Blog
/
/
July 7, 2020

Cryptomining Campaigns & Technical Analysis of Vulnerability

Crypto-mining campaigns stood no chance against Darktrace's AI as it identified the threat in real time. Put your trust in Darktrace's assistance!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Jul 2020

Introduction

The speed with which attackers can weaponize vulnerabilities is steadily increasing. While technology is rapidly evolving and cyber-attacks are becoming more sophisticated, the advantages of exploiting software vulnerabilities over devising a more elaborate and lengthy attack plan have not been overlooked by hackers. These vulnerabilities are also a quick way to gain access into a businesses’ infrastructure. In recent years, attackers have found great benefit and substantial success through quickly weaponizing vulnerabilities in web-facing systems.

Just recently, critical vulnerabilities in Citrix Gateway resulted in a spate of activity targeting Darktrace customers, as reported earlier this year. Without an immediate patch released upon the public announcement of the discovered flaws in Citrix, exploits quickly followed. Similarly, in late April, SaltStack developers reported vulnerabilities in Salt, an open source framework used to monitor and update the state of servers in cloud environments and data centers.

The vulnerabilities found in Salt would allow hackers to bypass authentication and authorization controls and execute code in Salt master servers exposed to the internet. The Salt master is responsible for sending commands to Salt minions and can manage thousands of minions at once. Due to this structure, one exposed Salt master can lead to a compromise of all underlying minions.

On May 2, Darktrace detected successful crypto-miner infections across a number of its customers exploiting the CVE-2020-11651 and CVE-2020-11652 vulnerabilities in SaltStack server management software. In the same weekend, LineageOS — an Android mobile operating system – and Ghost — a blogging platform – both reported suffering a crypto-mining attack due to exposed, unpatched Salt servers. Most notable about these attacks was the sheer speed from a vulnerability being published to a widespread attack campaign.

Timeline

Figure 1: A timeline of events identified by Darktrace on May 3

Technical analysis

Initial compromise

Darktrace initially detected that a number of customer servers running SaltStack were making external connections to endpoints previously not seen on the network. The connections used the curl or wget utilities to download and execute a bash script, which would install a secondary-stage payload containing a cryptocurrency miner.

The systems were targeted directly utilizing 2020-11651 and CVE-2020-11652 vulnerabilities in the ZeroMQ protocol running on SaltStack. These vulnerabilities would allow direct remote code execution as root on the targeted systems, allowing the script to be downloaded and executed successfully with highest system privileges.

The downloader script is almost identical to the one utilized in March in H2Miner infections targeting exposed Docker APIs and Redis instances.

Before downloading the secondary stage payload, the script cleans the target system of a number of pre-existing infections and miners, as well as disabling a number of known security tools and software.

Figure 2: The downloader script

Following the initial clean up, the script would iterate through three functions to download the crypto-miner payload — salt-storer

SHA256 837d768875417578c0b1cab4bd0aa38146147799f643bb7b3c6c6d3d82d7aa2a

— from three different hard-coded servers. An MD5 check for the downloaded executable would be performed prior to execution. The below screenshot illustrates two out of the three downloader functions that would be invoked.

Figure 3: Two of the downloader functions

Second stage payload

Following the cryptographic checks, the downloaded ELF LSB executable kicks into action. No payload analysis was carried out, however it’s execution would result in a crypto-miner being installed and a C2 channel opened.

OSINT indicates that several new versions of the payload were observed carrying additional capabilities, including database dumping and advanced persistence methods. The variants detected by Darktrace’s AI included the more advanced “Version 5” payload purported to have worming capabilities, but in this case they were not observed directly.

Command and control

Upon the execution of an LSB executable, a plaintext HTTP C2 channel would be established, sending basic metadata about the infected host such as processor architecture, available resources, and whether root execution was achieved. This indicates that the C2 mechanisms were likely repurposed from other infections, as this particular infection would execute as root, making the respective component redundant.

Figure 4: A Command and control channel

The complete attack lifecycle was investigated and reported on by Darktrace’s Cyber AI Analyst, which automatically surfaced some crucial details regarding the C2 communication, including other servers that were seen making similar communication patterns, as seen in the bottom right below.

Figure 5: The Cyber AI Analyst automatically generating a natural-language summary of the overall security incident

Figure 6: Further information on the suspicious endpoints

Actions on target

Lastly, devices began mining for cryptocurrency. Cryptocurrency mining demands a substantial proportion of a device’s processing power, such as CPU and GPU, in order to calculate hashes. However, except for the occasional increase in CPU or RAM usage, it can go undetected for months as traditional security products do not normally detect its pattern of behavior as malicious.

Conclusion

Failing to patch vulnerabilities quickly and decisively can have serious consequences. Sometimes, however, the window of opportunity before an attack hits is too short for patching to be feasible. This example demonstrates how quickly unpatched vulnerabilities can be exploited following an initial public disclosure. And yet, even two months after SaltStack published the updates, many Salt servers remain unpatched and run the risk of becoming compromised.

In the case of Citrix, some exploits led to a ransomware attack. Darktrace’s AI-powered Immune System technology not only detected every stage of these ransomware attacks, but its autonomous response was able to halt any anomalous event and contain further damage.

Because new vulnerabilities are, by nature, unexpected, traditional security tools relying on rules and signatures don’t know to look for malicious activity that arises as a result. However, with its constantly evolving understanding of ‘normal’, Darktrace’s AI detects and investigates any unusual behavior, regardless of its origin or whether an attack has been seen before.

Crypto-mining is still favored among many threat actors due to its ability to generate profits, and a successfully infection can have a serious impact on the confidentiality and integrity of the corporate network. The need for Cyber AI that can detect new vulnerabilities and novel threats, and autonomously respond to stop an attack in its tracks, are critical to ensuring businesses remain secure in the face of cyber-criminals who are mobilizing to exploit vulnerabilities more quickly than ever.

IoCs:

IoCComment144.217.129[.]111Likely C2, URIs: /ms /h /s91.215.152[.]69Likely C2, URI: /h89.223.121[.]139Download of payload sa.sh217.12.210[.]192Download of payload sa.sh45.147.201[.]62Destination for crypto-mining217.12.210[.]245Download of payload salt_storer

Darktrace model breaches:

  • Device / Initial Breach Chain Compromise
  • Compromise / SSL or HTTP Beacon
  • Device / Large Number of Model Breaches
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / Script from Rare External
  • Compromise / Beaconing Activity To External Rare
  • Anomalous Connection / Multiple Failed Connections to Rare Destination
  • Compromise / Sustained SSL or HTTP Increase
  • Compliance / Crypto Currency Mining Activity

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

AI

/

September 26, 2025

One-Person Security Team, Enterprise-Wide Protection: A Utility Company’s Darktrace Success Story

Default blog imageDefault blog image

A critical mission: Securing public utility systems

This company manages essential utility infrastructure across more than 100 distributed sites, resulting in a wide attack surface spanning both information technology (IT) and operational technology (OT). With attacks on critical infrastructure rising, the company wanted to strengthen defenses.

The limits of traditional tools

The existing mix of conventional tools for visibility and security monitoring posed numerous limitations:

  • Fragmented tools required switching between dashboards to piece together insights
  • Multiple tools were required to both identify and take action on potential incidents
  • Integration between IT, OT, cloud and email required heavy manual effort
  • Existing cybersecurity investments were failing to deliver favorable ROI

A security team of one

For the company’s one-person security team and Vice President of IT, juggling multiple tools and switching between platforms were drains on his time and impacted threat detection and response times. “If an unknown actor attempts to connect to our networks, I need to know immediately and have the ability to stop them before they can do damage.”

Unified, AI-driven defense with Darktrace

The company wanted to unify IT and OT security, reduce manual workload and deliver actionable intelligence in real time. “Darktrace offered the visibility and autonomous capabilities we needed for a proactive defense, including the ability to both see incidents and take action through a single-pane-of-glass.”

Today, the company is using the Darktrace ActiveAI Security Platform™ as the cornerstone of its defense strategy, including:

Real-time protection without the overhead

When compared to a security operations center, the VP said Darktrace is faster, more efficient and more accurate – delivering holistic protection without the high cost or risk of human error.

Darktrace’s Autonomous Response has been a game changer for a shop our size. It stops attacks in real time, before they can move laterally. As a team of one, I can adjust Darktrace’s autonomous actions, ensuring the AI automatically takes stronger actions during off hours to contain threats.”

A single platform for holistic visibility and resilience

Initially licensed under an OT-only pricing model, the company quickly recognized the broader value of Darktrace Self-Learning AI – extending deployment across its IT, cloud, email and endpoint environments and consolidating multiple tools. This holistic visibility is also helping the company to meet ISO and SEC compliance requirements.

A rapid, guided and streamlined deployment

The VP described the Darktrace rollout as smooth and highly collaborative, noting that Darktrace, “Held our hand throughout the process and was genuinely interested in making sure our experience with the platform and the company was top notch.” Despite the complexity of managing multi-connectivity for 100 sites, rollout took less than one week, guided by a clear plan from the Darktrace implementation team.

From barriers to breakthroughs

A seamless security ecosystem

With Darktrace, the company now operates a seamless, AI-driven security ecosystem that combines deep threat validation, intuitive user experience, and a single pane of glass for holistic cyber defense. What began as an OT-focused deployment has grown into a platform that unifies IT, OT, cloud, email and endpoint visibility, delivering comprehensive protection without the overhead of managing multiple tools.

From false positives to real-time, autonomous precision

Since using Darktrace, the company’s false positives have decreased to single digits per day. Within three months, Darktrace conducted 1,470 total investigations, resolving 92% of those autonomously. And Darktrace consistently catches threats that other tools miss:

  • When a remote call center agent landed on a malware-laden site using their company device, the company’s endpoint solution failed to catch it. But Darktrace / ENDPOINT detected the malicious traffic in real time, immediately cutting the connection and blocking the machine from the home network – stopping the attack before it could spread.
  • Darktrace / EMAIL has consistently flagged suspicious messages other tools missed, including credential harvesters or malware disguised as legitimate emails. “Occasionally users request the release of a legitimate email, whether it’s a blocked link or a message diverted to junk. But 10% of those messages could have caused real harm,” said the VP. “And because Darktrace AI is always learning and adapting, it will identify similar legitimate emails in the future, reducing false positives. That tradeoff is well worth it.”

Time saved, confidence gained

For the VP, one of the biggest benefits is time. In less than one month, Darktrace saved the company 264 analyst hours spent on investigations, only escalating 8% of suspected threats for further review. And with Darktrace’s unified dashboard and real-time monitoring, the VP said, “I no longer have to spend time verifying each security tool is working because I can see everything in one location. And, if there is an issue, Darktrace will let me know. That gives me confidence to let the system handle threats while I focus on other priorities.”

Strengthening OT without complexity

The VP said Darktrace / OT has become one of the most valuable aspects of the deployment. Darktrace / OT provides visibility into firmware levels, PLC communications and unusual device interactions that even dedicated OT tools miss. And using Darktrace, the company can segment OT networks securely while still monitoring them through a single interface, strengthening resilience without adding complexity.

Turning cybersecurity into a business catalyst

By reducing tool sprawl, automating responses, and adapting to the unique rhythms of the organization, Darktrace has transformed the company’s cybersecurity from a constant worry into a reliable foundation.

For us, cybersecurity isn’t just about blocking threats, it’s about building resilience that frees us to focus on growth and innovation. With Darktrace as a trusted partner, we’re no longer stuck reacting to problems; we’re shaping a future where security is a catalyst, not a constraint.”
Continue reading
About the author
The Darktrace Community

Blog

/

Cloud

/

September 25, 2025

Announcing Unified Real-Time CDR and Automated Investigations to Transform Cloud Security Operations

Default blog imageDefault blog image

Fragmented Tools are Failing SOC Teams in the Cloud Era

The cloud has transformed how businesses operate, reshaping everything from infrastructure to application delivery. But cloud security has not kept pace. Most tools still rely on traditional models of logging, policy enforcement, and posture management; approaches that provide surface-level visibility but lack the depth to detect or investigate active attacks.

Meanwhile, attackers are exploiting vulnerabilities, delivering cloud-native exploits, and moving laterally in ways that posture management alone cannot catch fast enough. Critical evidence is often missed, and alerts lack the forensic depth SOC analysts need to separate noise from true risk. As a result, organizations remain exposed: research shows that nearly nine in ten organizations have suffered a critical cloud breach despite investing in existing security tools [1].

SOC teams are left buried in alerts without actionable context, while ephemeral workloads like containers and serverless functions vanish before evidence can be preserved. Point tools for logging or forensics only add complexity, with 82% of organizations using multiple platforms to investigate cloud incidents [2].

The result is a broken security model: posture tools surface risks but don’t connect them to active attacker behaviors, while investigation tools are too slow and fragmented to provide timely clarity. Security teams are left reactive, juggling multiple point solutions and still missing critical signals. What’s needed is a unified approach that combines real-time detection and response for active threats with automated investigation and cloud posture management in a single workflow.

Just as security teams once had to evolve beyond basic firewalls and antivirus into network and endpoint detection, response, and forensics, cloud security now requires its own next era: one that unifies detection, response, and investigation at the speed and scale of the cloud.

A Powerful Combination: Real-Time CDR + Automated Cloud Forensics

Darktrace / CLOUD now uniquely unites detection, investigation, and response into one workflow, powered by Self-Learning AI. This means every alert, from any tool in your stack, can instantly become actionable evidence and a complete investigation in minutes.

With this release, Darktrace / CLOUD delivers a more holistic approach to cloud defense, uniting real-time detection, response, and investigation with proactive risk reduction. The result is a single solution that helps security teams stay ahead of attackers while reducing complexity and blind spots.

  • Automated Cloud Forensic Investigations: Instantly capture and analyze volatile evidence from cloud assets, reducing investigation times from days to minutes and eliminating blind spots
  • Enhanced Cloud-Native Threat Detection: Detect advanced attacker behaviors such as lateral movement, privilege escalation, and command-and-control in real time
  • Enhanced Live Cloud Topology Mapping: Gain continuous insight into cloud environments, including ephemeral workloads, with live topology views that simplify investigations and expose anomalous activity
  • Agentless Scanning for Proactive Risk Reduction: Continuously monitor for misconfigurations, vulnerabilities, and risky exposures to reduce attack surface and stop threats before they escalate.

Automated Cloud Forensic Investigations

Darktrace / CLOUD now includes capabilities introduced with Darktrace / Forensic Acquisition & Investigation, triggering automated forensic acquisition the moment a threat is detected. This ensures ephemeral evidence, from disks and memory to containers and serverless workloads can be preserved instantly and analyzed in minutes, not days. The integration unites detection, response, and forensic investigation in a way that eliminates blind spots and reduces manual effort.

Figure 1: Easily view Forensic Investigation of a cloud resource within the Darktrace / CLOUD architecture map

Enhanced Cloud-Native Threat Detection

Darktrace / CLOUD strengthens its real-time behavioral detection to expose early attacker behaviors that logs alone cannot reveal. Enhanced cloud-native detection capabilities include:

• Reconnaissance & Discovery – Detects enumeration and probing activity post-compromise.

• Privilege Escalation via Role Assumption – Identifies suspicious attempts to gain elevated access.

• Malicious Compute Resource Usage – Flags threats such as crypto mining or spam operations.

These enhancements ensure active attacks are detected earlier, before adversaries can escalate or move laterally through cloud environments.

Figure 2: Cyber AI Analyst summary of anomalous behavior for privilege escalation and establishing persistence.

Enhanced Live Cloud Topology Mapping

New enhancements to live topology provide real-time mapping of cloud environments, attacker movement, and anomalous behavior. This dynamic visibility helps SOC teams quickly understand complex environments, trace attack paths, and prioritize response. By integrating with Darktrace / Proactive Exposure Management (PEM), these insights extend beyond the cloud, offering a unified view of risks across networks, endpoints, SaaS, and identity — giving teams the context needed to act with confidence.

Figure 3: Enhanced live topology maps unify visibility across architectures, identities, network connections and more.

Agentless Scanning for Proactive Risk Reduction

Darktrace / CLOUD now introduces agentless scanning to uncover malware and vulnerabilities in cloud assets without impacting performance. This lightweight, non-disruptive approach provides deep visibility into cloud workloads and surfaces risks before attackers can exploit them. By continuously monitoring for misconfigurations and exposures, the solution strengthens posture management and reduces attack surface across hybrid and multi-cloud environments.

Figure 4: Agentless scanning of cloud assets reveals vulnerabilities, which are prioritized by severity.

Together, these capabilities move cloud security operations from reactive to proactive, empowering security teams to detect novel threats in real time, reduce exposures before they are exploited, and accelerate investigations with forensic depth. The result is faster triage, shorter MTTR, and reduced business risk — all delivered in a single, AI-native solution built for hybrid and multi-cloud environments.

Accelerating the Evolution of Cloud Security

Cloud security has long been fragmented, forcing teams to stitch together posture tools, log-based monitoring, and external forensics to get even partial coverage. With this release, Darktrace / CLOUD delivers a holistic, unified approach that covers every stage of the cloud lifecycle, from proactive posture management and risk identification to real-time detection, to automated investigation and response.

By bringing these capabilities together in a single AI-native solution, Darktrace is advancing cloud security beyond incremental change and setting a new standard for how organizations protect their hybrid and multi-cloud environments.

With Darktrace / CLOUD, security teams finally gain end-to-end visibility, response, and investigation at the speed of the cloud, transforming cloud defense from fragmented and reactive to unified and proactive.

[related-resource]

Sources: [1], [2] Darktrace Report: Organizations Require a New Approach to Handle Investigations in the Cloud

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace
Your data. Our AI.
Elevate your network security with Darktrace AI