Blog
/
/
July 7, 2020

Cryptomining Campaigns & Technical Analysis of Vulnerability

Crypto-mining campaigns stood no chance against Darktrace's AI as it identified the threat in real time. Put your trust in Darktrace's assistance!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Jul 2020

Introduction

The speed with which attackers can weaponize vulnerabilities is steadily increasing. While technology is rapidly evolving and cyber-attacks are becoming more sophisticated, the advantages of exploiting software vulnerabilities over devising a more elaborate and lengthy attack plan have not been overlooked by hackers. These vulnerabilities are also a quick way to gain access into a businesses’ infrastructure. In recent years, attackers have found great benefit and substantial success through quickly weaponizing vulnerabilities in web-facing systems.

Just recently, critical vulnerabilities in Citrix Gateway resulted in a spate of activity targeting Darktrace customers, as reported earlier this year. Without an immediate patch released upon the public announcement of the discovered flaws in Citrix, exploits quickly followed. Similarly, in late April, SaltStack developers reported vulnerabilities in Salt, an open source framework used to monitor and update the state of servers in cloud environments and data centers.

The vulnerabilities found in Salt would allow hackers to bypass authentication and authorization controls and execute code in Salt master servers exposed to the internet. The Salt master is responsible for sending commands to Salt minions and can manage thousands of minions at once. Due to this structure, one exposed Salt master can lead to a compromise of all underlying minions.

On May 2, Darktrace detected successful crypto-miner infections across a number of its customers exploiting the CVE-2020-11651 and CVE-2020-11652 vulnerabilities in SaltStack server management software. In the same weekend, LineageOS — an Android mobile operating system – and Ghost — a blogging platform – both reported suffering a crypto-mining attack due to exposed, unpatched Salt servers. Most notable about these attacks was the sheer speed from a vulnerability being published to a widespread attack campaign.

Timeline

Figure 1: A timeline of events identified by Darktrace on May 3

Technical analysis

Initial compromise

Darktrace initially detected that a number of customer servers running SaltStack were making external connections to endpoints previously not seen on the network. The connections used the curl or wget utilities to download and execute a bash script, which would install a secondary-stage payload containing a cryptocurrency miner.

The systems were targeted directly utilizing 2020-11651 and CVE-2020-11652 vulnerabilities in the ZeroMQ protocol running on SaltStack. These vulnerabilities would allow direct remote code execution as root on the targeted systems, allowing the script to be downloaded and executed successfully with highest system privileges.

The downloader script is almost identical to the one utilized in March in H2Miner infections targeting exposed Docker APIs and Redis instances.

Before downloading the secondary stage payload, the script cleans the target system of a number of pre-existing infections and miners, as well as disabling a number of known security tools and software.

Figure 2: The downloader script

Following the initial clean up, the script would iterate through three functions to download the crypto-miner payload — salt-storer

SHA256 837d768875417578c0b1cab4bd0aa38146147799f643bb7b3c6c6d3d82d7aa2a

— from three different hard-coded servers. An MD5 check for the downloaded executable would be performed prior to execution. The below screenshot illustrates two out of the three downloader functions that would be invoked.

Figure 3: Two of the downloader functions

Second stage payload

Following the cryptographic checks, the downloaded ELF LSB executable kicks into action. No payload analysis was carried out, however it’s execution would result in a crypto-miner being installed and a C2 channel opened.

OSINT indicates that several new versions of the payload were observed carrying additional capabilities, including database dumping and advanced persistence methods. The variants detected by Darktrace’s AI included the more advanced “Version 5” payload purported to have worming capabilities, but in this case they were not observed directly.

Command and control

Upon the execution of an LSB executable, a plaintext HTTP C2 channel would be established, sending basic metadata about the infected host such as processor architecture, available resources, and whether root execution was achieved. This indicates that the C2 mechanisms were likely repurposed from other infections, as this particular infection would execute as root, making the respective component redundant.

Figure 4: A Command and control channel

The complete attack lifecycle was investigated and reported on by Darktrace’s Cyber AI Analyst, which automatically surfaced some crucial details regarding the C2 communication, including other servers that were seen making similar communication patterns, as seen in the bottom right below.

Figure 5: The Cyber AI Analyst automatically generating a natural-language summary of the overall security incident

Figure 6: Further information on the suspicious endpoints

Actions on target

Lastly, devices began mining for cryptocurrency. Cryptocurrency mining demands a substantial proportion of a device’s processing power, such as CPU and GPU, in order to calculate hashes. However, except for the occasional increase in CPU or RAM usage, it can go undetected for months as traditional security products do not normally detect its pattern of behavior as malicious.

Conclusion

Failing to patch vulnerabilities quickly and decisively can have serious consequences. Sometimes, however, the window of opportunity before an attack hits is too short for patching to be feasible. This example demonstrates how quickly unpatched vulnerabilities can be exploited following an initial public disclosure. And yet, even two months after SaltStack published the updates, many Salt servers remain unpatched and run the risk of becoming compromised.

In the case of Citrix, some exploits led to a ransomware attack. Darktrace’s AI-powered Immune System technology not only detected every stage of these ransomware attacks, but its autonomous response was able to halt any anomalous event and contain further damage.

Because new vulnerabilities are, by nature, unexpected, traditional security tools relying on rules and signatures don’t know to look for malicious activity that arises as a result. However, with its constantly evolving understanding of ‘normal’, Darktrace’s AI detects and investigates any unusual behavior, regardless of its origin or whether an attack has been seen before.

Crypto-mining is still favored among many threat actors due to its ability to generate profits, and a successfully infection can have a serious impact on the confidentiality and integrity of the corporate network. The need for Cyber AI that can detect new vulnerabilities and novel threats, and autonomously respond to stop an attack in its tracks, are critical to ensuring businesses remain secure in the face of cyber-criminals who are mobilizing to exploit vulnerabilities more quickly than ever.

IoCs:

IoCComment144.217.129[.]111Likely C2, URIs: /ms /h /s91.215.152[.]69Likely C2, URI: /h89.223.121[.]139Download of payload sa.sh217.12.210[.]192Download of payload sa.sh45.147.201[.]62Destination for crypto-mining217.12.210[.]245Download of payload salt_storer

Darktrace model breaches:

  • Device / Initial Breach Chain Compromise
  • Compromise / SSL or HTTP Beacon
  • Device / Large Number of Model Breaches
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / Script from Rare External
  • Compromise / Beaconing Activity To External Rare
  • Anomalous Connection / Multiple Failed Connections to Rare Destination
  • Compromise / Sustained SSL or HTTP Increase
  • Compliance / Crypto Currency Mining Activity

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

AI

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI