Blog
/
Network
/
July 4, 2024

Qilin Ransomware: Detection and Analysis

Get insights into the detection of Qilin ransomware operations and how organizations can protect themselves from this threat.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Jul 2024

Qilin ransomware has recently dominated discussions across the cyber security landscape following its deployment in an attack on Synnovis, a UK-based medical laboratory company. The ransomware attack ultimately affected patient services at multiple National Health Service (NHS) hospitals that rely on Synnovis diagnostic and pathology services. Qilin’s origins, however, date back further to October 2022 when the group was observed seemingly posting leaked data from its first known victim on its Dedicated Leak Site (DLS) under the name Agenda[1].

The Darktrace Threat Research team investigated network artifacts related to Qilin and identified three probable cases of the ransomware across the Darktrace customer base between June 2022 and May 2024.

Qilin Ransomware-as-a-Service Operator

Qilin operates as a Ransomware-as-a-Service (RaaS) that employs double extortion tactics, whereby harvested data is exfiltrated and threatened of publication on the group's DLS, which is hosted on Tor. Qilin ransomware has samples written in both the Golang and Rust programming languages, making it compilable with various operating systems, and is highly customizable. When building Qilin ransomware variants to be used on their target(s), affiliates can configure settings such as the encryption mode (i.e., skip-step, percent, and speed), the file extension being appended, files, extensions and directories to be skipped during the encryption, and the processes and services to be terminated, among others[1] [2].  

Trend Micro analysts, who were the first to discover Qilin samples in August 2022, when the name "Agenda" was still used in ransom notes, found that each analyzed sample was customized for the intended victims and that "unique company IDs were used as extensions of encrypted files" [3]. This information is configurable from within the Qilin's affiliate panel's 'Targets' section, shown below. The panel's background image features the eponym Chinese legendary chimerical creature Qilin (pronounced “Ke Lin”). Despite this Chinese mythology reference, Russian language was observed being used by a Qilin operator in an underground forum post aimed at hiring affiliates and advertising their RaaS operation[2].

Figure 1: Qilin ransomware’s affiliate panel.

Qilin's RaaS program purportedly has an attractive affiliates' payment structure, with affiliates allegedly able to earn 80% of ransom payments of USD 3m or less and 85% for payments above that figure[2], making it a possibly appealing option in the RaaS ecosystem.  Publication of stolen data and ransom payment negotiations are purportedly handled by Qilin operators. Qilin affiliates have been known to target companies located around the world and within a variety of industries, including critical sectors such as healthcare and energy.

As Qilin is a RaaS operation, the choice of targets does not necessarily reflect Qilin operators' intentions, but rather that of its affiliates.  Similarly, the tactics, techniques, procedures (TTPs) and indicators of compromise (IoC) identified by Darktrace are associated with the given affiliate deploying Qilin ransomware for their own purpose, rather than TTPs and IoCs of the Qilin group. Likewise, initial vectors of infection may vary from affiliate to affiliate. Previous studies show that initial access to networks were gained via spear phishing emails or by leveraging exposed applications and interfaces.

Differences have been observed in terms of data exfiltration and potential C2 external endpoints, suggesting the below investigations are not all related to the same group or actor(s).

Darktrace’s Threat Research Investigation

June 2022

Darktrace first detected an instance of Qilin ransomware back in June 2022, when an attacker was observed successfully accessing a customer’s Virtual Private Network (VPN) and compromising an administrative account, before using RDP to gain access to the customer’s Microsoft System Center Configuration Manager (SCCM) server

From there, an attack against the customer's VMware ESXi hosts was launched. Fortunately, a reboot of their virtual machines (VM) caught the attention of the security team who further uncovered that custom profiles had been created and remote scripts executed to change root passwords on their VM hosts. Three accounts were found to have been compromised and three systems encrypted by ransomware.  

Unfortunately, Darktrace was not configured to monitor the affected subnets at the time of the attack. Despite this, the customer was able to work directly with Darktrace analysts via the Ask the Expert (ATE) service to add the subnets in question to Darktrace’s visibility, allowing it to monitor for any further unusual behavior.

Once visibility over the compromised SCCM server was established, Darktrace observed a series of unusual network scanning activities and the use of Kali (a Linux distribution designed for digital forensics and penetration testing). Furthermore, the server was observed making connections to multiple rare external hosts, many using the “[.]ru” Top Level Domain (TLD). One of the external destinations the server was attempting to connect was found to be related to SystemBC, a malware that turns infected hosts into SOCKS5 proxy bots and provides command-and-control (C2) functionality.

Additionally, the server was observed making external connections over ports 993 and 143 (typically associated with the use of the Interactive Message Access Protocol (IMAP) to multiple rare external endpoints. This was likely due to the presence of Tofsee malware on the device.

After the compromise had been contained, Darktrace identified several ransom notes following the naming convention “README-RECOVER-<extension/company_id>.txt”” on the network. This naming convention, as well as the similar “<company_id>-RECOVER-README.txt” have been referenced by open-source intelligence (OSINT) providers as associated with Qilin ransom notes[5] [6] [7].

April 2023

The next case of Qilin ransomware observed by Darktrace took place in April 2023 on the network of a customer in the manufacturing sector in APAC. Unfortunately for the customer in this instance, Darktrace RESPOND™ was not active on their environment and no autonomous response actions were taken to contain the compromise.

Over the course of two days, Darktrace identified a wide range of malicious activity ranging from extensive initial scanning and lateral movement attempts to the writing of ransom notes that followed the aforementioned naming convention (i.e., “README-RECOVER-<extension/company_id>.txt”).

Darktrace observed two affected devices attempting to move laterally through the SMB, DCE-RPC and RDP network protocols. Default credentials (e.g., UserName, admin, administrator) were also observed in the large volumes of SMB sessions initiated by these devices. One of the target devices of these SMB connections was a domain controller, which was subsequently seen making suspicious WMI requests to multiple devices over DCE-RPC and enumerating SMB shares by binding to the ‘server service’ (srvsvc) named pipe to a high number of internal devices within a short time frame. The domain controller was further detected establishing an anomalously high number of connections to several internal devices, notably using the RDP administrative protocol via a default admin cookie.  

Repeated connections over the HTTP and SSL protocol to multiple newly observed IPs located in the 184.168.123.0/24 range were observed, indicating C2 connectivity.  WebDAV user agent and a JA3 fingerprint potentially associated with Cobalt Strike were notably observed in these connections. A few hours later, Darktrace detected additional suspicious external connections, this time to IPs associated with the MEGA cloud storage solution. Storage solutions such as MEGA are often abused by attackers to host stolen data post exfiltration. In this case, the endpoints were all rare for the network, suggesting this solution was not commonly used by legitimate users. Around 30 GB of data was exfiltrated over the SSL protocol.

Darktrace did not observe any encryption-related activity on this customer’s network, suggesting that encryption may have taken place locally or within network segments not monitored by Darktrace.

May 2024

The most recent instance of Qilin observed by Darktrace took place in May 2024 and involved a customer in the US. In this case, Darktrace initially detected affected devices using unusual administrative and default credentials, before additional internal systems were observed making extensive suspicious DCE-RPC requests to a range of internal locations, performing network scanning, making unusual internal RDP connections, and transferring suspicious executable files like 'a157496.exe' and '83b87b2.exe'.  SMB writes of the file "LSM_API_service" were also observed, activity which was considered 100% unusual by Darktrace; this is an RPC service that can be abused to enumerate logged-in users and steal their tokens. Various repeated connections likely representative of C2 communications were detected via both HTTP and SSL to rare external endpoints linked in OSINT to Cobalt Strike use. During these connections, HTTP GET requests for the following URIs were observed:

/asdffHTTPS

/asdfgdf

/asdfgHTTP

/download/sihost64.dll

Notably, this included a GET request a DLL file named "sihost64.dll" from a domain controller using PowerShell.  

Over 102 GB of data may have been transferred to another previously unseen endpoint, 194.165.16[.]13, via the unencrypted File Transfer Protocol (FTP). Additionally, many non-FTP connections to the endpoint could be observed, over which more than 783 GB of data was exfiltrated. Regarding file encryption activity, a wide range of destination devices and shares were targeted.

Figure 2: Advanced Search graph displaying the total volume of data transferred over FTP to a malicious IP.

During investigations, Darktrace’s Threat Research team identified an additional customer, also based in the United States, where similar data exfiltration activity was observed in April 2024. Although no indications of ransomware encryption were detected on the network, multiple similarities were observed with the case discussed just prior. Notably, the same exfiltration IP and protocol (194.165.16[.]13 and FTP, respectively) were identified in both cases. Additional HTTP connectivity was further observed to another IP using a self-signed certificate (i.e., CN=ne[.]com,OU=key operations,O=1000,L=,ST=,C=KM) located within the same ASN (i.e., AS48721 Flyservers S.A.). Some of the URIs seen in the GET requests made to this endpoint were the same as identified in that same previous case.

Information regarding another device also making repeated connections to the same IP was described in the second event of the same Cyber AI Analyst incident. Following this C2 connectivity, network scanning was observed from a compromised domain controller, followed by additional reconnaissance and lateral movement over the DCE-RPC and SMB protocols. Darktrace again observed SMB writes of the file "LSM_API_service", as in the previous case, activity which was also considered 100% unusual for the network. These similarities suggest the same actor or affiliate may have been responsible for activity observed, even though no encryption was observed in the latter case.

Figure 3: First event of the Cyber AI Analyst investigation following the compromise activity.

According to researchers at Microsoft, some of the IoCs observed on both affected accounts are associated with Pistachio Tempest, a threat actor reportedly associated with ransomware distribution. The Microsoft threat actor naming convention uses the term "tempest" to reference criminal organizations with motivations of financial gain that are not associated with high confidence to a known non-nation state or commercial entity. While Pistachio Tempest’s TTPs have changed over time, their key elements still involve ransomware, exfiltration, and extortion. Once they've gained access to an environment, Pistachio Tempest typically utilizes additional tools to complement their use of Cobalt Strike; this includes the use of the SystemBC RAT and the SliverC2 framework, respectively. It has also been reported that Pistacho Tempest has experimented with various RaaS offerings, which recently included Qilin ransomware[4].

Conclusion

Qilin is a RaaS group that has gained notoriety recently due to high-profile attacks perpetrated by its affiliates. Despite this, the group likely includes affiliates and actors who were previously associated with other ransomware groups. These individuals bring their own modus operandi and utilize both known and novel TTPs and IoCs that differ from one attack to another.

Darktrace’s anomaly-based technology is inherently threat-agnostic, treating all RaaS variants equally regardless of the attackers’ tools and infrastructure. Deviations from a device’s ‘learned’ pattern of behavior during an attack enable Darktrace to detect and contain potentially disruptive ransomware attacks.

Credit to: Alexandra Sentenac, Emma Foulger, Justin Torres, Min Kim, Signe Zaharka for their contributions.

References

[1] https://www.sentinelone.com/anthology/agenda-qilin/  

[2] https://www.group-ib.com/blog/qilin-ransomware/

[3] https://www.trendmicro.com/en_us/research/22/h/new-golang-ransomware-agenda-customizes-attacks.html

[4] https://www.microsoft.com/en-us/security/security-insider/pistachio-tempest

[5] https://www.trendmicro.com/en_us/research/22/h/new-golang-ransomware-agenda-customizes-attacks.html

[6] https://www.bleepingcomputer.com/forums/t/790240/agenda-qilin-ransomware-id-random-10-char;-recover-readmetxt-support/

[7] https://github.com/threatlabz/ransomware_notes/tree/main/qilin

Darktrace Model Detections

Internal Reconnaissance

Device / Suspicious SMB Scanning Activity

Device / Network Scan

Device / RDP Scan

Device / ICMP Address Scan

Device / Suspicious Network Scan Activity

Anomalous Connection / SMB Enumeration

Device / New or Uncommon WMI Activity

Device / Attack and Recon Tools

Lateral Movement

Device / SMB Session Brute Force (Admin)

Device / Large Number of Model Breaches from Critical Network Device

Device / Multiple Lateral Movement Model Breaches

Anomalous Connection / Unusual Admin RDP Session

Device / SMB Lateral Movement

Compliance / SMB Drive Write

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / Anomalous DRSGetNCChanges Operation

Anomalous Server Activity / Domain Controller Initiated to Client

User / New Admin Credentials on Client

C2 Communication

Anomalous Server Activity / Outgoing from Server

Anomalous Connection / Multiple Connections to New External TCP Port

Anomalous Connection / Anomalous SSL without SNI to New External

Anomalous Connection / Rare External SSL Self-Signed

Device / Increased External Connectivity

Unusual Activity / Unusual External Activity

Compromise / New or Repeated to Unusual SSL Port

Anomalous Connection / Multiple Failed Connections to Rare Endpoint

Device / Suspicious Domain

Device / Increased External Connectivity

Compromise / Sustained SSL or HTTP Increase

Compromise / Botnet C2 Behaviour

Anomalous Connection / POST to PHP on New External Host

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous File / EXE from Rare External Location

Exfiltration

Unusual Activity / Enhanced Unusual External Data Transfer

Anomalous Connection / Data Sent to Rare Domain

Unusual Activity / Unusual External Data Transfer

Anomalous Connection / Uncommon 1 GiB Outbound

Unusual Activity / Unusual External Data to New Endpoint

Compliance / FTP / Unusual Outbound FTP

File Encryption

Compromise / Ransomware / Suspicious SMB Activity

Anomalous Connection / Sustained MIME Type Conversion

Anomalous File / Internal / Additional Extension Appended to SMB File

Compromise / Ransomware / Possible Ransom Note Write

Compromise / Ransomware / Possible Ransom Note Read

Anomalous Connection / Suspicious Read Write Ratio

IoC List

IoC – Type – Description + Confidence

93.115.25[.]139 IP C2 Server, likely associated with SystemBC

194.165.16[.]13 IP Probable Exfiltration Server

91.238.181[.]230 IP C2 Server, likely associated with Cobalt Strike

ikea0[.]com Hostname C2 Server, likely associated with Cobalt Strike

lebondogicoin[.]com Hostname C2 Server, likely associated with Cobalt Strike

184.168.123[.]220 IP Possible C2 Infrastructure

184.168.123[.]219 IP Possible C2 Infrastructure

184.168.123[.]236 IP Possible C2 Infrastructure

184.168.123[.]241 IP Possible C2 Infrastructure

184.168.123[.]247 IP Possible C2 Infrastructure

184.168.123[.]251 IP Possible C2 Infrastructure

184.168.123[.]252 IP Possible C2 Infrastructure

184.168.123[.]229 IP Possible C2 Infrastructure

184.168.123[.]246 IP Possible C2 Infrastructure

184.168.123[.]230 IP Possible C2 Infrastructure

gfs440n010.userstorage.me ga.co[.]nz Hostname Possible Exfiltration Server. Not inherently malicious; associated with MEGA file storage.

gfs440n010.userstorage.me ga.co[.]nz Hostname Possible Exfiltration Server. Not inherently malicious; associated with MEGA file storage.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst

More in this series

No items found.

Blog

/

/

July 1, 2025

Pre-CVE Threat Detection: 8 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Can you detect cyber threats before the world knows about them?

Every year, tens of thousands of Common Vulnerabilities and Exposures (CVEs) are disclosed, over 40,000 in 2024 alone [1], and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST).

However, cybercriminals don't wait for disclosure. They exploit zero-days while defenders remain in the dark.

Traditional, signature-based tools struggle to detect these early-stage threats. That’s why anomaly detection is becoming essential for organizations seeking pre-CVE detection.

Understanding the gap between zero-day attacks and public CVE disclosure

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

The gap between exploitation of a zero-day and the disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

However, abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems.

Detecting threats without relying on CVE disclosure

Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are eight examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

The attack vs. patch race

In many cases, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender.

Skilled nation-state actors

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security.

After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Examples of exploitation

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

You spotted the anomaly but did you stop the breach?

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Realted Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author

Blog

/

Network

/

June 27, 2025

Patch and Persist: Darktrace’s Detection of Blind Eagle (APT-C-36)

Default blog imageDefault blog image

What is Blind Eagle?

Since 2018, APT-C-36, also known as Blind Eagle, has been observed performing cyber-attacks targeting various sectors across multiple countries in Latin America, with a particular focus on Colombian organizations.

Blind Eagle characteristically targets government institutions, financial organizations, and critical infrastructure [1][2].

Attacks carried out by Blind Eagle actors typically start with a phishing email and the group have been observed utilizing various Remote Access Trojans (RAT) variants, which often have in-built methods for hiding command-and-control (C2) traffic from detection [3].

What we know about Blind Eagle from a recent campaign

Since November 2024, Blind Eagle actors have been conducting an ongoing campaign targeting Colombian organizations [1].

In this campaign, threat actors have been observed using phishing emails to deliver malicious URL links to targeted recipients, similar to the way threat actors have previously been observed exploiting CVE-2024-43451, a vulnerability in Microsoft Windows that allows the disclosure of a user’s NTLMv2 password hash upon minimal interaction with a malicious file [4].

Despite Microsoft patching this vulnerability in November 2024 [1][4], Blind Eagle actors have continued to exploit the minimal interaction mechanism, though no longer with the intent of harvesting NTLMv2 password hashes. Instead, phishing emails are sent to targets containing a malicious URL which, when clicked, initiates the download of a malicious file. This file is then triggered by minimal user interaction.

Clicking on the file triggers a WebDAV request, with a connection being made over HTTP port 80 using the user agent ‘Microsoft-WebDAV-MiniRedir/10.0.19044’. WebDAV is a transmission protocol which allows files or complete directories to be made available through the internet, and to be transmitted to devices [5]. The next stage payload is then downloaded via another WebDAV request and malware is executed on the target device.

Attackers are notified when a recipient downloads the malicious files they send, providing an insight into potential targets [1].

Darktrace’s coverage of Blind Eagle

In late February 2025, Darktrace observed activity assessed with medium confidence to be  associated with Blind Eagle on the network of a customer in Colombia.

Within a period of just five hours, Darktrace / NETWORK detected a device being redirected through a rare external location, downloading multiple executable files, and ultimately exfiltrating data from the customer’s environment.

Since the customer did not have Darktrace’s Autonomous Response capability enabled on their network, no actions were taken to contain the compromise, allowing it to escalate until the customer’s security team responded to the alerts provided by Darktrace.

Darktrace observed a device on the customer’s network being directed over HTTP to a rare external IP, namely 62[.]60[.]226[.]112, which had never previously been seen in this customer’s environment and was geolocated in Germany. Multiple open-source intelligence (OSINT) providers have since linked this endpoint with phishing and malware campaigns [9].

The device then proceeded to download the executable file hxxp://62[.]60[.]226[.]112/file/3601_2042.exe.

Darktrace’s detection of the affected device connecting to an unusual location based in Germany.
Figure 1: Darktrace’s detection of the affected device connecting to an unusual location based in Germany.
Darktrace’s detection of the affected device downloading an executable file from the suspicious endpoint.
Figure 2: Darktrace’s detection of the affected device downloading an executable file from the suspicious endpoint.

The device was then observed making unusual connections to the rare endpoint 21ene.ip-ddns[.]com and performing unusual external data activity.

This dynamic DNS endpoint allows a device to access an endpoint using a domain name in place of a changing IP address. Dynamic DNS services ensure the DNS record of a domain name is automatically updated when the IP address changes. As such, malicious actors can use these services and endpoints to dynamically establish connections to C2 infrastructure [6].

Further investigation into this dynamic endpoint using OSINT revealed multiple associations with previous likely Blind Eagle compromises, as well as Remcos malware, a RAT commonly deployed via phishing campaigns [7][8][10].

Darktrace’s detection of the affected device connecting to the suspicious dynamic DNS endpoint, 21ene.ip-ddns[.]com.
Figure 3: Darktrace’s detection of the affected device connecting to the suspicious dynamic DNS endpoint, 21ene.ip-ddns[.]com.

Shortly after this, Darktrace observed the user agent ‘Microsoft-WebDAV-MiniRedir/10.0.19045’, indicating usage of the aforementioned transmission protocol WebDAV. The device was subsequently observed connected to an endpoint associated with Github and downloading data, suggesting that the device was retrieving a malicious tool or payload. The device then began to communicate to the malicious endpoint diciembrenotasenclub[.]longmusic[.]com over the new TCP port 1512 [11].

Around this time, the device was also observed uploading data to the endpoints 21ene.ip-ddns[.]com and diciembrenotasenclub[.]longmusic[.]com, with transfers of 60 MiB and 5.6 MiB observed respectively.

Figure 4: UI graph showing external data transfer activity.

This chain of activity triggered an Enhanced Monitoring model alert in Darktrace / NETWORK. These high-priority model alerts are designed to trigger in response to higher fidelity indicators of compromise (IoCs), suggesting that a device is performing activity consistent with a compromise.

 Darktrace’s detection of initial attack chain activity.
Figure 5: Darktrace’s detection of initial attack chain activity.

A second Enhanced Monitoring model was also triggered by this device following the download of the aforementioned executable file (hxxp://62[.]60[.]226[.]112/file/3601_2042.exe) and the observed increase in C2 activity.

Following this activity, Darktrace continued to observe the device beaconing to the 21ene.ip-ddns[.]com endpoint.

Darktrace’s Cyber AI Analyst was able to correlate each of the individual detections involved in this compromise, identifying them as part of a broader incident that encompassed C2 connectivity, suspicious downloads, and external data transfers.

Cyber AI Analyst’s investigation into the activity observed on the affected device.
Figure 6: Cyber AI Analyst’s investigation into the activity observed on the affected device.
Figure 7: Cyber AI Analyst’s detection of the affected device’s broader connectivity throughout the course of the attack.

As the affected customer did not have Darktrace’s Autonomous Response configured at the time, the attack was able to progress unabated. Had Darktrace been properly enabled, it would have been able to take a number of actions to halt the escalation of the attack.

For example, the unusual beaconing connections and the download of an unexpected file from an uncommon location would have been shut down by blocking the device from making external connections to the relevant destinations.

Conclusion

The persistence of Blind Eagle and ability to adapt its tactics, even after patches were released, and the speed at which the group were able to continue using pre-established TTPs highlights that timely vulnerability management and patch application, while essential, is not a standalone defense.

Organizations must adopt security solutions that use anomaly-based detection to identify emerging and adapting threats by recognizing deviations in user or device behavior that may indicate malicious activity. Complementing this with an autonomous decision maker that can identify, connect, and contain compromise-like activity is crucial for safeguarding organizational networks against constantly evolving and sophisticated threat actors.

Credit to Charlotte Thompson (Senior Cyber Analyst), Eugene Chua (Principal Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

IoCs

IoC – Type - Confidence
Microsoft-WebDAV-MiniRedir/10.0.19045 – User Agent

62[.]60[.]226[.]112 – IP – Medium Confidence

hxxp://62[.]60[.]226[.]112/file/3601_2042.exe – Payload Download – Medium Confidence

21ene.ip-ddns[.]com – Dynamic DNS Endpoint – Medium Confidence

diciembrenotasenclub[.]longmusic[.]com  - Hostname – Medium Confidence

Darktrace’s model alert coverage

Anomalous File / Suspicious HTTP Redirect
Anomalous File / EXE from Rare External Location
Anomalous File / Multiple EXE from Rare External Location
Anomalous Server Activity / Outgoing from Server
Unusual Activity / Unusual External Data to New Endpoint
Device / Anomalous Github Download
Anomalous Connection / Multiple Connections to New External TCP Port
Device / Initial Attack Chain Activity
Anomalous Server Activity / Rare External from Server
Compromise / Suspicious File and C2
Compromise / Fast Beaconing to DGA
Compromise / Large Number of Suspicious Failed Connections
Device / Large Number of Model Alert

Mitre Attack Mapping:

Tactic – Technique – Technique Name

Initial Access - T1189 – Drive-by Compromise
Initial Access - T1190 – Exploit Public-Facing Application
Initial Access ICS - T0862 – Supply Chain Compromise
Initial Access ICS - T0865 – Spearphishing Attachment
Initial Access ICS - T0817 - Drive-by Compromise
Resource Development - T1588.001 – Malware
Lateral Movement ICS - T0843 – Program Download
Command and Control - T1105 - Ingress Tool Transfer
Command and Control - T1095 – Non-Application Layer Protocol
Command and Control - T1571 – Non-Standard Port
Command and Control - T1568.002 – Domain Generation Algorithms
Command and Control ICS - T0869 – Standard Application Layer Protocol
Evasion ICS - T0849 – Masquerading
Exfiltration - T1041 – Exfiltration Over C2 Channel
Exfiltration - T1567.002 – Exfiltration to Cloud Storage

References

1)    https://research.checkpoint.com/2025/blind-eagle-and-justice-for-all/

2)    https://assets.kpmg.com/content/dam/kpmgsites/in/pdf/2025/04/kpmg-ctip-blind-eagle-01-apr-2025.pdf.coredownload.inline.pdf

3)    https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-remote-access-trojan/#:~:text=They%20might%20be%20attached%20to,remote%20access%20or%20system%20administration

4)    https://msrc.microsoft.com/update-guide/vulnerability/CVE-2024-43451

5)    https://www.ionos.co.uk/digitalguide/server/know-how/webdav/

6)    https://vercara.digicert.com/resources/dynamic-dns-resolution-as-an-obfuscation-technique

7)    https://threatfox.abuse.ch/ioc/1437795

8)    https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-malware/remcos-malware/

9)    https://www.virustotal.com/gui/url/b3189db6ddc578005cb6986f86e9680e7f71fe69f87f9498fa77ed7b1285e268

10) https://www.virustotal.com/gui/domain/21ene.ip-ddns.com

11) https://www.virustotal.com/gui/domain/diciembrenotasenclub.longmusic.com/community

Continue reading
About the author
Charlotte Thompson
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI