Blog
/
/
February 6, 2022

Ransomware Groups Aim for Maximum Disruption

Discover key ransomware trends and effective strategies to safeguard your organization. Marcus Fowler provides insights on combating cyber threats!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Marcus Fowler
CEO of Darktrace Federal and SVP of Strategic Engagements and Threats
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Feb 2022

In parallel to the global COVID-19 pandemic, there has been a growing ransomware pandemic. Darktrace researchers discovered that ransomware attacks on US organizations tripled in 2021 compared to 2020, and attacks on UK organizations doubled.

This crisis brought 30 nations together to discuss a counter-ransomware initiative focused on cryptocurrency regulation, security resilience, attack disruption, and international cyber diplomacy. Despite these landmark policies and law enforcement efforts, it’s safe to say that ransomware will remain as a top priority threat and is not going anywhere.

As ransomware permeates, cyber-attackers will continue evolving techniques in 2022

Ransomware gangs are becoming more sophisticated in how they select targets and how they carry out attacks. Many organizations think that ransomware shouldn’t be a serious concern if they have backups in place because they can quickly bring business operations back online. But modern attacks are about more than encryption or data exfiltration; they focus on maximizing disruption to business operations, including targeting backups for encryption and deletion. In 2022, we could see ransomware gangs target cloud service providers as well as backup and archiving providers.

Critical infrastructure organizations and businesses will continue to assess how quickly they can restore operations in the aftermath of an attack and how extensively they will be able to rely on, and the costs required for cyber insurers to cover entire ransom payments and costly systems repairs.

In early January, Microsoft researchers found evidence of malware targeting multiple Ukrainian organizations deploying what appeared to be ransomware but was actually a wiper. The malware displays a ransom note then executes the wiper when the target device is powered down. If adopted by other non-state actors, this evolution goes beyond ransomware, and some organizations won’t be able to survive these types of attacks.

Sophisticated ransomware gangs will expand their detailed targeting efforts from only ‘big game hunting,’ where they target large and well-known targets, to use more resources directly targeting midsize and smaller organizations. With increased scalability through automation and leveraging supply chain attacks, ransomware gangs will have the resources to expand their operations. Large organizations have more substantial budgets and more people, and they can prioritize resources to deal with ransomware’s effects — it will be far more difficult for small businesses.

Not only are ransomware operators expanding whom they can target, but the group of cyber-attackers able to execute attacks is expanding. The rise of Ransomware-as-a-Service (RaaS) gives low-skilled threat actors access to sophisticated malware strains, lowering the barrier to entry for attackers. RaaS has expanded the criminal ecosystem to include lower-level threat actors who find and attack the targets before installing the malicious software. Threat actors are increasingly using bots to automate the initial attack that gets them a foothold in the system.

There is also a varying degree of professionalism amongst cyber-criminals, from seasoned veterans (with current or previous nation-state experience) to ‘script kiddies’ with little expertise. This array translates to greater potential for untested or reckless use of sophisticated tools by unsophisticated actors.

Ransomware groups will bounce back

Ransomware groups are resilient. Even if government pressures force ransomware groups to disband or criminally charge them, they will continue to rebrand and crop back up. For example, DarkSide, confirmed by the FBI to be behind the attack on Colonial Pipeline, shut down a week after the attack. Shortly after, BlackMatter emerged, widely believed to be a rebranded version of the same cyber-crime group.

Figure 1: Darktrace breaks down the stages of a BlackMatter ransomware attack targeting a marketing firm in the US

Earlier this year, Russia’s security agency announced that it had arrested several members belonging to the notorious REvil ransomware gang and neutralized its operations. While this is a significant step against a major group, it is unlikely to reflect a long-term change in Russian policy towards cyber-criminal gangs. These arrests almost certainly do not mark the end of REvil.

Five ransomware groups have formed a cartel to exchange data and ‘best’ practices. These groups include Wizard Spider (linked to the Ryuk and Conti ransomware strains), Twisted Spider (which developed Maze and uses Egregor), Viking Spider (the group behind Ragnar), and LockBit.

Even if government pressures force ransomware groups to disband or criminally charge ransomware gangs, these groups will continue to rebrand and crop back up with even more sophisticated techniques and capabilities.

A static ‘hardened’ perimeter defense isn’t the answer – a dynamic self-defending one is

For organizations to build systems to withstand cyber-attacks, security leaders need to think and, more importantly, defend beyond the initial breach to maximize continuity of business operations. Security defenses like firewalls centered on defending the cyber perimeter are not enough to protect against evolving threats.

A truly dynamic defense is achievable. Organizations need to actively enforce ‘normal’ for businesses and disrupt attacks at the earliest indicators of malicious anomalous behavior, such as file encryption or data exfiltration. Security technology needs to learn, make micro-decisions, and take proportional responses to detect and stop attacks early enough before data exfiltration or encryption occurs.

Attackers are acutely aware of Threat Intelligence-reliant defensive tools they need to evade and know the limitations of the legacy, siloed approach many organizations employ. Attackers are finding valuable information, exfiltrating the files, and encrypting the data in a short period. The race condition and response window for defenders to detect and stop attacks is getting smaller; security teams and solution responses must get faster.

Cyber security is no longer a human-scale problem. Organizations need to adopt AI-based protections that can defend against increasingly automated ransomware attacks. In an era of fast-moving cyber-attacks, and with threat actors deliberately striking when security teams are out of the office, AI technologies have become essential in taking targeted action to contain attacks without interrupting normal business.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Marcus Fowler
CEO of Darktrace Federal and SVP of Strategic Engagements and Threats

More in this series

No items found.

Blog

/

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

runtime, cloud security, cnaapDefault blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

Network

/

January 12, 2026

Maduro Arrest Used as a Lure to Deliver Backdoor

maduro arrest used as lure to deliver backdoorDefault blog imageDefault blog image

Introduction

Threat actors frequently exploit ongoing world events to trick users into opening and executing malicious files. Darktrace security researchers recently identified a threat group using reports around the arrest of Venezuelan President Nicolàs Maduro on January 3, 2025, as a lure to deliver backdoor malware.

Technical Analysis

While the exact initial access method is unknown, it is likely that a spear-phishing email was sent to victims, containing a zip archive titled “US now deciding what’s next for Venezuela.zip”. This file included an executable named “Maduro to be taken to New York.exe” and a dynamic-link library (DLL), “kugou.dll”.  

The binary “Maduro to be taken to New York.exe” is a legitimate binary (albeit with an expired signature) related to KuGou, a Chinese streaming platform. Its function is to load the DLL “kugou.dll” via DLL search order. In this instance, the expected DLL has been replaced with a malicious one with the same name to load it.  

DLL called with LoadLibraryW.
Figure 1: DLL called with LoadLibraryW.

Once the DLL is executed, a directory is created C:\ProgramData\Technology360NB with the DLL copied into the directory along with the executable, renamed as “DataTechnology.exe”. A registry key is created for persistence in “HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Lite360” to run DataTechnology.exe --DATA on log on.

 Registry key added for persistence.
Figure 2. Registry key added for persistence.
Folder “Technology360NB” created.
Figure 3: Folder “Technology360NB” created.

During execution, a dialog box appears with the caption “Please restart your computer and try again, or contact the original author.”

Message box prompting user to restart.
Figure 4. Message box prompting user to restart.

Prompting the user to restart triggers the malware to run from the registry key with the command --DATA, and if the user doesn't, a forced restart is triggered. Once the system is reset, the malware begins periodic TLS connections to the command-and-control (C2) server 172.81.60[.]97 on port 443. While the encrypted traffic prevents direct inspection of commands or data, the regular beaconing and response traffic strongly imply that the malware has the ability to poll a remote server for instructions, configuration, or tasking.

Conclusion

Threat groups have long used geopolitical issues and other high-profile events to make malicious content appear more credible or urgent. Since the onset of the war in Ukraine, organizations have been repeatedly targeted with spear-phishing emails using subject lines related to the ongoing conflict, including references to prisoners of war [1]. Similarly, the Chinese threat group Mustang Panda frequently uses this tactic to deploy backdoors, using lures related to the Ukrainian war, conventions on Tibet [2], the South China Sea [3], and Taiwan [4].  

The activity described in this blog shares similarities with previous Mustang Panda campaigns, including the use of a current-events archive, a directory created in ProgramData with a legitimate executable used to load a malicious DLL and run registry keys used for persistence. While there is an overlap of tactics, techniques and procedures (TTPs), there is insufficient information available to confidently attribute this activity to a specific threat group. Users should remain vigilant, especially when opening email attachments.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

172.81.60[.]97
8f81ce8ca6cdbc7d7eb10f4da5f470c6 - US now deciding what's next for Venezuela.zip
722bcd4b14aac3395f8a073050b9a578 - Maduro to be taken to New York.exe
aea6f6edbbbb0ab0f22568dcb503d731  - kugou.dll

References

[1] https://cert.gov.ua/article/6280422  

[2] https://www.ibm.com/think/x-force/hive0154-mustang-panda-shifts-focus-tibetan-community-deploy-pubload-backdoor

[3] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

[4] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

Continue reading
About the author
Tara Gould
Malware Research Lead
Your data. Our AI.
Elevate your network security with Darktrace AI