Blog
/
Network
/
August 29, 2023

Analyzing Post-Exploitation on Papercut Servers

Dive into our analysis covering post-exploitation activity on PaperCut servers. Learn the details and impact of this attack and how to keep yourself safe!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
Specialist Security Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
29
Aug 2023

Introduction

Malicious cyber actors are known to exploit vulnerabilities in Internet-facing systems and services to gain entry to organizations’ digital environments. Keeping track of the vulnerabilities which malicious actors are exploiting is seemingly futile, with malicious actors continually finding new avenues of exploitation.  

In mid-April 2023, Darktrace, along with the wider security community, observed malicious cyber actors gaining entry to networks through exploitation of a critical vulnerability in the print management system, PaperCut. Darktrace observed two types of attack chain within its customer base, one involving the deployment of payloads to facilitate crypto-mining, and the other involving the deployment of a payload to facilitate Tor-based command-and-control (C2) communication.

Walking Through the Front Door

One of the most widely abused Initial Access methods attackers use to gain entry to an organization’s digital environment is the exploitation of vulnerabilities in Internet-facing systems and services [1]. The public disclosure of a critical vulnerability in a widely used, Internet-facing service, along with a proof of concept (POC) exploit for such vulnerability, provides malicious cyber actors with a key to the front door of countless organizations. Once malicious actors are in possession of such a key, security teams are in a race against time to patch all their vulnerable systems and services. But until organizations accomplish this, the doors are left open.

This year, the security community has seen malicious actors gaining entry to networks through the exploitation of vulnerabilities in a range of services. These services include familiar suspects, such as Microsoft Exchange and ManageEngine, along with less familiar suspects, such as PaperCut. PaperCut is a system for managing and tracking printing, copying, and scanning activity within organizations. In 2021, PaperCut was used in more than 50,000 sites across over 100 countries [2], making PaperCut a widely used print management system.

In January 2023, Trend Micro’s Zero Day Initiative (ZDI) notified PaperCut of a critical RCE vulnerability, namely CVE-2023–27350, in certain versions of PaperCut NG (PaperCut’s ‘print only’ variant) and PaperCut MF (PaperCut’s ‘extended feature’ variant) [3,4]. In March 2023, PaperCut released versions of PaperCut NG and PaperCut MF containing a fix for CVE-2023–27350 [4]. Despite this, security teams observed a surge in cases of malicious actors exploiting CVE-2023–27350 to compromise PaperCut servers in April 2023 [4-10]. This trend was mirrored in Darktrace’s customer base, where a surge in compromises of PaperCut servers was observed in April 2023.

Observed Attack Chains

In mid-April 2023, Darktrace identified two related clusters of attack chains. The attack chains within the first of these clusters involved Internet-facing PaperCut servers downloading payloads with crypto-mining capabilities from the external location, 50.19.48[.]59. While the attack chains within the second of the clusters involved Internet-facing PaperCut servers downloading payloads with Tor-based C2 capabilities from 192.184.35[.]216. The attack chains within the first cluster, which were observed on April 22, 2023, will be referred to as ‘50.19.48[.]59 chains’ and the attack chains in the second cluster, observed on April 24, 2023, will be called ‘192.184.35[.]216 chains’.

Both attack chains started with highly unusual external endpoints contacting the '/SetupCompleted' endpoint of an Internet-facing PaperCut server. These requests to the ‘/SetupCompleted’ endpoint likely represented attempts to exploit CVE-2023–27350 [10].  50.19.48[.]59 chains started with exploit connections from the external endpoint, 85.106.112[.]60, whereas 192.184.35[.]216 chains started with exploit connections from Tor nodes, such as 185.34.33[.]2.

Figure 1: Darktrace’s Advanced Search data showing likely CVE-2023-27350 exploitation activity from the suspicious, external endpoint, 85.106.112[.]60.

After the exploitation step, the two attack chains took different paths. In the 50.19.48[.]59 chains, the exploitation step was followed by the affected PaperCut server making HTTP GET requests over port 82 to the rare external endpoint, 50.19.48[.]59. In the 192.184.35[.]216 chains, the exploitation step was followed by the affected PaperCut server making an HTTP GET request over port 443 to 192.184.35[.]216.

The HTTP GET requests to 50.19.48[.]59 had Target URIs such as ‘/me1.bat’, ‘/me2.bat’, ‘/dom.zip’, ‘/mazar.bat’, and ‘/mazar.zip’, whilst the HTTP GET requests to 192.184.35[.]216 had the Target URI ‘/4591187629.exe’. The User-Agent header of the GET requests to 192.184.35[.]216 indicated that that the malicious file transfers were initiated through Microsoft’s pre-installed Background Intelligent Transfer Service (BITS).

Figure 2: Darktrace’s Advanced Search data showing a PaperCut server downloading Batch and ZIP files from 50.19.48[.]59 straight after receiving likely exploit connections from 85.106.112[.]60.
Figure 3: Darktrace’s Event Log data showing a PaperCut server downloading an executable file from 192.184.35[.]216 immediately after receiving a likely exploit connection from the Tor node, 185.34.33[.]2.

Downloads from 50.19.48[.]59 were followed by cURL GET requests to 138.68.61[.]82 and then connections to external endpoints associated with the cryptocurrency miner, Mimu (as seen in Fig 4). Downloads from 192.184.35[.]216 were followed by Python-urllib GET requests to api.ipify[.]org and long connections to Tor nodes (as seen in Fig 5).  

These facts suggest that the actor behind the 50.19.48[.]59 chains were seeking to drop cryptocurrency miners on PaperCut servers, with the intention of abusing the customer’s network to carry out resource intensive and costly cryptocurrency mining activity. Meanwhile, the actors behind the 192.184.35[.]216 chains were likely attempting to establish a Tor-based C2 channel with PaperCut servers to allow actors to further communicate with compromised devices.

Figure 4: Darktrace's Event Log data showing a PaperCut contacting 50.19.48[.]59 to download payloads, and then making a cURL request to 138.68.61[.]82 before contacting a Mimu crypto-mining endpoint.
Figure 5: Darktrace’s Event Log data showing a PaperCut server contacting 192.184.35[.]216 to download a payload, and then making connections to api.ipify[.]org and several Tor nodes.

The activities ensuing from both attack chains were varied, making it difficult to ascertain whether the activities were steps of separate attack chains, or steps of the existing 50.19.48[.]59 and 192.184.35[.]216 chains. A wide variety of activities ensued from observed 50.19.48[.]59 and 192.184.35[.]216 chains, including the abuse of pre-installed tools, such as cURL, CertUtil, and PowerShell to transfer further payloads to PaperCut servers, Cobalt Strike C2 communication, Ngrok usage, Mimikatz usage, AnyDesk usage, and in one case, detonation of the LockBit ransomware strain.

Figure 6: Diagram representing the steps of observed 50.19.48[.]59 chains.
Figure 7: Diagram representing the steps of observed 192.184.35[.]215 chains.

As the PaperCut servers that were targeted by malicious actors are Internet-facing, they regularly receive connections from unusual external endpoints. The exploit connections in the 50.19.48[.]59 and 192.184.35[.]216 chains, which originated from unusual external endpoints, were therefore not detected by Darktrace DETECT™, which relies on anomaly-based methods to detect network-based steps of an intrusion.

On the other hand, the post-exploitation steps of the 50.19.48[.]59 and 192.184.35[.]216 chains yielded ample anomaly-based detections, given that they consisted of PaperCut servers displaying highly unusual behaviors. As such Darktrace DETECT was able to successfully identify multiple chains of suspicious activity, including unusual file downloads from external endpoints and beaconing activity to rare external locations.

The file downloads from 50.19.48[.]59 observed in the 50.19.48[.]59 chains caused the following Darktrace DETECT models to breach:

- Anomalous Connection / Application Protocol on Uncommon Port

- Anomalous File / Internet Facing System File Download

- Anomalous File / Script from Rare External Location

- Anomalous File / Zip or Gzip from Rare External Location

- Device / Internet Facing Device with High Priority Alert

Figure 8: Darktrace’s Event Log data showing a PaperCut server breaching several models immediately after contacting 50.19.48[.]59.

The file downloads from 192.184.35[.]216 observed in the 192.184.35[.]216 chains caused the following Darktrace DETECT models to breach:

- Anomalous File / EXE from Rare External Location

- Anomalous File / Numeric File Download

- Device / Internet Facing Device with High Priority Alert

Figure 9: Darktrace’s Event Log data showing a PaperCut server breaching several models immediately after contacting 192.184.35[.]216.

Subsequent C2, beaconing, and crypto-mining connections in the 50.19.48[.]59 chains caused the following Darktrace DETECT models to breach:

- Anomalous Connection / New User Agent to IP Without Hostname

- Anomalous Server Activity / New User Agent from Internet Facing System

- Anomalous Server Activity / Rare External from Server

- Compromise / Crypto Currency Mining Activity

- Compromise / High Priority Crypto Currency Mining

- Compromise / High Volume of Connections with Beacon Score

- Compromise / Large Number of Suspicious Failed Connections

- Compromise / SSL Beaconing to Rare Destination

- Device / Initial Breach Chain Compromise

- Device / Large Number of Model Breaches

Figure 10: Darktrace’s Event Log data showing a PaperCut server breaching models as a result of its connections to a Mimu crypto-mining endpoint.

Subsequent C2, beaconing, and Tor connections in the 192.184.35[.]216 chains caused the following Darktrace DETECT models to breach:

- Anomalous Connection / Application Protocol on Uncommon Port

- Compromise / Anomalous File then Tor

- Compromise / Beaconing Activity To External Rare

- Compromise / Possible Tor Usage

- Compromise / Slow Beaconing Activity To External Rare

- Compromise / Uncommon Tor Usage

- Device / Initial Breach Chain Compromise

Figure 11: Darktrace’s Event Log data showing a PaperCut server breaching several models as a result of its connections to Tor nodes.

Darktrace RESPOND

Darktrace RESPOND™ was not active in any of the networks affected by 192.184.35[.]216 activity, however, RESPOND was active in some of the networks affected by 50.19.48[.]59 activity.  In those environments where RESPOND was enabled in autonomous mode, observed malicious activities resulted in intervention from RESPOND, including autonomous actions like blocking connections to specific external endpoints, blocking all outgoing traffic, and restricting affected devices to a pre-established pattern of behavior.

Figure 12: Darktrace’s Event Log data showing Darktrace RESPOND automatically performing inhibitive actions on a device in response to the device’s connection to 50.19.48[.]59.
Figure 13: Darktrace’s Event Log data showing Darktrace RESPOND automatically performing inhibitive actions on a device in response to the device’s connections to a Mimu crypto-mining endpoint.

Darktrace Cyber AI Analyst

Cyber AI Analyst autonomously investigated model breaches caused by events within these 50.19.48[.]59 and 192.184.35[.]216 chains. Cyber AI Analyst created user-friendly and detailed descriptions of these events, and then linked together these descriptions into threads representing the attack chains. Darktrace DETECT thus uncovered the individual steps of the attack chains, while Cyber AI Analyst was able to piece together the individual steps and uncover the attack chains themselves.  

Figure 14: An AI Analyst Incident entry showing the first event in a 50.19.48[.]59 chain uncovered by Cyber AI Analyst.
Figure 15: An AI Analyst Incident entry showing the second event in a 50.19.48[.]59 chain uncovered by Cyber AI Analyst.
Figure 16: An AI Analyst Incident entry showing the third event in a 50.19.48[.]59 chain uncovered by Cyber AI Analyst.
Figure 17: An AI Analyst Incident entry showing the first event in a 192.184.35[.]216 chain uncovered by Cyber AI Analyst.
Figure 18: An AI Analyst Incident entry showing the second event in a 192.184.35[.]216 chain uncovered by Cyber AI Analyst.

Conclusion

The existence of critical vulnerabilities in third-party software leaves organizations at constant risk of malicious actors breaching the perimeters of their networks. This risk can be mitigated through attack surface management and regular patching. However, this does not eliminate cyber risk entirely, meaning that organizations must be prepared for the eventuality of malicious actors getting inside their digital estate.

In April 2023, Darktrace observed malicious actors breaching the perimeters of several customer networks through exploitation of a critical vulnerability in PaperCut. Darktrace DETECT observed actors exploiting PaperCut servers to conduct a wide variety of post-exploitation activities, including downloading malicious payloads associated with cryptocurrency mining or payloads with Tor-based C2 capabilities. Darktrace DETECT created numerous model breaches based on this activity which alerted then customer’s security teams early in their development, providing them with ample time to take mitigative steps.

The successful detection of this payload delivery activity, along with the crypto-mining, beaconing, and Tor C2 activities which followed, elicited Darktrace RESPOND to take autonomous inhibitive action against the ongoing activity in those environments where it was operating in autonomous response mode.

If left to unfold, these intrusions developed in a variety of ways, in some cases leading to Cobalt Strike and ransomware activity. The detection of these intrusions in their early stages thus played a vital role in preventing malicious cyber actors from causing significant disruption.

Credit to: Sam Lister, Senior SOC Analyst, Zoe Tilsiter, Senior Cyber Analyst.

Appendices

MITRE ATT&CK Mapping

Initial Access techniques:

- Exploit Public-Facing Application (T1190)

Execution techniques:

- Command and Scripting Interpreter: PowerShell (T1059.001)

Discovery techniques:

- System Network Configuration Discovery (T1016)

Command and Control techniques

- Application Layer Protocol: Web Protocols (T1071.001)

- Encrypted Channel: Asymmetric Cryptography (T1573.002)

- Ingress Tool Transfer (T1105)

- Non-Standard Port (T1571)

- Protocol Tunneling (T1572)

- Proxy: Multi-hop Proxy (T1090.003)

- Remote Access Software (T1219)

Defense Evasion techniques:

- BITS Jobs (T1197)

Impact techniques:

- Data Encrypted for Impact (T1486)

List of Indicators of Compromise (IoCs)

IoCs from 50.19.48[.]59 attack chains:

- 85.106.112[.]60

- http://50.19.48[.]59:82/me1.bat

- http://50.19.48[.]59:82/me2.bat

- http://50.19.48[.]59:82/dom.zip

- 138.68.61[.]82

- update.mimu-me[.]cyou • 102.130.112[.]157

- 34.195.77[.]216

- http://50.19.48[.]59:82/mazar.bat

- http://50.19.48[.]59:82/mazar.zip

- http://50.19.48[.]59:82/prx.bat

- http://50.19.48[.]59:82/lol.exe  

- http://77.91.85[.]117/122.exe

- windows.n1tro[.]cyou • 176.28.51[.]151

- 77.91.85[.]117

- 91.149.237[.]76

- kernel-mlclosoft[.]site • 104.21.29[.]206

- tunnel.us.ngrok[.]com • 3.134.73[.]173

- 212.113.116[.]105

- c34a54599a1fbaf1786aa6d633545a60 (JA3 client fingerprint of crypto-mining client)

IoCs from 192.184.35[.]216 attack chains:

- 185.56.83[.]83

- 185.34.33[.]2

- http://192.184.35[.]216:443/4591187629.exe

- api.ipify[.]org • 104.237.62[.]211

- www.67m4ipctvrus4cv4qp[.]com • 192.99.43[.]171

- www.ynbznxjq2sckwq3i[.]com • 51.89.106[.]29

- www.kuo2izmlm2silhc[.]com • 51.89.106[.]29

- 148.251.136[.]16

- 51.158.231[.]208

- 51.75.153[.]22

- 82.66.61[.]19

- backmainstream-ltd[.]com • 77.91.72[.]149

- 159.65.42[.]223

- 185.254.37[.]236

- http://137.184.56[.]77:443/for.ps1

- http://137.184.56[.]77:443/c.bat

- 45.88.66[.]59

- http://5.8.18[.]237/download/Load64.exe

- http://5.8.18[.]237/download/sdb64.dll

- 140e0f0cad708278ade0984528fe8493 (JA3 client fingerprint of Tor-based client)

References

[1] https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-137a

[2] https://www.papercut.com/kb/Main/PaperCutMFSolutionBrief/

[3] https://www.zerodayinitiative.com/advisories/ZDI-23-233/

[4] https://www.papercut.com/kb/Main/PO-1216-and-PO-1219

[5] https://www.trendmicro.com/en_us/research/23/d/update-now-papercut-vulnerability-cve-2023-27350-under-active-ex.html

[6] https://www.huntress.com/blog/critical-vulnerabilities-in-papercut-print-management-software

[7] https://news.sophos.com/en-us/2023/04/27/increased-exploitation-of-papercut-drawing-blood-around-the-internet/

[8] https://twitter.com/MsftSecIntel/status/1651346653901725696

[9] https://twitter.com/MsftSecIntel/status/1654610012457648129

[10] https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-131a

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
Specialist Security Researcher

More in this series

No items found.

Blog

/

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI