Blog
/
Email
/
October 23, 2022

How Darktrace AI Isn't Fooled by Impersonation Tactics

Learn how Darktrace AI outsmarts impersonation tactics in cybersecurity. Discover cutting-edge security insights and how to keep yourself safe.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
George Kim
Analyst Consulting Lead – AMS
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
23
Oct 2022

Two of the most popular ways threat actors send malicious emails is through the use of spoofing and impersonation tactics. While spoofed emails are sent on behalf of a trusted domain and obscure the true source of the sender, impersonation emails come from a fake domain, but one that may be visually confused for an authentic one. In order to identify impersonation tactics in a suspicious email, we should first ask why an attacker might utilize an impersonation approach over spoofing.

In contrast to domain spoofing, which lacks validation and can be readily detected by email security gateway softwares, impersonation with a lookalike domain allows attackers to send emails with full SPF and DKIM validation, making them appear legitimate to many security gateways. This blog will explore impersonation tactics and how Darktrace/Email protects against them. 

There are two distinct ways to leverage impersonation tactics: 

1.     Impersonating the domain 

2.     Impersonating a real user from that domain  

Domain impersonation is often implemented with the use of ‘confusable characters’. This involves misspelling through the use of character substitutions which make the domain look as visually similar to the original as possible (eg. m rn, o 0, l  I). Threat actors can then also impersonate a real user by adding the the personal field of that user’s email to the new, malicious domain. Comparing impersonation emails with legitimate emails highlights how similar these malicious email addresses are to the real thing (Figure 1).

Figure 1- Email log that highlights the impersonated emails from “Mike Lewis” from the domain “smartercornmerce[.]net”. Along with the impersonated domain, the attackers attempt to impersonate the known user, “Mike Lewis” as well. The use of both distinct types of impersonation categorize the email as what Darktrace/Email refers to as a Double Impersonation email.

Figure 2- Email Summary details of one of the malicious double impersonation emails that was sent by the impersonated sender, “Mike Lewis” from “smartercornmerce[.]net”, that highlights the various anomaly indicators that Darktrace/Email detected, as well the various tags and actions it applied.

Darktrace/Email uses AI which analyses impersonation emails by comparing the ‘From’ header domains of emails against known external domains and generates a percentage score for how likely the domain is to be an imitation of the known domain (Figure 3).  

Figure 3- Darktrace compares the external sender, “mike.lewis@smartercornmerce[.]net”, with similar external names and domains that have been observed in different inbound emails on the network.


Impersonation emails are also detected via spoof score metrics such as Domain External Spoof Score and Domain Internal Spoof Score (Figure 4). 

Figure 4- Darktrace AI analyzed the malicious double impersonation email from Figure 2 and generated a high Domain External Spoof Score (100) and Spoof Score External (94)


Double Impersonation emails such as the one highlighted in Figure 2 are utilized by threat actors to gain the trust of the recipient and convince them to access malicious payloads such as phishing links and attachments. For example, the malicious double impersonation email from Figure 2 contained a suspicious hidden link to a Wordpress site which could have redirected the user to a phishing endpoint and tricked them into divulging sensitive information (Figure 5). The endpoint itself appears to lead unsuspecting recipients to a false share link posing as a payment-themed Excel file.

Figure 5- Details of the Wordpress link embedded in the suspicious email, which was hidden beneath display text to convince a user to click it without knowledge of where it would lead. The domain has a 100% rarity according to Darktrace AI.

Figure 6- Wordpress webpage that highlights another link for the user to click in order to be redirected to the invoice statement in a Microsoft Excel document.

Various indicators highlighted the webpage as suspicious and potentially malicious. Firstly, the use of ‘SmarterCORNmerce’ in the link to the webpage was at odds with the use of SmarterCOMMERCE throughout the page itself. The link also showed the invoice statement to be an Microsoft Excel file, despite the email suggesting it was a PDF document. Further investigation revealed the link to be associated with a Fleek hosting service and CDN (Figure 7), and that it redirected users to a fake Microsoft page. 

Figure 7 - Source code from the Wordpress webpage shows that the fake Microsoft link redirects users to a Fleek hosted page. This page may contain additional javascript content to download malware onto the user’s device.

As well as the domain spoof score metrics highlighted in Figure 4, Darktrace/Email analyses the suspicious payloads embedded in emails and generates scores to indicate the likelihood that a payload may be a phishing attempt.

Figure 8- Additional metrics for the double impersonation email that highlight the high phishing inducement score (96) for the email.

As the DETECT functionality of Darktrace/Email generates high scores metrics such as Domain External Spoof Score and Phishing Inducement, the RESPOND function will fire complementary models which then trigger relevant actions on the various payloads embedded in these emails and even the delivery of the emails themselves. As the impersonation email highlighted in Figure 2 impersonated not only the trusted domain but the known and trusted sender, Darktrace AI triggers the Double Impersonation model. Additional spoofing models such as ‘Basic Known Entity Similarities + Suspicious Content’ and ‘External Domain Similarities + Maximum Similarity’ were also triggered, indicating the high possibility that the suspicious email is a domain and user impersonation email sent by a malicious attacker.

Figure 9- The Email console highlights the different models the email triggered, including the Basic Known Entity Similarities + Suspicious Content and External Domain Similarities + Maximum Similarity model breaches and the various models that triggered significant actions in response to the potentially malicious impersonation email.


When Darktrace/Email detects a malicious double impersonation email, it responds by triggering a Hold action, preventing the email from appearing in the recipient’s inbox. Darktrace/Email’s RESPOND functionality could also take action against the suspicious link payloads embedded in the email with a Double Lock Link action. This will prevent users from attempting to click on malicious phishing links. Such actions highlight how Darktrace/Email excels in using AI to detect and take action against potentially malicious impersonation emails that may be prevalent in any user’s inbox. 

Though impersonation is becoming increasingly targeted and efficient, Darktrace/Email has both detection and response capabilities that can ensure customers have secure coverage for their email environments.

Thanks to Ben Atkins for his contributions to this blog.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
George Kim
Analyst Consulting Lead – AMS

More in this series

No items found.

Blog

/

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

runtime, cloud security, cnaapDefault blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

Network

/

January 12, 2026

Maduro Arrest Used as a Lure to Deliver Backdoor

maduro arrest used as lure to deliver backdoorDefault blog imageDefault blog image

Introduction

Threat actors frequently exploit ongoing world events to trick users into opening and executing malicious files. Darktrace security researchers recently identified a threat group using reports around the arrest of Venezuelan President Nicolàs Maduro on January 3, 2025, as a lure to deliver backdoor malware.

Technical Analysis

While the exact initial access method is unknown, it is likely that a spear-phishing email was sent to victims, containing a zip archive titled “US now deciding what’s next for Venezuela.zip”. This file included an executable named “Maduro to be taken to New York.exe” and a dynamic-link library (DLL), “kugou.dll”.  

The binary “Maduro to be taken to New York.exe” is a legitimate binary (albeit with an expired signature) related to KuGou, a Chinese streaming platform. Its function is to load the DLL “kugou.dll” via DLL search order. In this instance, the expected DLL has been replaced with a malicious one with the same name to load it.  

DLL called with LoadLibraryW.
Figure 1: DLL called with LoadLibraryW.

Once the DLL is executed, a directory is created C:\ProgramData\Technology360NB with the DLL copied into the directory along with the executable, renamed as “DataTechnology.exe”. A registry key is created for persistence in “HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Lite360” to run DataTechnology.exe --DATA on log on.

 Registry key added for persistence.
Figure 2. Registry key added for persistence.
Folder “Technology360NB” created.
Figure 3: Folder “Technology360NB” created.

During execution, a dialog box appears with the caption “Please restart your computer and try again, or contact the original author.”

Message box prompting user to restart.
Figure 4. Message box prompting user to restart.

Prompting the user to restart triggers the malware to run from the registry key with the command --DATA, and if the user doesn't, a forced restart is triggered. Once the system is reset, the malware begins periodic TLS connections to the command-and-control (C2) server 172.81.60[.]97 on port 443. While the encrypted traffic prevents direct inspection of commands or data, the regular beaconing and response traffic strongly imply that the malware has the ability to poll a remote server for instructions, configuration, or tasking.

Conclusion

Threat groups have long used geopolitical issues and other high-profile events to make malicious content appear more credible or urgent. Since the onset of the war in Ukraine, organizations have been repeatedly targeted with spear-phishing emails using subject lines related to the ongoing conflict, including references to prisoners of war [1]. Similarly, the Chinese threat group Mustang Panda frequently uses this tactic to deploy backdoors, using lures related to the Ukrainian war, conventions on Tibet [2], the South China Sea [3], and Taiwan [4].  

The activity described in this blog shares similarities with previous Mustang Panda campaigns, including the use of a current-events archive, a directory created in ProgramData with a legitimate executable used to load a malicious DLL and run registry keys used for persistence. While there is an overlap of tactics, techniques and procedures (TTPs), there is insufficient information available to confidently attribute this activity to a specific threat group. Users should remain vigilant, especially when opening email attachments.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

172.81.60[.]97
8f81ce8ca6cdbc7d7eb10f4da5f470c6 - US now deciding what's next for Venezuela.zip
722bcd4b14aac3395f8a073050b9a578 - Maduro to be taken to New York.exe
aea6f6edbbbb0ab0f22568dcb503d731  - kugou.dll

References

[1] https://cert.gov.ua/article/6280422  

[2] https://www.ibm.com/think/x-force/hive0154-mustang-panda-shifts-focus-tibetan-community-deploy-pubload-backdoor

[3] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

[4] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

Continue reading
About the author
Tara Gould
Malware Research Lead
Your data. Our AI.
Elevate your network security with Darktrace AI