Blog
/
Network
/
July 4, 2024

A Busy Agenda: Darktrace's Detection of Qilin Ransomware as a Service Operator

This blog breaks down how Darktrace detected and analyzed Qilin, a Ransomware-as-a-Service group behind recent high-impact attacks. You’ll see how Qilin affiliates customize attacks with flexible encryption, process termination, and double-extortion techniques, as well as why its cross-platform builds in Rust and Golang make it especially evasive. Darktrace highlights three real-world cases where its AI identified likely Qilin activity across customer environments, offering insights into how behavioral detection can spot novel ransomware before disruption occurs. Readers will gain a clear view of Qilin’s toolkit, tactics, and how self-learning defense adapts to these evolving threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Jul 2024

Qilin ransomware has recently dominated discussions across the cyber security landscape following its deployment in an attack on Synnovis, a UK-based medical laboratory company. The ransomware attack ultimately affected patient services at multiple National Health Service (NHS) hospitals that rely on Synnovis diagnostic and pathology services. Qilin’s origins, however, date back further to October 2022 when the group was observed seemingly posting leaked data from its first known victim on its Dedicated Leak Site (DLS) under the name Agenda[1].

The Darktrace Threat Research team investigated network artifacts related to Qilin and identified three probable cases of the ransomware across the Darktrace customer base between June 2022 and May 2024.

Qilin Ransomware-as-a-Service Operator

Qilin operates as a Ransomware-as-a-Service (RaaS) that employs double extortion tactics, whereby harvested data is exfiltrated and threatened of publication on the group's DLS, which is hosted on Tor. Qilin ransomware has samples written in both the Golang and Rust programming languages, making it compilable with various operating systems, and is highly customizable. When building Qilin ransomware variants to be used on their target(s), affiliates can configure settings such as the encryption mode (i.e., skip-step, percent, and speed), the file extension being appended, files, extensions and directories to be skipped during the encryption, and the processes and services to be terminated, among others[1] [2].  

Trend Micro analysts, who were the first to discover Qilin samples in August 2022, when the name "Agenda" was still used in ransom notes, found that each analyzed sample was customized for the intended victims and that "unique company IDs were used as extensions of encrypted files" [3]. This information is configurable from within the Qilin's affiliate panel's 'Targets' section, shown below. The panel's background image features the eponym Chinese legendary chimerical creature Qilin (pronounced “Ke Lin”). Despite this Chinese mythology reference, Russian language was observed being used by a Qilin operator in an underground forum post aimed at hiring affiliates and advertising their RaaS operation[2].

Figure 1: Qilin ransomware’s affiliate panel.

Qilin's RaaS program purportedly has an attractive affiliates' payment structure, with affiliates allegedly able to earn 80% of ransom payments of USD 3m or less and 85% for payments above that figure[2], making it a possibly appealing option in the RaaS ecosystem.  Publication of stolen data and ransom payment negotiations are purportedly handled by Qilin operators. Qilin affiliates have been known to target companies located around the world and within a variety of industries, including critical sectors such as healthcare and energy.

As Qilin is a RaaS operation, the choice of targets does not necessarily reflect Qilin operators' intentions, but rather that of its affiliates.  Similarly, the tactics, techniques, procedures (TTPs) and indicators of compromise (IoC) identified by Darktrace are associated with the given affiliate deploying Qilin ransomware for their own purpose, rather than TTPs and IoCs of the Qilin group. Likewise, initial vectors of infection may vary from affiliate to affiliate. Previous studies show that initial access to networks were gained via spear phishing emails or by leveraging exposed applications and interfaces.

Differences have been observed in terms of data exfiltration and potential C2 external endpoints, suggesting the below investigations are not all related to the same group or actor(s).

Darktrace’s Threat Research Investigation

June 2022

Darktrace first detected an instance of Qilin ransomware back in June 2022, when an attacker was observed successfully accessing a customer’s Virtual Private Network (VPN) and compromising an administrative account, before using RDP to gain access to the customer’s Microsoft System Center Configuration Manager (SCCM) server

From there, an attack against the customer's VMware ESXi hosts was launched. Fortunately, a reboot of their virtual machines (VM) caught the attention of the security team who further uncovered that custom profiles had been created and remote scripts executed to change root passwords on their VM hosts. Three accounts were found to have been compromised and three systems encrypted by ransomware.  

Unfortunately, Darktrace was not configured to monitor the affected subnets at the time of the attack. Despite this, the customer was able to work directly with Darktrace analysts via the Ask the Expert (ATE) service to add the subnets in question to Darktrace’s visibility, allowing it to monitor for any further unusual behavior.

Once visibility over the compromised SCCM server was established, Darktrace observed a series of unusual network scanning activities and the use of Kali (a Linux distribution designed for digital forensics and penetration testing). Furthermore, the server was observed making connections to multiple rare external hosts, many using the “[.]ru” Top Level Domain (TLD). One of the external destinations the server was attempting to connect was found to be related to SystemBC, a malware that turns infected hosts into SOCKS5 proxy bots and provides command-and-control (C2) functionality.

Additionally, the server was observed making external connections over ports 993 and 143 (typically associated with the use of the Interactive Message Access Protocol (IMAP) to multiple rare external endpoints. This was likely due to the presence of Tofsee malware on the device.

After the compromise had been contained, Darktrace identified several ransom notes following the naming convention “README-RECOVER-<extension/company_id>.txt”” on the network. This naming convention, as well as the similar “<company_id>-RECOVER-README.txt” have been referenced by open-source intelligence (OSINT) providers as associated with Qilin ransom notes[5] [6] [7].

April 2023

The next case of Qilin ransomware observed by Darktrace took place in April 2023 on the network of a customer in the manufacturing sector in APAC. Unfortunately for the customer in this instance, Darktrace RESPOND™ was not active on their environment and no autonomous response actions were taken to contain the compromise.

Over the course of two days, Darktrace identified a wide range of malicious activity ranging from extensive initial scanning and lateral movement attempts to the writing of ransom notes that followed the aforementioned naming convention (i.e., “README-RECOVER-<extension/company_id>.txt”).

Darktrace observed two affected devices attempting to move laterally through the SMB, DCE-RPC and RDP network protocols. Default credentials (e.g., UserName, admin, administrator) were also observed in the large volumes of SMB sessions initiated by these devices. One of the target devices of these SMB connections was a domain controller, which was subsequently seen making suspicious WMI requests to multiple devices over DCE-RPC and enumerating SMB shares by binding to the ‘server service’ (srvsvc) named pipe to a high number of internal devices within a short time frame. The domain controller was further detected establishing an anomalously high number of connections to several internal devices, notably using the RDP administrative protocol via a default admin cookie.  

Repeated connections over the HTTP and SSL protocol to multiple newly observed IPs located in the 184.168.123.0/24 range were observed, indicating C2 connectivity.  WebDAV user agent and a JA3 fingerprint potentially associated with Cobalt Strike were notably observed in these connections. A few hours later, Darktrace detected additional suspicious external connections, this time to IPs associated with the MEGA cloud storage solution. Storage solutions such as MEGA are often abused by attackers to host stolen data post exfiltration. In this case, the endpoints were all rare for the network, suggesting this solution was not commonly used by legitimate users. Around 30 GB of data was exfiltrated over the SSL protocol.

Darktrace did not observe any encryption-related activity on this customer’s network, suggesting that encryption may have taken place locally or within network segments not monitored by Darktrace.

May 2024

The most recent instance of Qilin observed by Darktrace took place in May 2024 and involved a customer in the US. In this case, Darktrace initially detected affected devices using unusual administrative and default credentials, before additional internal systems were observed making extensive suspicious DCE-RPC requests to a range of internal locations, performing network scanning, making unusual internal RDP connections, and transferring suspicious executable files like 'a157496.exe' and '83b87b2.exe'.  SMB writes of the file "LSM_API_service" were also observed, activity which was considered 100% unusual by Darktrace; this is an RPC service that can be abused to enumerate logged-in users and steal their tokens. Various repeated connections likely representative of C2 communications were detected via both HTTP and SSL to rare external endpoints linked in OSINT to Cobalt Strike use. During these connections, HTTP GET requests for the following URIs were observed:

/asdffHTTPS

/asdfgdf

/asdfgHTTP

/download/sihost64.dll

Notably, this included a GET request a DLL file named "sihost64.dll" from a domain controller using PowerShell.  

Over 102 GB of data may have been transferred to another previously unseen endpoint, 194.165.16[.]13, via the unencrypted File Transfer Protocol (FTP). Additionally, many non-FTP connections to the endpoint could be observed, over which more than 783 GB of data was exfiltrated. Regarding file encryption activity, a wide range of destination devices and shares were targeted.

Figure 2: Advanced Search graph displaying the total volume of data transferred over FTP to a malicious IP.

During investigations, Darktrace’s Threat Research team identified an additional customer, also based in the United States, where similar data exfiltration activity was observed in April 2024. Although no indications of ransomware encryption were detected on the network, multiple similarities were observed with the case discussed just prior. Notably, the same exfiltration IP and protocol (194.165.16[.]13 and FTP, respectively) were identified in both cases. Additional HTTP connectivity was further observed to another IP using a self-signed certificate (i.e., CN=ne[.]com,OU=key operations,O=1000,L=,ST=,C=KM) located within the same ASN (i.e., AS48721 Flyservers S.A.). Some of the URIs seen in the GET requests made to this endpoint were the same as identified in that same previous case.

Information regarding another device also making repeated connections to the same IP was described in the second event of the same Cyber AI Analyst incident. Following this C2 connectivity, network scanning was observed from a compromised domain controller, followed by additional reconnaissance and lateral movement over the DCE-RPC and SMB protocols. Darktrace again observed SMB writes of the file "LSM_API_service", as in the previous case, activity which was also considered 100% unusual for the network. These similarities suggest the same actor or affiliate may have been responsible for activity observed, even though no encryption was observed in the latter case.

Figure 3: First event of the Cyber AI Analyst investigation following the compromise activity.

According to researchers at Microsoft, some of the IoCs observed on both affected accounts are associated with Pistachio Tempest, a threat actor reportedly associated with ransomware distribution. The Microsoft threat actor naming convention uses the term "tempest" to reference criminal organizations with motivations of financial gain that are not associated with high confidence to a known non-nation state or commercial entity. While Pistachio Tempest’s TTPs have changed over time, their key elements still involve ransomware, exfiltration, and extortion. Once they've gained access to an environment, Pistachio Tempest typically utilizes additional tools to complement their use of Cobalt Strike; this includes the use of the SystemBC RAT and the SliverC2 framework, respectively. It has also been reported that Pistacho Tempest has experimented with various RaaS offerings, which recently included Qilin ransomware[4].

Conclusion

Qilin is a RaaS group that has gained notoriety recently due to high-profile attacks perpetrated by its affiliates. Despite this, the group likely includes affiliates and actors who were previously associated with other ransomware groups. These individuals bring their own modus operandi and utilize both known and novel TTPs and IoCs that differ from one attack to another.

Darktrace’s anomaly-based technology is inherently threat-agnostic, treating all RaaS variants equally regardless of the attackers’ tools and infrastructure. Deviations from a device’s ‘learned’ pattern of behavior during an attack enable Darktrace to detect and contain potentially disruptive ransomware attacks.

Credit to: Alexandra Sentenac, Emma Foulger, Justin Torres, Min Kim, Signe Zaharka for their contributions.

References

[1] https://www.sentinelone.com/anthology/agenda-qilin/  

[2] https://www.group-ib.com/blog/qilin-ransomware/

[3] https://www.trendmicro.com/en_us/research/22/h/new-golang-ransomware-agenda-customizes-attacks.html

[4] https://www.microsoft.com/en-us/security/security-insider/pistachio-tempest

[5] https://www.trendmicro.com/en_us/research/22/h/new-golang-ransomware-agenda-customizes-attacks.html

[6] https://www.bleepingcomputer.com/forums/t/790240/agenda-qilin-ransomware-id-random-10-char;-recover-readmetxt-support/

[7] https://github.com/threatlabz/ransomware_notes/tree/main/qilin

Darktrace Model Detections

Internal Reconnaissance

Device / Suspicious SMB Scanning Activity

Device / Network Scan

Device / RDP Scan

Device / ICMP Address Scan

Device / Suspicious Network Scan Activity

Anomalous Connection / SMB Enumeration

Device / New or Uncommon WMI Activity

Device / Attack and Recon Tools

Lateral Movement

Device / SMB Session Brute Force (Admin)

Device / Large Number of Model Breaches from Critical Network Device

Device / Multiple Lateral Movement Model Breaches

Anomalous Connection / Unusual Admin RDP Session

Device / SMB Lateral Movement

Compliance / SMB Drive Write

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / Anomalous DRSGetNCChanges Operation

Anomalous Server Activity / Domain Controller Initiated to Client

User / New Admin Credentials on Client

C2 Communication

Anomalous Server Activity / Outgoing from Server

Anomalous Connection / Multiple Connections to New External TCP Port

Anomalous Connection / Anomalous SSL without SNI to New External

Anomalous Connection / Rare External SSL Self-Signed

Device / Increased External Connectivity

Unusual Activity / Unusual External Activity

Compromise / New or Repeated to Unusual SSL Port

Anomalous Connection / Multiple Failed Connections to Rare Endpoint

Device / Suspicious Domain

Device / Increased External Connectivity

Compromise / Sustained SSL or HTTP Increase

Compromise / Botnet C2 Behaviour

Anomalous Connection / POST to PHP on New External Host

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous File / EXE from Rare External Location

Exfiltration

Unusual Activity / Enhanced Unusual External Data Transfer

Anomalous Connection / Data Sent to Rare Domain

Unusual Activity / Unusual External Data Transfer

Anomalous Connection / Uncommon 1 GiB Outbound

Unusual Activity / Unusual External Data to New Endpoint

Compliance / FTP / Unusual Outbound FTP

File Encryption

Compromise / Ransomware / Suspicious SMB Activity

Anomalous Connection / Sustained MIME Type Conversion

Anomalous File / Internal / Additional Extension Appended to SMB File

Compromise / Ransomware / Possible Ransom Note Write

Compromise / Ransomware / Possible Ransom Note Read

Anomalous Connection / Suspicious Read Write Ratio

IoC List

IoC – Type – Description + Confidence

93.115.25[.]139 IP C2 Server, likely associated with SystemBC

194.165.16[.]13 IP Probable Exfiltration Server

91.238.181[.]230 IP C2 Server, likely associated with Cobalt Strike

ikea0[.]com Hostname C2 Server, likely associated with Cobalt Strike

lebondogicoin[.]com Hostname C2 Server, likely associated with Cobalt Strike

184.168.123[.]220 IP Possible C2 Infrastructure

184.168.123[.]219 IP Possible C2 Infrastructure

184.168.123[.]236 IP Possible C2 Infrastructure

184.168.123[.]241 IP Possible C2 Infrastructure

184.168.123[.]247 IP Possible C2 Infrastructure

184.168.123[.]251 IP Possible C2 Infrastructure

184.168.123[.]252 IP Possible C2 Infrastructure

184.168.123[.]229 IP Possible C2 Infrastructure

184.168.123[.]246 IP Possible C2 Infrastructure

184.168.123[.]230 IP Possible C2 Infrastructure

gfs440n010.userstorage.me ga.co[.]nz Hostname Possible Exfiltration Server. Not inherently malicious; associated with MEGA file storage.

gfs440n010.userstorage.me ga.co[.]nz Hostname Possible Exfiltration Server. Not inherently malicious; associated with MEGA file storage.

Get the latest insights on emerging cyber threats

This report explores the latest trends shaping the cybersecurity landscape and what defenders need to know in 2025

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst

More in this series

No items found.

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

managing OT remote access with zero trust control and ai driven detectionDefault blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance

Blog

/

Network

/

November 20, 2025

Xillen Stealer Updates to Version 5 to Evade AI Detection

xillen stealer updates to version 5 to evade ai detectionDefault blog imageDefault blog image

Introduction

Python-based information stealer “Xillen Stealer” has recently released versions 4 and 5, expanding its targeting and functionality. The cross-platform infostealer, originally reported by Cyfirma in September 2025, targets sensitive data including credentials, cryptocurrency wallets, system information, browser data and employs anti-analysis techniques.  

The update to v4/v5 includes significantly more functionality, including:

  • Persistence
  • Ability to steal credentials from password managers, social media accounts, browser data (history, cookies and passwords) from over 100 browsers, cryptocurrency from over 70 wallets
  • Kubernetes configs and secrets
  • Docker scanning
  • Encryption
  • Polymorphism
  • System hooks
  • Peer-to-Peer (P2P) Command-and-Control (C2)
  • Single Sign-On (SSO) collector
  • Time-Based One-Time Passwords (TOTP) and biometric collection
  • EDR bypass
  • AI evasion
  • Interceptor for Two-Factor Authentication (2FA)
  • IoT scanning
  • Data exfiltration via Cloud APIs

Xillen Stealer is marketed on Telegram, with different licenses available for purchase. Users who deploy the malware have access to a professional-looking GUI that enables them to view exfiltrated data, logs, infections, configurations and subscription information.

Screenshot of the Xillen Stealer portal.
Figure 1: Screenshot of the Xillen Stealer portal.

Technical analysis

The following technical analysis examines some of the interesting functions of Xillen Stealer v4 and v5. The main functionality of Xillen Stealer is to steal cryptocurrency, credentials, system information, and account information from a range of stores.

Xillen Stealer specifically targets the following wallets and browsers:

AITargetDectection

Screenshot of Xillen Stealer’s AI Target detection function.
Figure 2: Screenshot of Xillen Stealer’s AI Target detection function.

The ‘AITargetDetection’ class is intended to use AI to detect high-value targets based on weighted indicators and relevant keywords defined in a dictionary. These indicators include “high value targets”, like cryptocurrency wallets, banking data, premium accounts, developer accounts, and business emails. Location indicators include high-value countries such as the United States, United Kingdom, Germany and Japan, along with cryptocurrency-friendly countries and financial hubs. Wealth indicators such as keywords like CEO, trader, investor and VIP have also been defined in a dictionary but are not in use at this time, pointing towards the group’s intent to develop further in the future.

While the class is named ‘AITargetDetection’ and includes placeholder functions for initializing and training a machine learning model, there is no actual implementation of machine learning. Instead, the system relies entirely on rule-based pattern matching for detection and scoring. Even though AI is not actually implemented in this code, it shows how malware developers could use AI in future malicious campaigns.

Screenshot of dead code function.
Figure 3: Screenshot of dead code function.

AI Evasion

Screenshot of AI evasion function to create entropy variance.
Figure 4: Screenshot of AI evasion function to create entropy variance.

‘AIEvasionEngine’ is a module designed to help malware evade AI-based or behavior-based detection systems, such as EDRs and sandboxes. It mimics legitimate user and system behavior, injects statistical noise, randomizes execution patterns, and camouflages resource usage. Its goal is to make the malware appear benign to machine learning detectors. The techniques used to achieve this are:

  • Behavioral Mimicking: Simulates user actions (mouse movement, fake browser use, file/network activity)
  • Noise Injection: Performs random memory, CPU, file, and network operations to confuse behavioral classifiers
  • Timing Randomization: Introduces irregular delays and sleep patterns to avoid timing-based anomaly detection
  • Resource Camouflage: Adjusts CPU and memory usage to imitate normal apps (such as browsers, text editors)
  • API Call Obfuscation: Random system API calls and pattern changes to hide malicious intent
  • Memory Access Obfuscation: Alters access patterns and entropy to bypass ML models monitoring memory behavior

PolymorphicEngine

As part of the “Rust Engine” available in Xillen Stealer is the Polymorphic Engine. The ‘PolymorphicEngine’ struct implements a basic polymorphic transformation system designed for obfuscation and detection evasion. It uses predefined instruction substitutions, control-flow pattern replacements, and dead code injection to produce varied output. The mutate_code() method scans input bytes and replaces recognized instruction patterns with randomized alternatives, then applies control flow obfuscation and inserts non-functional code to increase variability. Additional features include string encryption via XOR and a stub-based packer.

Collectors

DevToolsCollector

Figure 5: Screenshot of Kubernetes data function.

The ‘DevToolsCollector’ is designed to collect sensitive data related to a wide range of developer tools and environments. This includes:

IDE configurations

  • VS Code, VS Code Insiders, Visual Studio
  • JetBrains: Intellij, PyCharm, WebStorm
  • Sublime
  • Atom
  • Notepad++
  • Eclipse

Cloud credentials and configurations

  • AWS
  • GCP
  • Azure
  • Digital Ocean
  • Heroku

SSH keys

Docker & Kubernetes configurations

Git credentials

Database connection information

  • HeidiSQL
  • Navicat
  • DBeaver
  • MySQL Workbench
  • pgAdmin

API keys from .env files

FTP configs

  • FileZilla
  • WinSCP
  • Core FTP

VPN configurations

  • OpenVPN
  • WireGuard
  • NordVPN
  • ExpressVPN
  • CyberGhost

Container persistence

Screenshot of Kubernetes inject function.
Figure 6: Screenshot of Kubernetes inject function.

Biometric Collector

Screenshot of the ‘BiometricCollector’ function.
Figure 7: Screenshot of the ‘BiometricCollector’ function.

The ‘BiometricCollector’ attempts to collect biometric information from Windows systems by scanning the C:\Windows\System32\WinBioDatabase directory, which stores Windows Hello and other biometric configuration data. If accessible, it reads the contents of each file, encodes them in Base64, preparing them for later exfiltration. While the data here is typically encrypted by Windows, its collection indicates an attempt to extract sensitive biometric data.

Password Managers

The ‘PasswordManagerCollector’ function attempts to steal credentials stored in password managers including, OnePass, LastPass, BitWarden, Dashlane, NordPass and KeePass. However, this function is limited to Windows systems only.

SSOCollector

The ‘SSOCollector’ class is designed to collect authentication tokens related to SSO systems. It targets three main sources: Azure Active Directory tokens stored under TokenBroker\Cache, Kerberos tickets obtained through the klist command, and Google Cloud authentication data in user configuration folders. For each source, it checks known directories or commands, reads partial file contents, and stores the results as in a dictionary. Once again, this function is limited to Windows systems.

TOTP Collector

The ‘TOTP Collector’ class attempts to collect TOTPs from:

  • Authy Desktop by locating and reading from Authy.db SQLite databases
  • Microsoft Authenticator by scanning known application data paths for stored binary files
  • TOTP-related Chrome extensions by searching LevelDB files for identifiable keywords like “gauth” or “authenticator”.

Each method attempts to locate relevant files, parse or partially read their contents, and store them in a dictionary under labels like authy, microsoft_auth, or chrome_extension. However, as before, this is limited to Windows, and there is no handling for encrypted tokens.

Enterprise Collector

The ‘EnterpriseCollector’ class is used to extract credentials related to an enterprise Windows system. It targets configuration and credential data from:

  • VPN clients
    • Cisco AnyConnect, OpenVPN, Forticlient, Pulse Secure
  • RDP credentials
  • Corporate certificates
  • Active Directory tokens
  • Kerberos tickets cache

The files and directories are located based on standard environment variables with their contents read in binary mode and then encoded in Base64.

Super Extended Application Collector

The ‘SuperExtendedApplication’ Collector class is designed to scan an environment for 160 different applications on a Windows system. It iterates through the paths of a wide range of software categories including messaging apps, cryptocurrency wallets, password managers, development tools, enterprise tools, gaming clients, and security products. The list includes but is not limited to Teams, Slack, Mattermost, Zoom, Google Meet, MS Office, Defender, Norton, McAfee, Steam, Twitch, VMWare, to name a few.

Bypass

AppBoundBypass

This code outlines a framework for bypassing App Bound protections, Google Chrome' s cookie encryption. The ‘AppBoundBypass’ class attempts several evasion techniques, including memory injection, dynamic-link library (DLL) hijacking, process hollowing, atom bombing, and process doppelgänging to impersonate or hijack browser processes. As of the time of writing, the code contains multiple placeholders, indicating that the code is still in development.

Steganography

The ‘SteganographyModule’ uses steganography (hiding data within an image) to hide the stolen data, staging it for exfiltration. Multiple methods are implemented, including:

  • Image steganography: LSB-based hiding
  • NTFS Alternate Data Streams
  • Windows Registry Keys
  • Slack space: Writing into unallocated disk cluster space
  • Polyglot files: Appending archive data to images
  • Image metadata: Embedding data in EXIF tags
  • Whitespace encoding: Hiding binary in trailing spaces of text files

Exfiltration

CloudProxy

Screenshot of the ‘CloudProxy’ class.
Figure 8: Screenshot of the ‘CloudProxy’ class.

The CloudProxy class is designed for exfiltrating data by routing it through cloud service domains. It encodes the input data using Base64, attaches a timestamp and SHA-256 signature, and attempts to send this payload as a JSON object via HTTP POST requests to cloud URLs including AWS, GCP, and Azure, allowing the traffic to blend in. As of the time of writing, these public facing URLs do not accept POST requests, indicating that they are placeholders meant to be replaced with attacker-controlled cloud endpoints in a finalized build.

P2PEngine

Screenshot of the P2PEngine.
Figure 9: Screenshot of the P2PEngine.

The ‘P2PEngine’ provides multiple methods of C2, including embedding instructions within blockchain transactions (such as Bitcoin OP_RETURN, Ethereum smart contracts), exfiltrating data via anonymizing networks like Tor and I2P, and storing payloads on IPFS (a distributed file system). It also supports domain generation algorithms (DGA) to create dynamic .onion addresses for evading detection.

After a compromise, the stealer creates both HTML and TXT reports containing the stolen data. It then sends these reports to the attacker’s designated Telegram account.

Xillen Killers

 Xillen Killers.
FIgure 10: Xillen Killers.

Xillen Stealer appears to be developed by a self-described 15-year-old “pentest specialist” “Beng/jaminButton” who creates TikTok videos showing basic exploits and open-source intelligence (OSINT) techniques. The group distributing the information stealer, known as “Xillen Killers”, claims to have 3,000 members. Additionally, the group claims to have been involved in:

  • Analysis of Project DDoSia, a tool reportedly used by the NoName057(16) group, revealing that rather functioning as a distributed denial-of-service (DDos) tool, it is actually a remote access trojan (RAT) and stealer, along with the identification of involved individuals.
  • Compromise of doxbin.net in October 2025.
  • Discovery of vulnerabilities on a Russian mods site and a Ukrainian news site

The group, which claims to be part of the Russian IT scene, use Telegram for logging, marketing, and support.

Conclusion

While some components of XillenStealer remain underdeveloped, the range of intended feature set, which includes credential harvesting, cryptocurrency theft, container targeting, and anti-analysis techniques, suggests that once fully developed it could become a sophisticated stealer. The intention to use AI to help improve targeting in malware campaigns, even though not yet implemented, indicates how threat actors are likely to incorporate AI into future campaigns.  
Credit to Tara Gould (Threat Research Lead)

Edited by Ryan Traill (Analyst Content Lead)

Appendicies

Indicators of Compromise (IoCs)

395350d9cfbf32cef74357fd9cb66134 - confid.py

F3ce485b669e7c18b66d09418e979468 - stealer_v5_ultimate.py

3133fe7dc7b690264ee4f0fb6d867946 - xillen_v5.exe

https://github.com/BengaminButton/XillenStealer

https://github.com/BengaminButton/XillenStealer/commit/9d9f105df4a6b20613e3a7c55379dcbf4d1ef465

MITRE ATT&CK

ID Technique

T1059.006 - Python

T1555 - Credentials from Password Stores

T1555.003 - Credentials from Password Stores: Credentials from Web Browsers

T1555.005 - Credentials from Password Stores: Password Managers

T1649 - Steal or Forge Authentication Certificates

T1558 - Steal or Forge Kerberos Tickets

T1539 - Steal Web Session Cookie

T1552.001 - Unsecured Credentials: Credentials In Files

T1552.004 - Unsecured Credentials: Private Keys

T1552.005 - Unsecured Credentials: Cloud Instance Metadata API

T1217 - Browser Information Discovery

T1622 - Debugger Evasion

T1082 - System Information Discovery

T1497.001 - Virtualization/Sandbox Evasion: System Checks

T1115 - Clipboard Data

T1001.002 - Data Obfuscation: Steganography

T1567 - Exfiltration Over Web Service

T1657 - Financial Theft

Continue reading
About the author
Tara Gould
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI