ブログ
/
/
July 7, 2020

Cryptomining Campaigns & Technical Analysis of Vulnerability

Crypto-mining campaigns stood no chance against Darktrace's AI as it identified the threat in real time. Put your trust in Darktrace's assistance!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Jul 2020

Introduction

The speed with which attackers can weaponize vulnerabilities is steadily increasing. While technology is rapidly evolving and cyber-attacks are becoming more sophisticated, the advantages of exploiting software vulnerabilities over devising a more elaborate and lengthy attack plan have not been overlooked by hackers. These vulnerabilities are also a quick way to gain access into a businesses’ infrastructure. In recent years, attackers have found great benefit and substantial success through quickly weaponizing vulnerabilities in web-facing systems.

Just recently, critical vulnerabilities in Citrix Gateway resulted in a spate of activity targeting Darktrace customers, as reported earlier this year. Without an immediate patch released upon the public announcement of the discovered flaws in Citrix, exploits quickly followed. Similarly, in late April, SaltStack developers reported vulnerabilities in Salt, an open source framework used to monitor and update the state of servers in cloud environments and data centers.

The vulnerabilities found in Salt would allow hackers to bypass authentication and authorization controls and execute code in Salt master servers exposed to the internet. The Salt master is responsible for sending commands to Salt minions and can manage thousands of minions at once. Due to this structure, one exposed Salt master can lead to a compromise of all underlying minions.

On May 2, Darktrace detected successful crypto-miner infections across a number of its customers exploiting the CVE-2020-11651 and CVE-2020-11652 vulnerabilities in SaltStack server management software. In the same weekend, LineageOS — an Android mobile operating system – and Ghost — a blogging platform – both reported suffering a crypto-mining attack due to exposed, unpatched Salt servers. Most notable about these attacks was the sheer speed from a vulnerability being published to a widespread attack campaign.

Timeline

Figure 1: A timeline of events identified by Darktrace on May 3

Technical analysis

Initial compromise

Darktrace initially detected that a number of customer servers running SaltStack were making external connections to endpoints previously not seen on the network. The connections used the curl or wget utilities to download and execute a bash script, which would install a secondary-stage payload containing a cryptocurrency miner.

The systems were targeted directly utilizing 2020-11651 and CVE-2020-11652 vulnerabilities in the ZeroMQ protocol running on SaltStack. These vulnerabilities would allow direct remote code execution as root on the targeted systems, allowing the script to be downloaded and executed successfully with highest system privileges.

The downloader script is almost identical to the one utilized in March in H2Miner infections targeting exposed Docker APIs and Redis instances.

Before downloading the secondary stage payload, the script cleans the target system of a number of pre-existing infections and miners, as well as disabling a number of known security tools and software.

Figure 2: The downloader script

Following the initial clean up, the script would iterate through three functions to download the crypto-miner payload — salt-storer

SHA256 837d768875417578c0b1cab4bd0aa38146147799f643bb7b3c6c6d3d82d7aa2a

— from three different hard-coded servers. An MD5 check for the downloaded executable would be performed prior to execution. The below screenshot illustrates two out of the three downloader functions that would be invoked.

Figure 3: Two of the downloader functions

Second stage payload

Following the cryptographic checks, the downloaded ELF LSB executable kicks into action. No payload analysis was carried out, however it’s execution would result in a crypto-miner being installed and a C2 channel opened.

OSINT indicates that several new versions of the payload were observed carrying additional capabilities, including database dumping and advanced persistence methods. The variants detected by Darktrace’s AI included the more advanced “Version 5” payload purported to have worming capabilities, but in this case they were not observed directly.

Command and control

Upon the execution of an LSB executable, a plaintext HTTP C2 channel would be established, sending basic metadata about the infected host such as processor architecture, available resources, and whether root execution was achieved. This indicates that the C2 mechanisms were likely repurposed from other infections, as this particular infection would execute as root, making the respective component redundant.

Figure 4: A Command and control channel

The complete attack lifecycle was investigated and reported on by Darktrace’s Cyber AI Analyst, which automatically surfaced some crucial details regarding the C2 communication, including other servers that were seen making similar communication patterns, as seen in the bottom right below.

Figure 5: The Cyber AI Analyst automatically generating a natural-language summary of the overall security incident

Figure 6: Further information on the suspicious endpoints

Actions on target

Lastly, devices began mining for cryptocurrency. Cryptocurrency mining demands a substantial proportion of a device’s processing power, such as CPU and GPU, in order to calculate hashes. However, except for the occasional increase in CPU or RAM usage, it can go undetected for months as traditional security products do not normally detect its pattern of behavior as malicious.

Conclusion

Failing to patch vulnerabilities quickly and decisively can have serious consequences. Sometimes, however, the window of opportunity before an attack hits is too short for patching to be feasible. This example demonstrates how quickly unpatched vulnerabilities can be exploited following an initial public disclosure. And yet, even two months after SaltStack published the updates, many Salt servers remain unpatched and run the risk of becoming compromised.

In the case of Citrix, some exploits led to a ransomware attack. Darktrace’s AI-powered Immune System technology not only detected every stage of these ransomware attacks, but its autonomous response was able to halt any anomalous event and contain further damage.

Because new vulnerabilities are, by nature, unexpected, traditional security tools relying on rules and signatures don’t know to look for malicious activity that arises as a result. However, with its constantly evolving understanding of ‘normal’, Darktrace’s AI detects and investigates any unusual behavior, regardless of its origin or whether an attack has been seen before.

Crypto-mining is still favored among many threat actors due to its ability to generate profits, and a successfully infection can have a serious impact on the confidentiality and integrity of the corporate network. The need for Cyber AI that can detect new vulnerabilities and novel threats, and autonomously respond to stop an attack in its tracks, are critical to ensuring businesses remain secure in the face of cyber-criminals who are mobilizing to exploit vulnerabilities more quickly than ever.

IoCs:

IoCComment144.217.129[.]111Likely C2, URIs: /ms /h /s91.215.152[.]69Likely C2, URI: /h89.223.121[.]139Download of payload sa.sh217.12.210[.]192Download of payload sa.sh45.147.201[.]62Destination for crypto-mining217.12.210[.]245Download of payload salt_storer

Darktrace model breaches:

  • Device / Initial Breach Chain Compromise
  • Compromise / SSL or HTTP Beacon
  • Device / Large Number of Model Breaches
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / Script from Rare External
  • Compromise / Beaconing Activity To External Rare
  • Anomalous Connection / Multiple Failed Connections to Rare Destination
  • Compromise / Sustained SSL or HTTP Increase
  • Compliance / Crypto Currency Mining Activity

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

Default blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

Network

/

January 12, 2026

Maduro Arrest Used as a Lure to Deliver Backdoor

Default blog imageDefault blog image

Introduction

Threat actors frequently exploit ongoing world events to trick users into opening and executing malicious files. Darktrace security researchers recently identified a threat group using reports around the arrest of Venezuelan President Nicolàs Maduro on January 3, 2025, as a lure to deliver backdoor malware.

Technical Analysis

While the exact initial access method is unknown, it is likely that a spear-phishing email was sent to victims, containing a zip archive titled “US now deciding what’s next for Venezuela.zip”. This file included an executable named “Maduro to be taken to New York.exe” and a dynamic-link library (DLL), “kugou.dll”.  

The binary “Maduro to be taken to New York.exe” is a legitimate binary (albeit with an expired signature) related to KuGou, a Chinese streaming platform. Its function is to load the DLL “kugou.dll” via DLL search order. In this instance, the expected DLL has been replaced with a malicious one with the same name to load it.  

DLL called with LoadLibraryW.
Figure 1: DLL called with LoadLibraryW.

Once the DLL is executed, a directory is created C:\ProgramData\Technology360NB with the DLL copied into the directory along with the executable, renamed as “DataTechnology.exe”. A registry key is created for persistence in “HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Lite360” to run DataTechnology.exe --DATA on log on.

 Registry key added for persistence.
Figure 2. Registry key added for persistence.
Folder “Technology360NB” created.
Figure 3: Folder “Technology360NB” created.

During execution, a dialog box appears with the caption “Please restart your computer and try again, or contact the original author.”

Message box prompting user to restart.
Figure 4. Message box prompting user to restart.

Prompting the user to restart triggers the malware to run from the registry key with the command --DATA, and if the user doesn't, a forced restart is triggered. Once the system is reset, the malware begins periodic TLS connections to the command-and-control (C2) server 172.81.60[.]97 on port 443. While the encrypted traffic prevents direct inspection of commands or data, the regular beaconing and response traffic strongly imply that the malware has the ability to poll a remote server for instructions, configuration, or tasking.

Conclusion

Threat groups have long used geopolitical issues and other high-profile events to make malicious content appear more credible or urgent. Since the onset of the war in Ukraine, organizations have been repeatedly targeted with spear-phishing emails using subject lines related to the ongoing conflict, including references to prisoners of war [1]. Similarly, the Chinese threat group Mustang Panda frequently uses this tactic to deploy backdoors, using lures related to the Ukrainian war, conventions on Tibet [2], the South China Sea [3], and Taiwan [4].  

The activity described in this blog shares similarities with previous Mustang Panda campaigns, including the use of a current-events archive, a directory created in ProgramData with a legitimate executable used to load a malicious DLL and run registry keys used for persistence. While there is an overlap of tactics, techniques and procedures (TTPs), there is insufficient information available to confidently attribute this activity to a specific threat group. Users should remain vigilant, especially when opening email attachments.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

172.81.60[.]97
8f81ce8ca6cdbc7d7eb10f4da5f470c6 - US now deciding what's next for Venezuela.zip
722bcd4b14aac3395f8a073050b9a578 - Maduro to be taken to New York.exe
aea6f6edbbbb0ab0f22568dcb503d731  - kugou.dll

References

[1] https://cert.gov.ua/article/6280422  

[2] https://www.ibm.com/think/x-force/hive0154-mustang-panda-shifts-focus-tibetan-community-deploy-pubload-backdoor

[3] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

[4] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

Continue reading
About the author
Tara Gould
Malware Research Lead
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ