain-centric knowledge but is also consistently upskilling.
Yet, staying ahead of adversaries who seamlessly move across domains and fluently exploit every system they encounter is just one of many hurdles security teams face when investigating cross-domain attacks.
Resource-heavy investigations
There was a significant delay in time to detection of the M&S intrusion. News outlet BleepingComputer reported that attackers infiltrated the M&S network as early as February 2025. They maintained persistence for weeks before launching the attack in late April 2025, indicating that early signs of compromise were missed or not correlated across domains.
While it’s unclear exactly why M&S missed the initial intrusion, one can speculate about the unique challenges investigating cross-domain attacks present.
Challenges of cross-domain investigation
First and foremost, correlation work is arduous because the string of malicious behaviour doesn’t always stem from the same device.
A hypothetical attack could begin with an O365 credential creating a new email rule. Weeks later, that same credential authenticates anomalously on two different devices. One device downloads an .exe file from a strange website, while the other starts beaconing every minute to a rare external IP address that no one else in the organisation has ever connected to. A month later, a third device downloads 1.3 GiB of data from a recently spun up S3 bucket and gradually transfers a similar amount of data to that same rare IP.
Amid a sea of alerts and false positives, connecting the dots of a malicious attack like this takes time and meticulous correlation. Factor in the nuanced telemetry data related to each domain and things get even more complex.
An analyst who specialises in network security may not understand the unique logging formats or API calls in the cloud environment. Perhaps they are proficient in protecting the Windows Active Directory but are unfamiliar with cloud IAM.
Cloud is also an inherently more difficult domain to investigate. With 89% of organizations now operating in multi-cloud environments time must be spent collecting logs, snapshots and access records. Coupled with the threat of an ephemeral asset disappearing, the risk of missing a threat is high. These are some of the reasons why research shows that 65% of organisations spend 3-5 extra days investigating cloud incidents.
Helpdesk teams handling user requests over the phone require a different set of skills altogether. Imagine a threat actor posing as an employee and articulately requesting an urgent password reset or a temporary MFA deactivation. The junior Helpdesk agent— unfamiliar with the exception criteria, eager to help and feeling pressure from the persuasive manipulator at the end of the phoneline—could easily fall victim to this type of social engineering.
Empowering analysts through intelligent automation
Even the most skilled analysts can’t manually piece together every strand of malicious activity stretching across domains. But skill alone isn’t enough. The biggest hurdle in investigating these attacks often comes down to whether the team have the time, context, and connected visibility needed to see the full picture.
Many organizations attempt to bridge the gap by stitching together a patchwork of security tools. One platform for email, another for endpoint, another for cloud, and so on. But this fragmentation reinforces the very silos that cross-domain attacks exploit. Logs must be exported, normalized, and parsed across tools a process that is not only error-prone but slow. By the time indicators are correlated, the intrusion has often already deepened.
That’s why automation and AI are becoming indispensable. The future of cross-domain investigation lies in systems that can:
Automatically correlate activity across domains and data sources, turning disjointed alerts into a single, interpretable incident.
Generate and test hypotheses autonomously, identifying likely chains of malicious behaviour without waiting for human triage.
Explain findings in human terms, reducing the knowledge gap between junior and senior analysts.
Operate within and across hybrid environments, from on-premise networks to SaaS, IaaS, and identity systems.
This is where Darktrace transforms alerting and investigations. Darktrace’s Cyber AI Analyst automates the process of correlation, hypothesis testing, and narrative building, not just within one domain, but across many. An anomalous O365 login, a new S3 bucket, and a suspicious beaconing host are stitched together automatically, surfacing the story behind the alerts rather than leaving it buried in telemetry.
Figure 2: How threat activity is correlated in Cyber AI Analyst
By analyzing events from disparate tools and sources, AI Analyst constructs a unified timeline of activity showing what happened, how it spread, and where to focus next. For analysts, it means investigation time is measured in minutes, not days. For security leaders, it means every member of the SOC, regardless of experience, can contribute meaningfully to a cross-domain response.
Figure 3: Correlation showcasing cross domains (SaaS and IaaS) in Cyber AI Analyst
Until now, forensic investigations were slow, manual, and reserved for only the largest organizations with specialized DFIR expertise. Darktrace / Forensic Acquisition & Investigation changes that by leveraging the scale and elasticity of the cloud itself to automate the entire investigation process. From capturing full disk and memory at detection to reconstructing attacker timelines in minutes, the solution turns fragmented workflows into streamlined investigations available to every team.
What once took days now takes minutes. Now, forensic investigations in the cloud are faster, more scalable, and finally accessible to every security team, no matter their size or expertise.