Blog
/
Network
/
September 6, 2021

What Are the Early Signs of a Ransomware Attack?

Discover the early signs of ransomware and how to defend against it. Often attack is the best form of defense with cybersecurity. Learn more here!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Brianna Leddy
Director of Analyst Operations
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Sep 2021

The deployment of ransomware is the endgame of a cyber-attack. A threat actor must have accomplished several previous steps – including lateral movement and privilege escalation – to reach this final position. The ability to detect and counter the early moves is therefore just as important as detecting the encryption itself.

Attackers are using diverse strategies – such as ‘Living off the Land’ and carefully crafting their command and control (C2) – to blend in with normal network traffic and evade traditional security defenses. The analysis below examines the Tactics, Techniques and Procedures (TTPs) used by many ransomware actors by unpacking a compromise which occurred at a defense contractor in Canada.

Phases of a ransomware attack

Figure 1: Timeline of the attack.

The opening: Initial access to privileged account

The first indicator of compromise was a login on a server with an unusual credential, followed by unusual admin activity. The attacker may have gained access to the username and password in a number of ways, from credential stuffing to buying them on the Dark Web. As the attacker had privileged access from the get-go, there was no need for privilege escalation.

Lateral movement

Two days later, the attacker began to spread from the initial server. The compromised server began to send out unusual Windows Management Instrumentation (WMI) commands.

It began remotely controlling four other devices – authenticating on them with a single admin credential. One of the destinations was a domain controller (DC), another was a backup server.

By using WMI – a common admin tool – for lateral movement, the attacker opted to ‘live off the land’ rather than introduce a new lateral movement tool, aiming to remain unnoticed by the company’s security stack. The unusual use of WMI was picked up by Darktrace and the timings of the unusual WMI connections were pieced together by Cyber AI Analyst.

Models:

  • New or Uncommon WMI Activity
  • AI Analyst / Extensive Chain of Administrative Connections

Establish C2

The four devices then connected to the IP 185.250.151[.]172. Three of them, including the DC and backup server, established SSL beacons to the IP using the dynamic DNS domain goog1e.ezua[.]com.

The C2 endpoints had very little open-source intelligence (OSINT) available, but it seems that a Cobalt Strike-style script had used the endpoint in the past. This suggests complex tooling, as the attacker used dynamic SSL and spoofed Google to mask their beaconing.

Interestingly, through the entirety of the attack, only these three devices used SSL connections for beaconing, while later C2 occurred over unencrypted protocols. It appears these three critical devices were treated differently to the other infected devices on the network.

Models:

  • Immediate breach of Anomalous External Activity from Critical Network Device, then several model breaches involving beaconing and SSL to dynamic DNS. (Domain Controller DynDNS SSL or HTTP was particularly specific to this activity.)

The middle game: Internal reconnaissance and further lateral movement

The attack chain took the form of two cycles of lateral movement, followed by establishing C2 at the newly controlled destinations.

Figure 2: Observed chain of lateral movement and C2.

So, after establishing C2, the DC made WMI requests to 20 further IPs over an extended period. It also scanned 234 IPs via ICMP pings, presumably in an attempt to find more hosts.

Many of these were eventually found with ransom notes, in particular when the targeted devices were hypervisors. The ransomware was likely deployed with remote commands via WMI.

Models:

  • AI Analyst / Suspicious Chain of Administrative Connections (from the initial server to the DC to the hypervisor)
  • AI Analyst / Extensive Suspicious WMI Activity (from the DC)
  • Device / ICMP Address Scan, Scanning of Multiple Devices AI Analyst incident (from the DC)

Further C2

As the second stage of lateral movement stopped, a second stage of unencrypted C2 was seen from five new devices. Each started with GET requests to the IP seen in the SSL C2 (185.250.151[.]172), which used the spoofed hostname google[.]com.

Activity started on each device with HTTP requests for a URI ending in .png, before a more consistent beaconing to the URI /books/. Eventually, the devices made POST requests to the URI /ebooks/?k= (a unique identifier for each device). All this appears to be a way of concealing a C2 beacon in what looks like plausible traffic to Google.

In this way, by encrypting some C2 connections with SSL to a Dynamic DNS domain, while crafting other unencrypted HTTP to look like traffic to google[.]com, the attacker managed to operate undetected by the company’s antivirus tools.

Darktrace identified this anomalous activity and generated a large number of external connectivity model breaches.

Models:

  • Eight breaches of Compromise / HTTP Beaconing to New Endpoint from the affected devices

Accomplish mission: Checkmate

Finally, the attacker deployed ransomware. In the ransom note, they stated that sensitive information had been exfiltrated and would be leaked if the company did not pay.

However, this was a lie. Darktrace confirmed that no data had been exfiltrated, as the C2 communications had sent far too little data. Lying about data exfiltration in order to extort a ransom is a common tactic for attackers, and visibility is crucial to determine whether a threat actor is bluffing.

In addition, Antigena – Darktrace’s Autonomous Response technology – blocked an internal download from one of the servers compromised in the first round of lateral movement, because it was an unusual incoming data volume for the client device. This was most likely the attacker attempting to transfer data in preparation for the end goal, so the block may have prevented this data from being moved for exfiltration.

Figure 3: Antigena model breach.

Figure 4: Device is blocked from SMB communication with the compromised server three seconds later.

Models:

  • Unusual Incoming Data Volume
  • High Volume Server Data Transfer

Unfortunately, Antigena was not active on the majority of the devices involved in the incident. If in active mode, Antigena would have stopped the early stages of this activity, including the unusual administrative logins and beaconing. The customer is now working to fully configure Antigena, so they benefit from 24/7 Autonomous Response.

Cyber AI Analyst investigates

Darktrace’s AI spotted and reported on beaconing from several devices including the DC, which was the highest scoring device for unusual behavior at the time of the activity. It condensed this information into three incidents – ‘Possible SSL Command and Control’, ‘Extensive Suspicious Remote WMI Activity’, and ‘Scanning of Remote Devices’.

Crucially, Cyber AI Analyst not only summarized the admin activity from the DC but also linked it back to the first device through an unusual chain of administrative connections.

Figure 5: Cyber AI Analyst incident showing a suspicious chain of administrative connections linking the first device in the chain of connections to a hypervisor where a ransom note was found via the compromised DC, saving valuable time in the investigation. It also highlights the credential common to all of the lateral movement connections.

Finding lateral movement chains manually is a laborious process well suited to AI. In this case, it enabled the security team to quickly trace back to the device which was the likely source of the attack and find the common credential in the connections.

Play the game like a machine

To get the full picture of a ransomware attack, it is important to look beyond the final encryption to previous phases of the kill chain. In the attack above, the encryption itself did not generate network traffic, so detecting the intrusion at its early stages was vital.

Despite the attacker ‘Living off the Land’ and using WMI with a compromised admin credential, as well as spoofing the common hostname google[.]com for C2 and applying dynamic DNS for SSL connections, Darktrace was able to identify all the stages of the attack and immediately piece them together into a meaningful security narrative. This would have been almost impossible for a human analyst to achieve without labor-intensive checking of the timings of individual connections.

With ransomware infections becoming faster and more frequent, with the threat of offensive AI looming closer and the Dark Web marketplace thriving, with security teams drowning under false positives and no time left on the clock, AI is now an essential part of any security solution. The board is set, the time is ticking, the stakes are higher than ever. Your move.

Thanks to Darktrace analyst Daniel Gentle for his insights on the above threat find.

IoCs:

IoCComment185.250.151[.]172IP address used for both HTTP and SSL C2goog1e.ezua[.]comDynamic DNS Hostname used for SSL C2

Darktrace model detections:

  • AI Analyst models:
  • Extensive Suspicious WMI Activity
  • Suspicious Chain of Administrative Connections
  • Scanning of Multiple Devices
  • Possible SSL Command and Control
  • Meta model:
  • Device / Large Number of model breaches
  • External connectivity models:
  • Anonymous Server Activity / Domain Controller DynDNS SSL or HTTP
  • Compromise / Suspicious TLS Beaconing to Rare External
  • Compromise / Beaconing Activity To External Rare
  • Compromise / SSL to DynDNS
  • Anomalous Server Activity / External Activity from Critical Network Device
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Suspicious Beaconing Behaviour
  • Compromise / HTTP Beaconing to New Endpoint
  • Internal activity models:
  • Device / New or Uncommon WMI Activity
  • User / New Admin Credentials on Client
  • Device / ICMP Address Scan
  • Anomalous Connection / Unusual Incoming Data Volume
  • Unusual Activity / High Volume Server Data Transfer

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Brianna Leddy
Director of Analyst Operations

More in this series

No items found.

Blog

/

Email

/

September 30, 2025

Out of Character: Detecting Vendor Compromise and Trusted Relationship Abuse with Darktrace

vendor email compromiseDefault blog imageDefault blog image

What is Vendor Email Compromise?

Vendor Email Compromise (VEC) refers to an attack where actors breach a third-party provider to exploit their access, relationships, or systems for malicious purposes. The initially compromised entities are often the target’s existing partners, though this can extend to any organization or individual the target is likely to trust.

It sits at the intersection of supply chain attacks and business email compromise (BEC), blending technical exploitation with trust-based deception. Attackers often infiltrate existing conversations, leveraging AI to mimic tone and avoid common spelling and grammar pitfalls. Malicious content is typically hosted on otherwise reputable file sharing platforms, meaning any shared links initially seem harmless.

While techniques to achieve initial access may have evolved, the goals remain familiar. Threat actors harvest credentials, launch subsequent phishing campaigns, attempt to redirect invoice payments for financial gain, and exfiltrate sensitive corporate data.

Why traditional defenses fall short

These subtle and sophisticated email attacks pose unique challenges for defenders. Few busy people would treat an ongoing conversation with a trusted contact with the same level of suspicion as an email from the CEO requesting ‘URGENT ASSISTANCE!’ Unfortunately, many traditional secure email gateways (SEGs) struggle with this too. Detecting an out-of-character email, when it does not obviously appear out of character, is a complex challenge. It’s hardly surprising, then, that 83% of organizations have experienced a security incident involving third-party vendors [1].  

This article explores how Darktrace detected four different vendor compromise campaigns for a single customer, within a two-week period in 2025.  Darktrace / EMAIL successfully identified the subtle indicators that these seemingly benign emails from trusted senders were, in fact, malicious. Due to the configuration of Darktrace / EMAIL in this customer’s environment, it was unable to take action against the malicious emails. However, if fully enabled to take Autonomous Response, it would have held all offending emails identified.

How does Darktrace detect vendor compromise?

The answer lies at the core of how Darktrace operates: anomaly detection. Rather than relying on known malicious rules or signatures, Darktrace learns what ‘normal’ looks like for an environment, then looks for anomalies across a wide range of metrics. Despite the resourcefulness of the threat actors involved in this case, Darktrace identified many anomalies across these campaigns.

Different campaigns, common traits

A wide variety of approaches was observed. Individuals, shared mailboxes and external contractors were all targeted. Two emails originated from compromised current vendors, while two came from unknown compromised organizations - one in an associated industry. The sender organizations were either familiar or, at the very least, professional in appearance, with no unusual alphanumeric strings or suspicious top-level domains (TLDs). Subject line, such as “New Approved Statement From [REDACTED]” and “[REDACTED] - Proposal Document” appeared unremarkable and were not designed to provoke heightened emotions like typical social engineering or BEC attempts.

All emails had been given a Microsoft Spam Confidence Level of 1, indicating Microsoft did not consider them to be spam or malicious [2]. They also passed authentication checks (including SPF, and in some cases DKIM and DMARC), meaning they appeared to originate from an authentic source for the sender domain and had not been tampered with in transit.  

All observed phishing emails contained a link hosted on a legitimate and commonly used file-sharing site. These sites were often convincingly themed, frequently featuring the name of a trusted vendor either on the page or within the URL, to appear authentic and avoid raising suspicion. However, these links served only as the initial step in a more complex, multi-stage phishing process.

A legitimate file sharing site used in phishing emails to host a secondary malicious link.
Figure 1: A legitimate file sharing site used in phishing emails to host a secondary malicious link.
Another example of a legitimate file sharing endpoint sent in a phishing email and used to host a malicious link.
Figure 2: Another example of a legitimate file sharing endpoint sent in a phishing email and used to host a malicious link.

If followed, the recipient would be redirected, sometimes via CAPTCHA, to fake Microsoft login pages designed to capturing credentials, namely http://pub-ac94c05b39aa4f75ad1df88d384932b8.r2[.]dev/offline[.]html and https://s3.us-east-1.amazonaws[.]com/s3cure0line-0365cql0.19db86c3-b2b9-44cc-b339-36da233a3be2ml0qin/s3cccql0.19db86c3-b2b9-44cc-b339-36da233a3be2%26l0qn[.]html#.

The latter made use of homoglyphs to deceive the user, with a link referencing ‘s3cure0line’, rather than ‘secureonline’. Post-incident investigation using open-source intelligence (OSINT) confirmed that the domains were linked to malicious phishing endpoints [3] [4].

Fake Microsoft login page designed to harvest credentials.
Figure 3: Fake Microsoft login page designed to harvest credentials.
Phishing kit with likely AI-generated image, designed to harvest user credentials. The URL uses ‘s3cure0line’ instead of ‘secureonline’, a subtle misspelling intended to deceive users.
Figure 4: Phishing kit with likely AI-generated image, designed to harvest user credentials. The URL uses ‘s3cure0line’ instead of ‘secureonline’, a subtle misspelling intended to deceive users.

Darktrace Anomaly Detection

Some senders were unknown to the network, with no previous outbound or inbound emails. Some had sent the email to multiple undisclosed recipients using BCC, an unusual behavior for a new sender.  

Where the sender organization was an existing vendor, Darktrace recognized out-of-character behavior, in this case it was the first time a link to a particular file-sharing site had been shared. Often the links themselves exhibited anomalies, either being unusually prominent or hidden altogether - masked by text or a clickable image.

Crucially, Darktrace / EMAIL is able to identify malicious links at the time of processing the emails, without needing to visit the URLs or analyze the destination endpoints, meaning even the most convincing phishing pages cannot evade detection – meaning even the most convincing phishing emails cannot evade detection. This sets it apart from many competitors who rely on crawling the endpoints present in emails. This, among other things, risks disruption to user experience, such as unsubscribing them from emails, for instance.

Darktrace was also able to determine that the malicious emails originated from a compromised mailbox, using a series of behavioral and contextual metrics to make the identification. Upon analysis of the emails, Darktrace autonomously assigned several contextual tags to highlight their concerning elements, indicating that the messages contained phishing links, were likely sent from a compromised account, and originated from a known correspondent exhibiting out-of-character behavior.

A summary of the anomalous email, confirming that it contained a highly suspicious link.
Figure 5: Tags assigned to offending emails by Darktrace / EMAIL.

Figure 6: A summary of the anomalous email, confirming that it contained a highly suspicious link.

Out-of-character behavior caught in real-time

In another customer environment around the same time Darktrace / EMAIL detected multiple emails with carefully crafted, contextually appropriate subject lines sent from an established correspondent being sent to 30 different recipients. In many cases, the attacker hijacked existing threads and inserted their malicious emails into an ongoing conversation in an effort to blend in and avoid detection. As in the previous, the attacker leveraged a well-known service, this time ClickFunnels, to host a document containing another malicious link. Once again, they were assigned a Microsoft Spam Confidence Level of 1, indicating that they were not considered malicious.

The legitimate ClickFunnels page used to host a malicious phishing link.
Figure 7: The legitimate ClickFunnels page used to host a malicious phishing link.

This time, however, the customer had Darktrace / EMAIL fully enabled to take Autonomous Response against suspicious emails. As a result, when Darktrace detected the out-of-character behavior, specifically, the sharing of a link to a previously unused file-sharing domain, and identified the likely malicious intent of the message, it held the email, preventing it from reaching recipients’ inboxes and effectively shutting down the attack.

Figure 8: Darktrace / EMAIL’s detection of malicious emails inserted into an existing thread.*

*To preserve anonymity, all real customer names, email addresses, and other identifying details have been redacted and replaced with fictitious placeholders.

Legitimate messages in the conversation were assigned an Anomaly Score of 0, while the newly inserted malicious emails identified and were flagged with the maximum score of 100.

Key takeaways for defenders

Phishing remains big business, and as the landscape evolves, today’s campaigns often look very different from earlier versions. As with network-based attacks, threat actors are increasingly leveraging legitimate tools and exploiting trusted relationships to carry out their malicious goals, often staying under the radar of security teams and traditional email defenses.

As attackers continue to exploit trusted relationships between organizations and their third-party associates, security teams must remain vigilant to unexpected or suspicious email activity. Protecting the digital estate requires an email solution capable of identifying malicious characteristics, even when they originate from otherwise trusted senders.

Credit to Jennifer Beckett (Cyber Analyst), Patrick Anjos (Senior Cyber Analyst), Ryan Traill (Analyst Content Lead), Kiri Addison (Director of Product)

Appendices

IoC - Type - Description + Confidence  

- http://pub-ac94c05b39aa4f75ad1df88d384932b8.r2[.]dev/offline[.]html#p – fake Microsoft login page

- https://s3.us-east-1.amazonaws[.]com/s3cure0line-0365cql0.19db86c3-b2b9-44cc-b339-36da233a3be2ml0qin/s3cccql0.19db86c3-b2b9-44cc-b339-36da233a3be2%26l0qn[.]html# - link to domain used in homoglyph attack

MITRE ATT&CK Mapping  

Tactic – Technique – Sub-Technique  

Initial Access - Phishing – (T1566)  

References

1.     https://gitnux.org/third-party-risk-statistics/

2.     https://learn.microsoft.com/en-us/defender-office-365/anti-spam-spam-confidence-level-scl-about

3.     https://www.virustotal.com/gui/url/5df9aae8f78445a590f674d7b64c69630c1473c294ce5337d73732c03ab7fca2/detection

4.     https://www.virustotal.com/gui/url/695d0d173d1bd4755eb79952704e3f2f2b87d1a08e2ec660b98a4cc65f6b2577/details

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content

Continue reading
About the author
Jennifer Beckett
Cyber Analyst

Blog

/

OT

/

October 1, 2025

Announcing Unified OT Security with Dedicated OT Workflows, Segmentation-Aware Risk Insights, and Next-Gen Endpoint Visibility for Industrial Teams

Default blog imageDefault blog image

The challenge of convergence without clarity

Convergence is no longer a roadmap idea, it is the daily reality for industrial security teams. As Information Technology (IT) and Operational Technology (OT) environments merge, the line between a cyber incident and an operational disruption grows increasingly hard to define. A misconfigured firewall rule can lead to downtime. A protocol misuse might look like a glitch. And when a pump stalls but nothing appears in the Security Operations Center (SOC) dashboard, teams are left asking: is this operational or is this a threat?

The lack of shared context slows down response, creates friction between SOC analysts and plant engineers, and leaves organizations vulnerable at exactly the points where IT and OT converge. Defenders need more than alerts, they need clarity that both sides can trust.

The breakthrough with Darktrace / OT

This latest Darktrace / OT release was built to deliver exactly that. It introduces shared context between Security, IT, and OT operations, helping reduce friction and close the security gaps at the intersection of these domains.

With a dedicated dashboard built for operations teams, extended visibility into endpoints for new forms of detection and CVE collection, expanded protocol coverage, and smarter risk modeling aligned to segmentation policies, teams can now operate from a shared source of truth. These enhancements are not just incremental upgrades, they are foundational improvements designed to bring clarity, efficiency, and trust to converged environments.

A dashboard built for OT engineers

The new Operational Overview provides OT engineers with a workspace designed for them, not for SOC analysts. It brings asset management, risk insights and operational alerts into one place. Engineers can now see activity like firmware changes, controller reprograms or the sudden appearance of a new workstation on the network, providing a tailored view for critical insights and productivity gains without navigating IT-centric workflows. Each device view is now enriched with cross-linked intelligence, make, model, firmware version and the roles inferred by Self-Learning AI, making it easier to understand how each asset behaves, what function it serves, and where it fits within the broader industrial process. By suppressing IT-centric noise, the dashboard highlights only the anomalies that matter to operations, accelerating triage, enabling smoother IT/OT collaboration, and reducing time to root cause without jumping between tools.

This is usability with purpose, a view that matches OT workflows and accelerates response.

Figure 1: The Operational Overview provides an intuitive dashboard summarizing all OT Assets, Alerts, and Risk.

Full-spectrum coverage across endpoints, sensors and protocols

The release also extends visibility into areas that have traditionally been blind spots. Engineering workstations, Human-Machine Interfaces (HMIs), contractor laptops and field devices are often the entry points for attackers, yet the hardest to monitor.

Darktrace introduces Network Endpoint eXtended Telemetry (NEXT) for OT, a lightweight collector built for segmented and resource-constrained environments. NEXT for OT uses Endpoint sensors to capture localized network, and now process-level telemetry, placing it in context alongside other network and asset data to:

  1. Identify vulnerabilities and OS data, which is leveraged by OT Risk Management for risk scoring and patching prioritization, removing the need for third-party CVE collection.
  1. Surface novel threats using Self-Learning AI that standalone Endpoint Detection and Response (EDR) would miss.
  1. Extend Cyber AI Analyst investigations through to the endpoint root cause.

NEXT is part of our existing cSensor endpoint agent, can be deployed standalone or alongside existing EDR tools, and allows capabilities to be enabled or disabled depending on factors such as security or OT team objectives and resource utilization.

Figure 2: Darktrace / OT delivers CVE patch priority insights by combining threat intelligence with extended network and endpoint telemetry

The family of Darktrace Endpoint sensors also receive a boost in deployment flexibility, with on-prem server-based setups, as well as a Windows driver tailored for zero-trust and high-security environments.

Protocol coverage has been extended where it matters most. Darktrace now performs protocol analysis of a wider range of GE and Mitsubishi protocols, giving operators real-time visibility into commands and state changes on Programmable Logic Controllers (PLCs), robots and controllers. Backed by Self-Learning AI, this inspection does more than parse traffic, it understands what normal looks like and flags deviations that signal risk.

Integrated risk and governance workflows

Security data is only valuable when it drives action. Darktrace / OT delivers risk insights that go beyond patching, helping teams take meaningful steps even when remediation isn't possible. Risk is assessed not just by CVE presence, but by how network segmentation, firewall policies, and attack path logic neutralize or contain real-world exposure. This approach empowers defenders to deprioritize low-impact vulnerabilities and focus effort where risk truly exists. Building on the foundation introduced in release 6.3, such as KEV enrichment, endpoint OS data, and exploit mapping, this release introduces new integrations that bring Darktrace / OT intelligence directly into governance workflows.

Fortinet FortiGate firewall ingestion feeds segmentation rules into attack path modeling, revealing real exposure when policies fail and closing feeds into patching prioritization based on a policy to CVE exposure assessment.

  • ServiceNow Configuration Management Database (CMDB) sync ensures asset intelligence stays current across governance platforms, eliminating manual inventory work.

Risk modeling has also been made more operationally relevant. Scores are now contextualized by exploitability, asset criticality, firewall policy, and segmentation posture. Patch recommendations are modeled in terms of safety, uptime and compliance rather than just Common Vulnerability Scoring System (CVSS) numbers. And importantly, risk is prioritized across the Purdue Model, giving defenders visibility into whether vulnerabilities remain isolated to IT or extend into OT-critical layers.

Figure 3: Attack Path Modeling based on NetFlow and network topology reveals high risk points of IT/OT convergence.

The real-world impact for defenders

In today’s environments, attackers move fluidly between IT and OT. Without unified visibility and shared context, incidents cascade faster than teams can respond.

With this release, Darktrace / OT changes that reality. The Operational Overview gives Engineers a dashboard they can use daily, tailored to their workflows. SOC analysts can seamlessly investigate telemetry across endpoints, sensors and protocols that were once blind spots. Operators gain transparency into PLCs and controllers. Governance teams benefit from automated integrations with platforms like Fortinet and ServiceNow. And all stakeholders work from risk models that reflect what truly matters: safety, uptime and compliance.

This release is not about creating more alerts. It is about providing more clarity. By unifying context across IT and OT, Darktrace / OT enables defenders to see more, understand more and act faster.

Because in environments where safety and uptime are non-negotiable, clarity is what matters most.

Join us for our live event where we will discuss these product innovations in greater detail

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI