Blog
/
Network
/
October 26, 2022

Strategies to Prolong Quantum Ransomware Attacks

Learn more about how Darktrace combats Quantum Ransomware changing strategy for cyberattacks. Explore the power of AI-driven network cyber security!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nicole Wong
Cyber Security Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Oct 2022

Within science and engineering, the word ‘quantum’ may spark associations with speed and capability, referencing a superior computer that can perform tasks a classical computer cannot. In cyber security, some may recognize ‘quantum’ in relation to cryptography or, more recently, as the name of a new ransomware group, which achieved network-wide encryption a mere four hours after an initial infection.   

Although this group now has a reputation for carrying out fast and efficient attacks, speed is not their only tactic. In August 2022, Darktrace detected a Quantum Ransomware incident where attackers remained in the victim’s network for almost a month after the initial signs of infection, before detonating ransomware. This was a stark difference to previously reported attacks, demonstrating that as motives change, so do threat actors’ strategies. 

The Quantum Group

Quantum was first identified in August 2021 as the latest of several rebrands of MountLocker ransomware [1]. As part of this rebrand, the extension ‘.quantum’ is appended to filenames that are encrypted and the associated ransom notes are named ‘README_TO_DECRYPT.html’ [2].  

From April 2022, media coverage of this group has increased following a DFIR report detailing an attack that progressed from initial access to domain-wide ransomware within four hours [3]. To put this into perspective, the global median dwell time for ransomware in 2020 and 2021 is 5 days [4]. In the case of Quantum, threat actors gained direct keyboard access to devices merely 2 hours after initial infection. The ransomware was staged on the domain controller around an hour and a half later, and executed 12 minutes after that.   

Quantum’s behaviour bears similarities to other groups, possibly due to their history and recruitment. Several members of the disbanded Conti ransomware group are reported to have joined the Quantum and BumbleBee operations. Security researchers have also identified similarities in the payloads and C2 infrastructure used by these groups [5 & 6].  Notably, these are the IcedID initial payload and Cobalt Strike C2 beacon used in this attack. Darktrace has also observed and prevented IcedID and Cobalt Strike activity from BumbleBee across several customer environments.

The Attack

From 11th July 2022, a device suspected to be patient zero made repeated DNS queries for external hosts that appear to be associated with IcedID C2 traffic [7 & 8]. In several reported cases [9 & 10], this banking trojan is delivered through a phishing email containing a malicious attachment that loads an IcedID DLL. As Darktrace was not deployed in the prospect’s email environment, there was no visibility of the initial access vector, however an example of a phishing campaign containing this payload is presented below. It is also possible that the device was already infected prior to joining the network. 

Figure 1- An example phishing email used to distribute IcedID. If configured, Darktrace/Email would be able to detect that the email was sent from an anomalous sender, was part of a fake reply chain, and had a suspicious attachment containing compressed content of unusual mime type [11].    

 

Figure 2- The DNS queries to endpoints associated with IcedID C2 servers, taken from the infected device’s event log.  Additional DNS queries made to other IcedID C2 servers are in the list of IOCs in the appendices.  The repeated DNS queries are indicative of beaconing.


It was not until 22nd July that activity was seen which indicated the attack had progressed to the next stage of the kill chain. This contrasts the previously seen attacks where the progression to Cobalt Strike C2 beaconing and reconnaissance and lateral movement occurred within 2 hours of the initial infection [12 & 13]. In this case, patient zero initiated numerous unusual connections to other internal devices using a compromised account, connections that were indicative of reconnaissance using built-in Windows utilities:

·      DNS queries for hostnames in the network

·      SMB writes to IPC$ shares of those hostnames queried, binding to the srvsvc named pipe to enumerate things such as SMB shares and services on a device, client access permissions on network shares and users logged in to a remote session

·      DCE-RPC connections to the endpoint mapper service, which enables identification of the ports assigned to a particular RPC service

These connections were initiated using an existing credential on the device and just like the dwelling time, differed from previously reported Quantum group attacks where discovery actions were spawned and performed automatically by the IcedID process [14]. Figure 3 depicts how Darktrace detected that this activity deviated from the device’s normal behaviour.  

Figure 3- This figure displays the spike in active internal connections initiated by patient zero. The coloured dots represent the Darktrace models that were breached, detecting this unusual reconnaissance and lateral movement activity.

Four days later, on the 26th of July, patient zero performed SMB writes of DLL and MSI executables to the C$ shares of internal devices including domain controllers, using a privileged credential not previously seen on the patient zero device. The deviation from normal behaviour that this represents is also displayed in Figure 3. Throughout this activity, patient zero made DNS queries for the external Cobalt Strike C2 server shown in Figure 4. Cobalt Strike has often been seen as a secondary payload delivered via IcedID, due to IcedID’s ability to evade detection and deploy large scale campaigns [15]. It is likely that reconnaissance and lateral movement was performed under instructions received by the Cobalt Strike C2 server.   

Figure 4- This figure is taken from Darktrace’s Advanced Search interface, showing a DNS query for a Cobalt Strike C2 server occurring during SMB writes of .dll files and DCE-RPC requests to the epmapper service, demonstrating reconnaissance and lateral movement.


The SMB writes to domain controllers and usage of a new account suggests that by this stage, the attacker had achieved domain dominance. The attacker also appeared to have had hands-on access to the network via a console; the repetition of the paths ‘programdata\v1.dll’ and ‘ProgramData\v1.dll’, in lower and title case respectively, suggests they were entered manually.  

These DLL files likely contained a copy of the malware that injects into legitimate processes such as winlogon, to perform commands that call out to C2 servers [16]. Shortly after the file transfers, the affected domain controllers were also seen beaconing to external endpoints (‘sezijiru[.]com’ and ‘gedabuyisi[.]com’) that OSINT tools have associated with these DLL files [17 & 18]. Moreover, these SSL connections were made using a default client fingerprint for Cobalt Strike [19], which is consistent with the initial delivery method. To illustrate the beaconing nature of these connections, Figure 5 displays the 4.3 million daily SSL connections to one of the C2 servers during the attack. The 100,000 most recent connections were initiated by 11 unique source IP addresses alone.

Figure 5- The Advanced Search interface, querying for external SSL connections from devices in the network to an external host that appears to be a Cobalt Strike C2 server. 4.3 million connections were made over 8 days, even after the ransomware was eventually detonated on 2022-08-03.


Shortly after the writes, the attack progressed to the penultimate stage. The next day, on the 27th of July, the attackers moved to achieve their first objective: data exfiltration. Data exfiltration is not always performed by the Quantum ransomware gang. Researchers have noted discrepancies between claims of data theft made in their ransom notes versus the lack of data seen leaving the network, although this may have been missed due to covert exfiltration via a Cobalt Strike beacon [20]. 

In contrast, this attack displayed several gigabytes of data leaving internal devices including servers that had previously beaconed to Cobalt Strike C2 servers. This data was transferred overtly via FTP, however the attacker still attempted to conceal the activity using ephemeral ports (FTP in EPSV mode). FTP is an effective method for attackers to exfiltrate large files as it is easy to use, organizations often neglect to monitor outbound usage, and it can be shipped through ports that will not be blocked by traditional firewalls [21].   

Figure 6 displays an example of the FTP data transfer to attacker-controlled infrastructure, in which the destination share appears structured to identify the organization that the data was stolen from, suggesting there may be other victim organizations’ data stored. This suggests that data exfiltration was an intended outcome of this attack. 

Figure 6- This figure is from Darktrace’s Advanced Search interface, displaying some of the data transferred from an internal device to the attacker’s FTP server.

 
Data was continuously exfiltrated until a week later when the final stage of the attack was achieved and Quantum ransomware was detonated. Darktrace detected the following unusual SMB activity initiated from the attacker-created account that is a hallmark for ransomware (see Figure 7 for example log):

·      Symmetric SMB Read to Write ratio, indicative of active encryption

·      Sustained MIME type conversion of files, with the extension ‘.quantum’ appended to filenames

·      SMB writes of a ransom note ‘README_TO_DECRYPT.html’ (see Figure 8 for an example note)

Figure 7- The Model Breach Event Log for a device that had files encrypted by Quantum ransomware, showing the reads and writes of files with ‘.quantum’ appended to encrypted files, and an HTML ransom note left where the files were encrypted.

 

Figure 8- An example of the ransom note left by the Quantum gang, this one is taken from open-sources [22].


The example in Figure 8 mentions that the attacker also possessed large volumes of victim data.  It is likely that the gigabytes of data exfiltrated over FTP were leveraged as blackmail to further extort the victim organization for payment.  

Darktrace Coverage

 

Figure 9- Timeline of Quantum ransomware incident


If Darktrace/Email was deployed in the prospect’s environment, the initial payload (if delivered through a phishing email) could have been detected and held from the recipient’s inbox. Although DETECT identified anomalous network behaviour at each stage of the attack, since the incident occurred during a trial phase where Darktrace could only detect but not respond, the attack was able to progress through the kill chain. If RESPOND/Network had been configured in the targeted environment, the unusual connections observed during the initial access, C2, reconnaissance and lateral movement stages of the attack could have been blocked. This would have prevented the attackers from delivering the later stage payloads and eventual ransomware into the target network.

It is often thought that a properly implemented backup strategy is sufficient defense against ransomware [23], however as discussed in a previous Darktrace blog, the increasing frequency of double extortion attacks in a world where ‘data is the new oil’ demonstrates that backups alone are not a mitigation for the risk of a ransomware attack [24]. Equally, the lack of preventive defenses in the target’s environment enabled the attacker’s riskier decision to dwell in the network for longer and allowed them to optimize their potential reward. 

Recent crackdowns from law enforcement on ransomware groups have shifted these groups’ approaches to aim for a balance between low risk and significant financial rewards [25]. However, given the Quantum gang only have a 5% market share in Q2 2022, compared to the 13.2% held by LockBit and 16.9% held by BlackCat [26], a riskier strategy may be favourable, as a longer dwell time and double extortion outcome offers a ‘belt and braces’ approach to maximizing the rewards from carrying out this attack. Alternatively, the gaps in-between the attack stages may imply that more than one player was involved in this attack, although this group has not been reported to operate a franchise model before [27]. Whether assisted by others or driving for a risk approach, it is clear that Quantum (like other actors) are continuing to adapt to ensure their financial success. They will continue to be successful until organizations dedicate themselves to ensuring that the proper data protection and network security measures are in place. 

Conclusion 

Ransomware has evolved over time and groups have merged and rebranded. However, this incident of Quantum ransomware demonstrates that regardless of the capability to execute a full attack within hours, prolonging an attack to optimize potential reward by leveraging double extortion tactics is sometimes still the preferred action. The pattern of network activity mirrors the techniques used in other Quantum attacks, however this incident lacked the continuous progression of the group’s attacks reported recently and may represent a change of motives during the process. Knowing that attacker motives can change reinforces the need for organizations to invest in preventative controls- an organization may already be too far down the line if it is executing its backup contingency plans. Darktrace DETECT/Network had visibility over both the early network-based indicators of compromise and the escalation to the later stages of this attack. Had Darktrace also been allowed to respond, this case of Quantum ransomware would also have had a very short dwell time, but a far better outcome for the victim.

Thanks to Steve Robinson for his contributions to this blog.

Appendices

References

[1] https://community.ibm.com/community/user/security/blogs/tristan-reed/2022/07/13/ibm-security-reaqta-vs-quantum-locker-ransomware

 

[2] https://www.bleepingcomputer.com/news/security/quantum-ransomware-seen-deployed-in-rapid-network-attacks/

 

[3], [12], [14], [16], [20] https://thedfirreport.com/2022/04/25/quantum-ransomware/

 

[4] https://www.mandiant.com/sites/default/files/2022-04/M-Trends%202022%20Executive%20Summary.pdf

 

[5] https://cyware.com/news/over-650-healthcare-organizations-affected-by-the-quantum-ransomware-attack-d0e776bb/

 

[6] https://www.kroll.com/en/insights/publications/cyber/bumblebee-loader-linked-conti-used-in-quantum-locker-attacks

 

[7] https://github.com/pan-unit42/tweets/blob/master/2022-06-28-IOCs-for-TA578-IcedID-Cobalt-Strike-and-DarkVNC.txt 

 

[8] https://github.com/stamparm/maltrail/blob/master/trails/static/malware/icedid.txt

 

[9], [15] https://www.cynet.com/blog/shelob-moonlight-spinning-a-larger-web-from-icedid-to-conti-a-trojan-and-ransomware-collaboration/

 

[10] https://www.microsoft.com/security/blog/2021/04/09/investigating-a-unique-form-of-email-delivery-for-icedid-malware/

 

[11] https://twitter.com/0xToxin/status/1564289244084011014

 

[13], [27] https://cybernews.com/security/quantum-ransomware-gang-fast-and-furious/

 

[17] https://www.virustotal.com/gui/domain/gedabuyisi.com/relations

 

[18] https://www.virustotal.com/gui/domain/sezijiru.com/relations.

 

[19] https://github.com/ByteSecLabs/ja3-ja3s-combo/blob/master/master-list.txt 

 

[21] https://www.darkreading.com/perimeter/ftp-hacking-on-the-rise

 

[22] https://www.pcrisk.com/removal-guides/23352-quantum-ransomware

 

[23] https://www.cohesity.com/resource-assets/tip-sheet/5-ways-ransomware-renders-backup-useless-tip-sheet-en.pdf

 

[24] https://www.forbes.com/sites/nishatalagala/2022/03/02/data-as-the-new-oil-is-not-enough-four-principles-for-avoiding-data-fires/ 

 

[25] https://www.bleepingcomputer.com/news/security/access-to-hacked-corporate-networks-still-strong-but-sales-fall/

 

[26] https://www.bleepingcomputer.com/news/security/ransom-payments-fall-as-fewer-victims-choose-to-pay-hackers/ 

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nicole Wong
Cyber Security Analyst

More in this series

No items found.

Blog

/

Cloud

/

July 10, 2025

Crypto Wallets Continue to be Drained in Elaborate Social Media Scam

password on computer screenDefault blog imageDefault blog image

Overview

Continued research by Darktrace has revealed that cryptocurrency users are being targeted by threat actors in an elaborate social engineering scheme that continues to evolve. In December 2024, Cado Security Labs detailed a campaign targeting Web 3 employees in the Meeten campaign. The campaign included threat actors setting up meeting software companies to trick users into joining meetings and installing the information stealer Realst disguised as video meeting software.

The latest research from Darktrace shows that this campaign is still ongoing and continues to trick targets to download software to drain crypto wallets. The campaign features:

  • Threat actors creating fake startup companies with AI, gaming, video meeting software, web3 and social media themes.
  • Use of compromised X (formerly Twitter) accounts for the companies and employees - typically with verification to contact victims and create a facade of a legitimate company.
  • Notion, Medium, Github used to provide whitepapers, project roadmaps and employee details.
  • Windows and macOS versions.
  • Stolen software signing certificates in Windows versions for credibility and defense evasion.
  • Anti-analysis techniques including obfuscation, and anti-sandboxing.

To trick as many victims as possible, threat actors try to make the companies look as legitimate as possible. To achieve this, they make use of sites that are used frequently with software companies such as Twitter, Medium, Github and Notion. Each company has a professional looking website that includes employees, product blogs, whitepapers and roadmaps. X is heavily used to contact victims, and to increase the appearance of legitimacy. Some of the observed X accounts appear to be compromised accounts that typically are verified and have a higher number of followers and following, adding to the appearance of a real company.

Example of a compromised X account to create a “BuzzuAI” employee.
Figure 1: Example of a compromised X account to create a “BuzzuAI” employee.

The threat actors are active on these accounts while the campaign is active, posting about developments in the software, and product marketing. One of the fake companies part of this campaign, “Eternal Decay”, a blockchain-powered game, has created fake pictures pretending to be presenting at conferences to post on social media, while the actual game doesn’t exist.

From the Eternal Decay X account, threat actors have altered a photo from an Italian exhibition (original on the right) to make it look like Eternal Decay was presented.
Figure 2: From the Eternal Decay X account, threat actors have altered a photo from an Italian exhibition (original on the right) to make it look like Eternal Decay was presented.

In addition to X, Medium is used to post blogs about the software. Notion has been used in various campaigns with product roadmap details, as well as employee lists.

Notion project team page for Swox.
Figure 3: Notion project team page for Swox.

Github has been used to detail technical aspects of the software, along with Git repositories containing stolen open-source projects with the name changed in order to make the code look unique. In the Eternal Decay example, Gitbook is used to detail company and software information. The threat actors even include company registration information from Companies House, however they have linked to a company with a similar name and are not a real registered company.

 From the Eternal Decay Gitbook linking to a company with a similar name on Companies House.
Figure 4: From the Eternal Decay Gitbook linking to a company with a similar name on Companies House.
Gitbook for “Eternal Decay” listing investors.
Figure 5: Gitbook for “Eternal Decay” listing investors.
Gameplay images are stolen from a different game “Zombie Within” and posted pretending to be Eternal Decay gameplay.
Figure 6: Gameplay images are stolen from a different game “Zombie Within” and posted pretending to be Eternal Decay gameplay.

In some of the fake companies, fake merchandise stores have even been set up. With all these elements combined, the threat actors manage to create the appearance of a legitimate start-up company, increasing their chances of infection.

Each campaign typically starts with a victim being contacted through X messages, Telegram or Discord. A fake employee of the company will contact a victim asking to test out their software in exchange for a cryptocurrency payment. The victim will be directed to the company website download page, where they need to enter a registration code, provided by the employee to download a binary. Depending on their operating system, the victim will be instructed to download a macOS DMG (if available) or a Windows Electron application.

Example of threat actor messaging a victim on X with a registration code.
Figure 7: Example of threat actor messaging a victim on X with a registration code.

Windows Version

Similar to the aforementioned Meeten campaign, the Windows version being distributed by the fake software companies is an Electron application. Electron is an open-source framework used to run Javascript apps as a desktop application. Once the user follows directions sent to them via message, opening the application will bring up a Cloudflare verification screen.

Cloudflare verification screen.
Figure 8: Cloudflare verification screen.

The malware begins by profiling the system, gathering information like the username, CPU and core count, RAM, operating system, MAC address, graphics card, and UUID.

Code from the Electron app showing console output of system profiling.
Figure 9: Code from the Electron app showing console output of system profiling.

A verification process occurs with a captcha token extracted from the app-launcher URL and sent along with the system info and UUID. If the verification is successful, an executable or MSI file is downloaded and executed quietly. Python is also retrieved and stored in /AppData/Temp, with Python commands being sent from the command-and-control (C2) infrastructure.

Code from the Electron app looping through Python objects.
Figure 10: Code from the Electron app looping through Python objects.

As there was no valid token, this process did not succeed. However, based on previous campaigns and reports from victims on social media, an information stealer targeting crypto wallets is executed at this stage. A common tactic in the observed campaigns is the use of stolen code signing certificates to evade detection and increase the appearance of legitimate software. The certificates of two legitimate companies Jiangyin Fengyuan Electronics Co., Ltd. and Paperbucketmdb ApS (revoked as of June 2025) were used during this campaign.

MacOS Version

For companies that have a macOS version of the malware, the user is directed to download a DMG. The DMG contains a bash script and a multiarch macOS binary. The bash script is obfuscated with junk, base64 and is XOR’d.

Obfuscated Bash script.
Figure 11: Obfuscated Bash script.

After decoding, the contents of the script are revealed showing that AppleScript is being used. The script looks for disk drives, specifically for the mounted DMG “SwoxApp” and moves the hidden .SwoxApp binary to /tmp/ and makes it executable. This type of AppleScript is commonly used in macOS malware, such as Atomic Stealer.

AppleScript used to mount the malware and make it executable.
Figure 12: AppleScript used to mount the malware and make it executable.

The SwoxApp binary is the prominent macOS information stealer Atomic Stealer. Once executed the malware performs anti-analysis checks for QEMU, VMWare and Docker-OSX, the script exits if these return true.  The main functionality of Atomic Stealer is to steal data from stores including browser data, crypto wallets, cookies and documents. This data is compressed into /tmp/out.zip and sent via POST request to 45[.]94[.]47[.]167/contact. An additional bash script is retrieved from 77[.]73[.]129[.]18:80/install.sh.

Additional Bash script ”install.sh”.
Figure 13: Additional Bash script ”install.sh”.

Install.sh, as shown in Figure 13, retrieves another script install_dynamic.sh from the server https://mrajhhosdoahjsd[.]com. Install_dynamic.sh downloads and extracts InstallerHelper.app, then sets up persistence via Launch Agent to run at login.

Persistence added via Plist configuration.
Figure 14: Persistence added via Plist configuration.

This plist configuration installs a macOS LaunchAgent that silently runs the app at user login. RunAtLoad and KeepAlive keys are used to ensure the app starts automatically and remains persistent.

The retrieved binary InstallerHelper is an Objective-C/Swift binary that logs active application usage, window information, and user interaction timestamps. This data is written to local log files and periodically transmits the contents to https://mrajhhoshoahjsd[.]com/collect-metrics using scheduled network requests.

List of known companies

Darktrace has identified a number of the fake companies used in this scam. These can be found in the list below:

Pollens AI
X: @pollensapp, @Pollens_app
Website: pollens.app, pollens.io, pollens.tech
Windows: 02a5b35be82c59c55322d2800b0b8ccc
Notes: Posing as an AI software company with a focus on “collaborative creation”.

Buzzu
X: @BuzzuApp, @AI_Buzzu, @AppBuzzu, @BuzzuApp
Website: Buzzu.app, Buzzu.us, buzzu.me, Buzzu.space
Windows: 7d70a7e5661f9593568c64938e06a11a
Mac: be0e3e1e9a3fda76a77e8c5743dd2ced
Notes: Same as Pollens including logo but with a different name.

Cloudsign
X: @cloudsignapp
Windows: 3a3b13de4406d1ac13861018d74bf4b2
Notes: Claims to be a document signing platform.

Swox
X: @SwoxApp, @Swox_AI, @swox_app, @App_Swox, @AppSwox, @SwoxProject, @ProjectSwox
Website: swox.io, swox.app, swox.cc, swoxAI.com, swox.us
Windows: d50393ba7d63e92d23ec7d15716c7be6
Mac: 81996a20cfa56077a3bb69487cc58405ced79629d0c09c94fb21ba7e5f1a24c9
Notes: Claims to be a “Next gen social network in the WEB3”. Same GitHub code as Pollens.

KlastAI
X: Links to Pollens X account
Website: Links to pollens.tech
Notes: Same as Pollens, still shows their branding on its GitHub readme page.

Wasper
X: @wasperAI, @WasperSpace
Website: wasper.pro, wasper.app, wasper.org, wasper.space
Notes: Same logo and GitHub code as Pollens.

Lunelior
Website: lunelior.net, Lunelior.app, lunelior.io, lunelior.us
Windows: 74654e6e5f57a028ee70f015ef3a44a4
Mac: d723162f9197f7a548ca94802df74101

BeeSync
X: @BeeSyncAI, @AIBeeSync
Website: beesync.ai, beesync.cc
Notes: Previous alias of Buzzu, Git repo renamed January 2025.

Slax
X: @SlaxApp, @Slax_app, @slaxproject
Website: slax.tech, slax.cc, slax.social, slaxai.app

Solune
X: @soluneapp
Website: solune.io, solune.me
Windows: 22b2ea96be9d65006148ecbb6979eccc

Eternal Decay
X: @metaversedecay
Website: eternal-decay.xyz
Windows: 558889183097d9a991cb2c71b7da3c51
Mac: a4786af0c4ffc84ff193ff2ecbb564b8

Dexis
X: @DexisApp
Website: dexis.app
Notes: Same branding as Swox.

NexVoo
X: @Nexvoospace
Website: nexvoo.app, Nexvoo.net, Nexvoo.us

NexLoop
X: @nexloopspace
Website: nexloop.me

NexoraCore
Notes: Rename of the Nexloop Git repo.

YondaAI
X: @yondaspace
Website: yonda.us

Traffer Groups

A “traffer” malware group is an organized cybercriminal operation that specializes in directing internet users to malicious content typically information-stealing malware through compromised or deceptive websites, ads, and links. They tend to operate in teams with hierarchical structures with administrators recruiting “traffers” (or affiliates) to generate traffic and malware installs via search engine optimization (SEO), YouTube ads, fake software downloads, or owned sites, then monetize the stolen credentials and data via dedicated marketplaces.

A prominent traffer group “CrazyEvil” was identified by Recorded Future in early 2025. The group, who have been active since at least 2021, specialize in social engineering attacks targeted towards cryptocurrency users, influencers, DeFi professionals, and gaming communities. As reported by Recorded Future, CrazyEvil are estimated to have made millions of dollars in revenue from their malicious activity. CrazyEvil and their sub teams create fake software companies, similar to the ones described in this blog, making use of Twitter and Medium to target victims. As seen in this campaign, CrazyEvil instructs users to download their software which is an info stealer targeting both macOS and Windows users.

While it is unclear if the campaigns described in this blog can be attributed to CrazyEvil or any sub teams, the techniques described are similar in nature. This campaign highlights the efforts that threat actors will go to make these fake companies look legitimate in order to steal cryptocurrency from victims, in addition to use of newer evasive versions of malware.

Indicators of Compromise (IoCs)

Manboon[.]com

https://gaetanorealty[.]com

Troveur[.]com

Bigpinellas[.]com

Dsandbox[.]com

Conceptwo[.]com

Aceartist[.]com

turismoelcasco[.]com

Ekodirect[.]com

https://mrajhhosdoahjsd[.]com

https://isnimitz.com/zxc/app[.]zip

http://45[.]94[.]47[.]112/contact

45[.]94[.]47[.]167/contact

77[.]73[.]129[.]18:80

Domain Keys associated with the C2s

YARA Rules

rule Suspicious_Electron_App_Installer

{

  meta:

      description = "Detects Electron apps collecting HWID, MAC, GPU info and executing remote EXEs/MSIs"

      date = "2025-06-18"

  strings:

      $electron_require = /require\(['"]electron['"]\)/

      $axios_require = /require\(['"]axios['"]\)/

      $exec_use = /exec\(.*?\)/

      $url_token = /app-launcher:\/\/.*token=/

      $getHWID = /(Get-CimInstance Win32_ComputerSystemProduct).UUID/

      $getMAC = /details\.mac && details\.mac !== '00:00:00:00:00:00'/

      $getGPU = /wmic path win32_VideoController get name/

      $getInstallDate = /InstallDate/

      $os_info = /os\.cpus\(\)\[0\]\.model/

      $downloadExe = /\.exe['"]/

      $runExe = /msiexec \/i.*\/quiet \/norestart/

      $zipExtraction = /AdmZip\(.*\.extractAllTo/

  condition:

      (all of ($electron_require, $axios_require, $exec_use) and

       3 of ($getHWID, $getMAC, $getGPU, $getInstallDate, $os_info) and

       2 of ($downloadExe, $runExe, $zipExtraction, $url_token))

}

Continue reading
About the author
Tara Gould
Threat Researcher

Blog

/

Identity

/

July 9, 2025

Defending the Cloud: Stopping Cyber Threats in Azure and AWS with Darktrace

fingerprintDefault blog imageDefault blog image

Real-world intrusions across Azure and AWS

As organizations pursue greater scalability and flexibility, cloud platforms like Microsoft Azure and Amazon Web Services (AWS) have become essential for enabling remote operations and digitalizing corporate environments. However, this shift introduces a new set of security risks, including expanding attack surfaces, misconfigurations, and compromised credentials frequently exploited by threat actors.

This blog dives into three instances of compromise within a Darktrace customer’s Azure and AWS environment which Darktrace.

  1. The first incident took place in early 2024 and involved an attacker compromising a legitimate user account to gain unauthorized access to a customer’s Azure environment.
  2. The other two incidents, taking place in February and March 2025, targeted AWS environments. In these cases, threat actors exfiltrated corporate data, and in one instance, was able to detonate ransomware in a customer’s environment.

Case 1 - Microsoft Azure

Simplified timeline of the attack on a customer’s Azure environment.
Figure 1: Simplified timeline of the attack on a customer’s Azure environment.

In early 2024, Darktrace identified a cloud compromise on the Azure cloud environment of a customer in the Europe, the Middle East and Africa (EMEA) region.

Initial access

In this case, a threat actor gained access to the customer’s cloud environment after stealing access tokens and creating a rogue virtual machine (VM). The malicious actor was found to have stolen access tokens belonging to a third-party external consultant’s account after downloading cracked software.

With these stolen tokens, the attacker was able to authenticate to the customer’s Azure environment and successfully modified a security rule to allow inbound SSH traffic from a specific IP range (i.e., securityRules/AllowCidrBlockSSHInbound). This was likely performed to ensure persistent access to internal cloud resources.

Detection and investigation of the threat

Darktrace / IDENTITY recognized that this activity was highly unusual, triggering the “Repeated Unusual SaaS Resource Creation” alert.

Cyber AI Analyst launched an autonomous investigation into additional suspicious cloud activities occurring around the same time from the same unusual location, correlating the individual events into a broader account hijack incident.

Cyber AI Analyst’s investigation into unusual cloud activity performed by the compromised account.
Figure 2: Cyber AI Analyst’s investigation into unusual cloud activity performed by the compromised account.
Figure 2: Surrounding resource creation events highlighted by Cyber AI Analyst.
Figure 3: Surrounding resource creation events highlighted by Cyber AI Analyst.
Figure 4: Surrounding resource creation events highlighted by Cyber AI Analyst.

“Create resource service limit” events typically indicate the creation or modification of service limits (i.e., quotas) for a specific Azure resource type within a region. Meanwhile, “Registers the Capacity Resource Provider” events refer to the registration of the Microsoft Capacity resource provider within an Azure subscription, responsible for managing capacity-related resources, particularly those related to reservations and service limits. These events suggest that the threat actor was looking to create new cloud resources within the environment.

Around ten minutes later, Darktrace detected the threat actor creating or modifying an Azure disk associated with a virtual machine (VM), suggesting an attempt to create a rogue VM within the environment.

Threat actors can leverage such rogue VMs to hijack computing resources (e.g., by running cryptomining malware), maintain persistent access, move laterally within the cloud environment, communicate with command-and-control (C2) infrastructure, and stealthily deliver and deploy malware.

Persistence

Several weeks later, the compromised account was observed sending an invitation to collaborate to an external free mail (Google Mail) address.

Darktrace deemed this activity as highly anomalous, triggering a compliance alert for the customer to review and investigate further.

The next day, the threat actor further registered new multi-factor authentication (MFA) information. These actions were likely intended to maintain access to the compromised user account. The customer later confirmed this activity by reviewing the corresponding event logs within Darktrace.

Case 2 – Amazon Web Services

Simplified timeline of the attack on a customer’s AWS environment
Figure 5: Simplified timeline of the attack on a customer’s AWS environment

In February 2025, another cloud-based compromised was observed on a UK-based customer subscribed to Darktrace’s Managed Detection and Response (MDR) service.

How the attacker gained access

The threat actor was observed leveraging likely previously compromised credential to access several AWS instances within customer’s Private Cloud environment and collecting and exfiltrating data, likely with the intention of deploying ransomware and holding the data for ransom.

Darktrace alerting to malicious activity

This observed activity triggered a number of alerts in Darktrace, including several high-priority Enhanced Monitoring alerts, which were promptly investigated by Darktrace’s Security Operations Centre (SOC) and raised to the customer’s security team.

The earliest signs of attack observed by Darktrace involved the use of two likely compromised credentials to connect to the customer’s Virtual Private Network (VPN) environment.

Internal reconnaissance

Once inside, the threat actor performed internal reconnaissance activities and staged the Rclone tool “ProgramData\rclone-v1.69.0-windows-amd64.zip”, a command-line program to sync files and directories to and from different cloud storage providers, to an AWS instance whose hostname is associated with a public key infrastructure (PKI) service.

The threat actor was further observed accessing and downloading multiple files hosted on an AWS file server instance, notably finance and investment-related files. This likely represented data gathering prior to exfiltration.

Shortly after, the PKI-related EC2 instance started making SSH connections with the Rclone SSH client “SSH-2.0-rclone/v1.69.0” to a RockHoster Virtual Private Server (VPS) endpoint (193.242.184[.]178), suggesting the threat actor was exfiltrating the gathered data using the Rclone utility they had previously installed. The PKI instance continued to make repeated SSH connections attempts to transfer data to this external destination.

Darktrace’s Autonomous Response

In response to this activity, Darktrace’s Autonomous Response capability intervened, blocking unusual external connectivity to the C2 server via SSH, effectively stopping the exfiltration of data.

This activity was further investigated by Darktrace’s SOC analysts as part of the MDR service. The team elected to extend the autonomously applied actions to ensure the compromise remained contained until the customer could fully remediate the incident.

Continued reconissance

Around the same time, the threat actor continued to conduct network scans using the Nmap tool, operating from both a separate AWS domain controller instance and a newly joined device on the network. These actions were accompanied by further internal data gathering activities, with around 5 GB of data downloaded from an AWS file server.

The two devices involved in reconnaissance activities were investigated and actioned by Darktrace SOC analysts after additional Enhanced Monitoring alerts had triggered.

Lateral movement attempts via RDP connections

Unusual internal RDP connections to a likely AWS printer instance indicated that the threat actor was looking to strengthen their foothold within the environment and/or attempting to pivot to other devices, likely in response to being hindered by Autonomous Response actions.

This triggered multiple scanning, internal data transfer and unusual RDP alerts in Darktrace, as well as additional Autonomous Response actions to block the suspicious activity.

Suspicious outbound SSH communication to known threat infrastructure

Darktrace subsequently observed the AWS printer instance initiating SSH communication with a rare external endpoint associated with the web hosting and VPS provider Host Department (67.217.57[.]252), suggesting that the threat actor was attempting to exfiltrate data to an alternative endpoint after connections to the original destination had been blocked.

Further investigation using open-source intelligence (OSINT) revealed that this IP address had previously been observed in connection with SSH-based data exfiltration activity during an Akira ransomware intrusion [1].

Once again, connections to this IP were blocked by Darktrace’s Autonomous Response and subsequently these blocks were extended by Darktrace’s SOC team.

The above behavior generated multiple Enhanced Monitoring alerts that were investigated by Darktrace SOC analysts as part of the Managed Threat Detection service.

Enhanced Monitoring alerts investigated by SOC analysts as part of the Managed Detection and Response service.
Figure 5: Enhanced Monitoring alerts investigated by SOC analysts as part of the Managed Detection and Response service.

Final containment and collaborative response

Upon investigating the unusual scanning activity, outbound SSH connections, and internal data transfers, Darktrace analysts extended the Autonomous Response actions previously triggered on the compromised devices.

As the threat actor was leveraging these systems for data exfiltration, all outgoing traffic from the affected devices was blocked for an additional 24 hours to provide the customer’s security team with time to investigate and remediate the compromise.

Additional investigative support was provided by Darktrace analysts through the Security Operations Service, after the customer's opened of a ticket related to the unfolding incident.

Simplified timeline of the attack
Figure 8: Simplified timeline of the attack

Around the same time of the compromise in Case 2, Darktrace observed a similar incident on the cloud environment of a different customer.

Initial access

On this occasion, the threat actor appeared to have gained entry into the AWS-based Virtual Private Cloud (VPC) network via a SonicWall SMA 500v EC2 instance allowing inbound traffic on any port.

The instance received HTTPS connections from three rare Vultr VPS endpoints (i.e., 45.32.205[.]52, 207.246.74[.]166, 45.32.90[.]176).

Lateral movement and exfiltration

Around the same time, the EC2 instance started scanning the environment and attempted to pivot to other internal systems via RDP, notably a DC EC2 instance, which also started scanning the network, and another EC2 instance.  

The latter then proceeded to transfer more than 230 GB of data to the rare external GTHost VPS endpoint 23.150.248[.]189, while downloading hundreds of GBs of data over SMB from another EC2 instance.

Cyber AI Analyst incident generated following the unusual scanning and RDP connections from the initial compromised device.
Figure 7: Cyber AI Analyst incident generated following the unusual scanning and RDP connections from the initial compromised device.

The same behavior was replicated across multiple EC2 instances, whereby compromised instances uploaded data over internal RDP connections to other instances, which then started transferring data to the same GTHost VPS endpoint over port 5000, which is typically used for Universal Plug and Play (UPnP).

What Darktrace detected

Darktrace observed the threat actor uploading a total of 718 GB to the external endpoint, after which they detonated ransomware within the compromised VPC networks.

This activity generated nine Enhanced Monitoring alerts in Darktrace, focusing on the scanning and external data activity, with the earliest of those alerts triggering around one hour after the initial intrusion.

Darktrace’s Autonomous Response capability was not configured to act on these devices. Therefore, the malicious activity was not autonomously blocked and escalated to the point of ransomware detonation.

Conclusion

This blog examined three real-world compromises in customer cloud environments each illustrating different stages in the attack lifecycle.

The first case showcased a notable progression from a SaaS compromise to a full cloud intrusion, emphasizing the critical role of anomaly detection when legitimate credentials are abused.

The latter two incidents demonstrated that while early detection is vital, the ability to autonomously block malicious activity at machine speed is often the most effective way to contain threats before they escalate.

Together, these incidents underscore the need for continuous visibility, behavioral analysis, and machine-speed intervention across hybrid environments. Darktrace's AI-driven detection and Autonomous Response capabilities, combined with expert oversight from its Security Operations Center, give defenders the speed and clarity they need to contain threats and reduce operational disruption, before the situation spirals.

Credit to Alexandra Sentenac (Senior Cyber Analyst) and Dylan Evans (Security Research Lead)

References

[1] https://www.virustotal.com/gui/ip-address/67.217.57.252/community

Case 1

Darktrace / IDENTITY model alerts

IaaS / Compliance / Uncommon Azure External User Invite

SaaS / Resource / Repeated Unusual SaaS Resource Creation

IaaS / Compute / Azure Compute Resource Update

Cyber AI Analyst incidents

Possible Unsecured AzureActiveDirectory Resource

Possible Hijack of Office365 Account

Case 2

Darktrace / NETWORK model alerts

Compromise / SSH Beacon

Device / Multiple Lateral Movement Model Alerts

Device / Suspicious SMB Scanning Activity

Device / SMB Lateral Movement

Compliance / SSH to Rare External Destination

Device / Anomalous SMB Followed By Multiple Model Alerts

Device / Anonymous NTLM Logins

Anomalous Connection / SMB Enumeration

Device / New or Uncommon SMB Named Pipe Device / Network Scan

Device / Suspicious Network Scan Activity

Device / New Device with Attack Tools

Device / RDP Scan Device / Attack and Recon Tools

Compliance / High Priority Compliance Model Alert

Compliance / Outgoing NTLM Request from DC

Compromise / Large Number of Suspicious Successful Connections

Device / Large Number of Model Alerts

Anomalous Connection / Multiple Failed Connections to Rare Endpoint

Unusual Activity / Internal Data Transfer

Anomalous Connection / Unusual Internal Connections

Device / Anomalous RDP Followed By Multiple Model Alerts

Unusual Activity / Unusual External Activity

Unusual Activity / Enhanced Unusual External Data Transfer

Unusual Activity / Unusual External Data Transfer

Unusual Activity / Unusual External Data to New Endpoint

Anomalous Connection / Multiple Connections to New External TCP Port

Darktrace / Autonomous Response model alerts

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

Antigena / Network / Manual / Quarantine Device

Antigena / MDR / MDR-Quarantined Device

Antigena / MDR / Model Alert on MDR-Actioned Device

Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block

Antigena / Network / Significant Anomaly / Antigena Alerts Over Time Block

Antigena / Network / Insider Threat / Antigena Network Scan Block

Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

Antigena / Network / Insider Threat / Antigena SMB Enumeration Block

Antigena / Network / Significant Anomaly / Antigena Controlled and Model Alert

Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

Antigena / Network / External Threat / Antigena Suspicious Activity Block

Antigena / Network / Insider Threat / Antigena Internal Data Transfer Block

Cyber AI Analyst incidents

Possible Application Layer Reconnaissance Activity

Scanning of Multiple Devices

Unusual Repeated Connections

Unusual External Data Transfer

Case 3

Darktrace / NETWORK model alerts

Unusual Activity / Unusual Large Internal Transfer

Compliance / Incoming Remote Desktop

Unusual Activity / High Volume Server Data Transfer

Unusual Activity / Internal Data Transfer

Anomalous Connection / Unusual Internal Remote Desktop

Anomalous Connection / Unusual Incoming Data Volume

Anomalous Server Activity / Domain Controller Initiated to Client

Device / Large Number of Model Alerts

Anomalous Connection / Possible Flow Device Brute Force

Device / RDP Scan

Device / Suspicious Network Scan Activity

Device / Network Scan

Anomalous Server Activity / Anomalous External Activity from Critical Network Device

Anomalous Connection / Download and Upload

Unusual Activity / Unusual External Data Transfer

Unusual Activity / High Volume Client Data Transfer

Unusual Activity / Unusual External Activity

Anomalous Connection / Uncommon 1 GiB Outbound

Device / Increased External Connectivity

Compromise / Large Number of Suspicious Successful Connections

Anomalous Connection / Data Sent to Rare Domain

Anomalous Connection / Low and Slow Exfiltration to IP

Unusual Activity / Enhanced Unusual External Data Transfer

Anomalous Connection / Multiple Connections to New External TCP Port

Anomalous Server Activity / Outgoing from Server

Anomalous Connection / Multiple Connections to New External UDP Port

Anomalous Connection / Possible Data Staging and External Upload

Unusual Activity / Unusual External Data to New Endpoint

Device / Large Number of Model Alerts from Critical Network Device

Compliance / External Windows Communications

Anomalous Connection / Unusual Internal Connections

Cyber AI Analyst incidents

Scanning of Multiple Devices

Extensive Unusual RDP Connections

MITRE ATT&CK mapping

(Technique name – Tactic ID)

Case 1

Defense Evasion - Modify Cloud Compute Infrastructure: Create Cloud Instance

Persistence – Account Manipulation

Case 2

Initial Access - External Remote Services

Execution - Inter-Process Communication

Persistence - External Remote Services

Discovery - System Network Connections Discovery

Discovery - Network Service Discovery

Discovery - Network Share Discovery

Lateral Movement - Remote Desktop Protocol

Lateral Movement - Remote Services: SMB/Windows Admin Shares

Collection - Data from Network Shared Drive

Command and Control - Protocol Tunneling

Exfiltration - Exfiltration Over Asymmetric Encrypted Non-C2 Protocol

Case 3

Initial Access - Exploit Public-Facing Application

Discovery - Remote System Discovery

Discovery - Network Service Discovery

Lateral Movement - Remote Services

Lateral Movement - Remote Desktop Protocol  

Collection - Data from Network Shared Drive

Collection - Data Staged: Remote Data Staging

Exfiltration - Exfiltration Over C2 Channel

Command and Control - Non-Standard Port

Command and Control – Web Service

Impact - Data Encrypted for Impact

List of IoCs

IoC         Type      Description + Probability

193.242.184[.]178 - IP Address - Possible Exfiltration Server  

45.32.205[.]52  - IP Address  - Possible C2 Infrastructure

45.32.90[.]176 - IP Address - Possible C2 Infrastructure

207.246.74[.]166 - IP Address - Likely C2 Infrastructure

67.217.57[.]252 - IP Address - Likely C2 Infrastructure

23.150.248[.]189 - IP Address - Possible Exfiltration Server

Continue reading
About the author
Alexandra Sentenac
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI