Blog
/
Network
/
July 4, 2024

Qilin Ransomware: Detection and Analysis

Get insights into the detection of Qilin ransomware operations and how organizations can protect themselves from this threat.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Jul 2024

Qilin ransomware has recently dominated discussions across the cyber security landscape following its deployment in an attack on Synnovis, a UK-based medical laboratory company. The ransomware attack ultimately affected patient services at multiple National Health Service (NHS) hospitals that rely on Synnovis diagnostic and pathology services. Qilin’s origins, however, date back further to October 2022 when the group was observed seemingly posting leaked data from its first known victim on its Dedicated Leak Site (DLS) under the name Agenda[1].

The Darktrace Threat Research team investigated network artifacts related to Qilin and identified three probable cases of the ransomware across the Darktrace customer base between June 2022 and May 2024.

Qilin Ransomware-as-a-Service Operator

Qilin operates as a Ransomware-as-a-Service (RaaS) that employs double extortion tactics, whereby harvested data is exfiltrated and threatened of publication on the group's DLS, which is hosted on Tor. Qilin ransomware has samples written in both the Golang and Rust programming languages, making it compilable with various operating systems, and is highly customizable. When building Qilin ransomware variants to be used on their target(s), affiliates can configure settings such as the encryption mode (i.e., skip-step, percent, and speed), the file extension being appended, files, extensions and directories to be skipped during the encryption, and the processes and services to be terminated, among others[1] [2].  

Trend Micro analysts, who were the first to discover Qilin samples in August 2022, when the name "Agenda" was still used in ransom notes, found that each analyzed sample was customized for the intended victims and that "unique company IDs were used as extensions of encrypted files" [3]. This information is configurable from within the Qilin's affiliate panel's 'Targets' section, shown below. The panel's background image features the eponym Chinese legendary chimerical creature Qilin (pronounced “Ke Lin”). Despite this Chinese mythology reference, Russian language was observed being used by a Qilin operator in an underground forum post aimed at hiring affiliates and advertising their RaaS operation[2].

Figure 1: Qilin ransomware’s affiliate panel.

Qilin's RaaS program purportedly has an attractive affiliates' payment structure, with affiliates allegedly able to earn 80% of ransom payments of USD 3m or less and 85% for payments above that figure[2], making it a possibly appealing option in the RaaS ecosystem.  Publication of stolen data and ransom payment negotiations are purportedly handled by Qilin operators. Qilin affiliates have been known to target companies located around the world and within a variety of industries, including critical sectors such as healthcare and energy.

As Qilin is a RaaS operation, the choice of targets does not necessarily reflect Qilin operators' intentions, but rather that of its affiliates.  Similarly, the tactics, techniques, procedures (TTPs) and indicators of compromise (IoC) identified by Darktrace are associated with the given affiliate deploying Qilin ransomware for their own purpose, rather than TTPs and IoCs of the Qilin group. Likewise, initial vectors of infection may vary from affiliate to affiliate. Previous studies show that initial access to networks were gained via spear phishing emails or by leveraging exposed applications and interfaces.

Differences have been observed in terms of data exfiltration and potential C2 external endpoints, suggesting the below investigations are not all related to the same group or actor(s).

Darktrace’s Threat Research Investigation

June 2022

Darktrace first detected an instance of Qilin ransomware back in June 2022, when an attacker was observed successfully accessing a customer’s Virtual Private Network (VPN) and compromising an administrative account, before using RDP to gain access to the customer’s Microsoft System Center Configuration Manager (SCCM) server

From there, an attack against the customer's VMware ESXi hosts was launched. Fortunately, a reboot of their virtual machines (VM) caught the attention of the security team who further uncovered that custom profiles had been created and remote scripts executed to change root passwords on their VM hosts. Three accounts were found to have been compromised and three systems encrypted by ransomware.  

Unfortunately, Darktrace was not configured to monitor the affected subnets at the time of the attack. Despite this, the customer was able to work directly with Darktrace analysts via the Ask the Expert (ATE) service to add the subnets in question to Darktrace’s visibility, allowing it to monitor for any further unusual behavior.

Once visibility over the compromised SCCM server was established, Darktrace observed a series of unusual network scanning activities and the use of Kali (a Linux distribution designed for digital forensics and penetration testing). Furthermore, the server was observed making connections to multiple rare external hosts, many using the “[.]ru” Top Level Domain (TLD). One of the external destinations the server was attempting to connect was found to be related to SystemBC, a malware that turns infected hosts into SOCKS5 proxy bots and provides command-and-control (C2) functionality.

Additionally, the server was observed making external connections over ports 993 and 143 (typically associated with the use of the Interactive Message Access Protocol (IMAP) to multiple rare external endpoints. This was likely due to the presence of Tofsee malware on the device.

After the compromise had been contained, Darktrace identified several ransom notes following the naming convention “README-RECOVER-<extension/company_id>.txt”” on the network. This naming convention, as well as the similar “<company_id>-RECOVER-README.txt” have been referenced by open-source intelligence (OSINT) providers as associated with Qilin ransom notes[5] [6] [7].

April 2023

The next case of Qilin ransomware observed by Darktrace took place in April 2023 on the network of a customer in the manufacturing sector in APAC. Unfortunately for the customer in this instance, Darktrace's Autonomous Response was not active on their environment and no autonomous actions were taken to contain the compromise.

Over the course of two days, Darktrace identified a wide range of malicious activity ranging from extensive initial scanning and lateral movement attempts to the writing of ransom notes that followed the aforementioned naming convention (i.e., “README-RECOVER-<extension/company_id>.txt”).

Darktrace observed two affected devices attempting to move laterally through the SMB, DCE-RPC and RDP network protocols. Default credentials (e.g., UserName, admin, administrator) were also observed in the large volumes of SMB sessions initiated by these devices. One of the target devices of these SMB connections was a domain controller, which was subsequently seen making suspicious WMI requests to multiple devices over DCE-RPC and enumerating SMB shares by binding to the ‘server service’ (srvsvc) named pipe to a high number of internal devices within a short time frame. The domain controller was further detected establishing an anomalously high number of connections to several internal devices, notably using the RDP administrative protocol via a default admin cookie.  

Repeated connections over the HTTP and SSL protocol to multiple newly observed IPs located in the 184.168.123.0/24 range were observed, indicating C2 connectivity.  WebDAV user agent and a JA3 fingerprint potentially associated with Cobalt Strike were notably observed in these connections. A few hours later, Darktrace detected additional suspicious external connections, this time to IPs associated with the MEGA cloud storage solution. Storage solutions such as MEGA are often abused by attackers to host stolen data post exfiltration. In this case, the endpoints were all rare for the network, suggesting this solution was not commonly used by legitimate users. Around 30 GB of data was exfiltrated over the SSL protocol.

Darktrace did not observe any encryption-related activity on this customer’s network, suggesting that encryption may have taken place locally or within network segments not monitored by Darktrace.

May 2024

The most recent instance of Qilin observed by Darktrace took place in May 2024 and involved a customer in the US. In this case, Darktrace initially detected affected devices using unusual administrative and default credentials, before additional internal systems were observed making extensive suspicious DCE-RPC requests to a range of internal locations, performing network scanning, making unusual internal RDP connections, and transferring suspicious executable files like 'a157496.exe' and '83b87b2.exe'.  SMB writes of the file "LSM_API_service" were also observed, activity which was considered 100% unusual by Darktrace; this is an RPC service that can be abused to enumerate logged-in users and steal their tokens. Various repeated connections likely representative of C2 communications were detected via both HTTP and SSL to rare external endpoints linked in OSINT to Cobalt Strike use. During these connections, HTTP GET requests for the following URIs were observed:

/asdffHTTPS

/asdfgdf

/asdfgHTTP

/download/sihost64.dll

Notably, this included a GET request a DLL file named "sihost64.dll" from a domain controller using PowerShell.  

Over 102 GB of data may have been transferred to another previously unseen endpoint, 194.165.16[.]13, via the unencrypted File Transfer Protocol (FTP). Additionally, many non-FTP connections to the endpoint could be observed, over which more than 783 GB of data was exfiltrated. Regarding file encryption activity, a wide range of destination devices and shares were targeted.

Figure 2: Advanced Search graph displaying the total volume of data transferred over FTP to a malicious IP.

During investigations, Darktrace’s Threat Research team identified an additional customer, also based in the United States, where similar data exfiltration activity was observed in April 2024. Although no indications of ransomware encryption were detected on the network, multiple similarities were observed with the case discussed just prior. Notably, the same exfiltration IP and protocol (194.165.16[.]13 and FTP, respectively) were identified in both cases. Additional HTTP connectivity was further observed to another IP using a self-signed certificate (i.e., CN=ne[.]com,OU=key operations,O=1000,L=,ST=,C=KM) located within the same ASN (i.e., AS48721 Flyservers S.A.). Some of the URIs seen in the GET requests made to this endpoint were the same as identified in that same previous case.

Information regarding another device also making repeated connections to the same IP was described in the second event of the same Cyber AI Analyst incident. Following this C2 connectivity, network scanning was observed from a compromised domain controller, followed by additional reconnaissance and lateral movement over the DCE-RPC and SMB protocols. Darktrace again observed SMB writes of the file "LSM_API_service", as in the previous case, activity which was also considered 100% unusual for the network. These similarities suggest the same actor or affiliate may have been responsible for activity observed, even though no encryption was observed in the latter case.

Figure 3: First event of the Cyber AI Analyst investigation following the compromise activity.

According to researchers at Microsoft, some of the IoCs observed on both affected accounts are associated with Pistachio Tempest, a threat actor reportedly associated with ransomware distribution. The Microsoft threat actor naming convention uses the term "tempest" to reference criminal organizations with motivations of financial gain that are not associated with high confidence to a known non-nation state or commercial entity. While Pistachio Tempest’s TTPs have changed over time, their key elements still involve ransomware, exfiltration, and extortion. Once they've gained access to an environment, Pistachio Tempest typically utilizes additional tools to complement their use of Cobalt Strike; this includes the use of the SystemBC RAT and the SliverC2 framework, respectively. It has also been reported that Pistacho Tempest has experimented with various RaaS offerings, which recently included Qilin ransomware[4].

Conclusion

Qilin is a RaaS group that has gained notoriety recently due to high-profile attacks perpetrated by its affiliates. Despite this, the group likely includes affiliates and actors who were previously associated with other ransomware groups. These individuals bring their own modus operandi and utilize both known and novel TTPs and IoCs that differ from one attack to another.

Darktrace’s anomaly-based technology is inherently threat-agnostic, treating all RaaS variants equally regardless of the attackers’ tools and infrastructure. Deviations from a device’s ‘learned’ pattern of behavior during an attack enable Darktrace to detect and contain potentially disruptive ransomware attacks.

Credit to: Alexandra Sentenac, Emma Foulger, Justin Torres, Min Kim, Signe Zaharka for their contributions.

References

[1] https://www.sentinelone.com/anthology/agenda-qilin/  

[2] https://www.group-ib.com/blog/qilin-ransomware/

[3] https://www.trendmicro.com/en_us/research/22/h/new-golang-ransomware-agenda-customizes-attacks.html

[4] https://www.microsoft.com/en-us/security/security-insider/pistachio-tempest

[5] https://www.trendmicro.com/en_us/research/22/h/new-golang-ransomware-agenda-customizes-attacks.html

[6] https://www.bleepingcomputer.com/forums/t/790240/agenda-qilin-ransomware-id-random-10-char;-recover-readmetxt-support/

[7] https://github.com/threatlabz/ransomware_notes/tree/main/qilin

Darktrace Model Detections

Internal Reconnaissance

Device / Suspicious SMB Scanning Activity

Device / Network Scan

Device / RDP Scan

Device / ICMP Address Scan

Device / Suspicious Network Scan Activity

Anomalous Connection / SMB Enumeration

Device / New or Uncommon WMI Activity

Device / Attack and Recon Tools

Lateral Movement

Device / SMB Session Brute Force (Admin)

Device / Large Number of Model Breaches from Critical Network Device

Device / Multiple Lateral Movement Model Breaches

Anomalous Connection / Unusual Admin RDP Session

Device / SMB Lateral Movement

Compliance / SMB Drive Write

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / Anomalous DRSGetNCChanges Operation

Anomalous Server Activity / Domain Controller Initiated to Client

User / New Admin Credentials on Client

C2 Communication

Anomalous Server Activity / Outgoing from Server

Anomalous Connection / Multiple Connections to New External TCP Port

Anomalous Connection / Anomalous SSL without SNI to New External

Anomalous Connection / Rare External SSL Self-Signed

Device / Increased External Connectivity

Unusual Activity / Unusual External Activity

Compromise / New or Repeated to Unusual SSL Port

Anomalous Connection / Multiple Failed Connections to Rare Endpoint

Device / Suspicious Domain

Device / Increased External Connectivity

Compromise / Sustained SSL or HTTP Increase

Compromise / Botnet C2 Behaviour

Anomalous Connection / POST to PHP on New External Host

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous File / EXE from Rare External Location

Exfiltration

Unusual Activity / Enhanced Unusual External Data Transfer

Anomalous Connection / Data Sent to Rare Domain

Unusual Activity / Unusual External Data Transfer

Anomalous Connection / Uncommon 1 GiB Outbound

Unusual Activity / Unusual External Data to New Endpoint

Compliance / FTP / Unusual Outbound FTP

File Encryption

Compromise / Ransomware / Suspicious SMB Activity

Anomalous Connection / Sustained MIME Type Conversion

Anomalous File / Internal / Additional Extension Appended to SMB File

Compromise / Ransomware / Possible Ransom Note Write

Compromise / Ransomware / Possible Ransom Note Read

Anomalous Connection / Suspicious Read Write Ratio

IoC List

IoC – Type – Description + Confidence

93.115.25[.]139 IP C2 Server, likely associated with SystemBC

194.165.16[.]13 IP Probable Exfiltration Server

91.238.181[.]230 IP C2 Server, likely associated with Cobalt Strike

ikea0[.]com Hostname C2 Server, likely associated with Cobalt Strike

lebondogicoin[.]com Hostname C2 Server, likely associated with Cobalt Strike

184.168.123[.]220 IP Possible C2 Infrastructure

184.168.123[.]219 IP Possible C2 Infrastructure

184.168.123[.]236 IP Possible C2 Infrastructure

184.168.123[.]241 IP Possible C2 Infrastructure

184.168.123[.]247 IP Possible C2 Infrastructure

184.168.123[.]251 IP Possible C2 Infrastructure

184.168.123[.]252 IP Possible C2 Infrastructure

184.168.123[.]229 IP Possible C2 Infrastructure

184.168.123[.]246 IP Possible C2 Infrastructure

184.168.123[.]230 IP Possible C2 Infrastructure

gfs440n010.userstorage.me ga.co[.]nz Hostname Possible Exfiltration Server. Not inherently malicious; associated with MEGA file storage.

gfs440n010.userstorage.me ga.co[.]nz Hostname Possible Exfiltration Server. Not inherently malicious; associated with MEGA file storage.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

May 16, 2025

Catching a RAT: How Darktrace neutralized AsyncRAT

woman working on laptopDefault blog imageDefault blog image

What is a RAT?

As the proliferation of new and more advanced cyber threats continues, the Remote Access Trojan (RAT) remains a classic tool in a threat actor's arsenal. RATs, whether standardized or custom-built, enable attackers to remotely control compromised devices, facilitating a range of malicious activities.

What is AsyncRAT?

Since its first appearance in 2019, AsyncRAT has become increasingly popular among a wide range of threat actors, including cybercriminals and advanced persistent threat (APT) groups.

Originally available on GitHub as a legitimate tool, its open-source nature has led to widespread exploitation. AsyncRAT has been used in numerous campaigns, including prolonged attacks on essential US infrastructure, and has even reportedly penetrated the Chinese cybercriminal underground market [1] [2].

How does AsyncRAT work?

Original source code analysis of AsyncRAT demonstrates that once installed, it establishes persistence via techniques such as creating scheduled tasks or registry keys and uses SeDebugPrivilege to gain elevated privileges [3].

Its key features include:

  • Keylogging
  • File search
  • Remote audio and camera access
  • Exfiltration techniques
  • Staging for final payload delivery

These are generally typical functions found in traditional RATs. However, it also boasts interesting anti-detection capabilities. Due to the popularity of Virtual Machines (VM) and sandboxes for dynamic analysis, this RAT checks for the manufacturer via the WMI query 'Select * from Win32_ComputerSystem' and looks for strings containing 'VMware' and 'VirtualBox' [4].

Darktrace’s coverage of AsyncRAT

In late 2024 and early 2025, Darktrace observed a spike in AsyncRAT activity across various customer environments. Multiple indicators of post-compromise were detected, including devices attempting or successfully connecting to endpoints associated with AsyncRAT.

On several occasions, Darktrace identified a clear association with AsyncRAT through the digital certificates of the highlighted SSL endpoints. Darktrace’s Real-time Detection effectively identified and alerted on suspicious activities related to AsyncRAT. In one notable incident, Darktrace’s Autonomous Response promptly took action to contain the emerging threat posed by AsyncRAT.

AsyncRAT attack overview

On December 20, 2024, Darktrace first identified the use of AsyncRAT, noting a device successfully establishing SSL connections to the uncommon external IP 185.49.126[.]50 (AS199654 Oxide Group Limited) via port 6606. The IP address appears to be associated with AsyncRAT as flagged by open-source intelligence (OSINT) sources [5]. This activity triggered the device to alert the ‘Anomalous Connection / Rare External SSL Self-Signed' model.

Model alert in Darktrace / NETWORK showing the repeated SSL connections to a rare external Self-Signed endpoint, 185.49.126[.]50.
Figure 1: Model alert in Darktrace / NETWORK showing the repeated SSL connections to a rare external Self-Signed endpoint, 185.49.126[.]50.

Following these initial connections, the device was observed making a significantly higher number of connections to the same endpoint 185.49.126[.]50 via port 6606 over an extended period. This pattern suggested beaconing activity and triggered the 'Compromise/Beaconing Activity to External Rare' model alert.

Further analysis of the original source code, available publicly, outlines the default ports used by AsyncRAT clients for command-and-control (C2) communications [6]. It reveals that port 6606 is the default port for creating a new AsyncRAT client. Darktrace identified both the Certificate Issuer and the Certificate Subject as "CN=AsyncRAT Server". This SSL certificate encrypts the packets between the compromised system and the server. These indicators of compromise (IoCs) detected by Darktrace further suggest that the device was successfully connecting to a server associated with AsyncRAT.

Model alert in Darktrace / NETWORK displaying the Digital Certificate attributes, IP address and port number associated with AsyncRAT.
Figure 2: Model alert in Darktrace / NETWORK displaying the Digital Certificate attributes, IP address and port number associated with AsyncRAT.
Darktrace’s detection of repeated connections to the suspicious IP address 185.49.126[.]50 over port 6606, indicative of beaconing behavior.
Figure 3: Darktrace’s detection of repeated connections to the suspicious IP address 185.49.126[.]50 over port 6606, indicative of beaconing behavior.
Darktrace's Autonomous Response actions blocking the suspicious IP address,185.49.126[.]50.
Figure 4: Darktrace's Autonomous Response actions blocking the suspicious IP address,185.49.126[.]50.

A few days later, the same device was detected making numerous connections to a different IP address, 195.26.255[.]81 (AS40021 NL-811-40021), via various ports including 2106, 6606, 7707, and 8808. Notably, ports 7707 and 8808 are also default ports specified in the original AsyncRAT source code [6].

Darktrace’s detection of connections to the suspicious endpoint 195.26.255[.]81, where the default ports (6606, 7707, and 8808) for AsyncRAT were observed.
Figure 5: Darktrace’s detection of connections to the suspicious endpoint 195.26.255[.]81, where the default ports (6606, 7707, and 8808) for AsyncRAT were observed.

Similar to the activity observed with the first endpoint, 185.49.126[.]50, the Certificate Issuer for the connections to 195.26.255[.]81 was identified as "CN=AsyncRAT Server". Further OSINT investigation confirmed associations between the IP address 195.26.255[.]81 and AsyncRAT [7].

Darktrace's detection of a connection to the suspicious IP address 195.26.255[.]81 and the domain name identified under the common name (CN) of a certificate as AsyncRAT Server
Figure 6: Darktrace's detection of a connection to the suspicious IP address 195.26.255[.]81 and the domain name identified under the common name (CN) of a certificate as AsyncRAT Server.

Once again, Darktrace's Autonomous Response acted swiftly, blocking the connections to 195.26.255[.]81 throughout the observed AsyncRAT activity.

Figure 7: Darktrace's Autonomous Response actions were applied against the suspicious IP address 195.26.255[.]81.

A day later, Darktrace again alerted to further suspicious activity from the device. This time, connections to the suspicious endpoint 'kashuub[.]com' and IP address 191.96.207[.]246 via port 8041 were observed. Further analysis of port 8041 suggests it is commonly associated with ScreenConnect or Xcorpeon ASIC Carrier Ethernet Transport [8]. ScreenConnect has been observed in recent campaign’s where AsyncRAT has been utilized [9]. Additionally, one of the ASN’s observed, namely ‘ASN Oxide Group Limited’, was seen in both connections to kashuub[.]com and 185.49.126[.]50.

This could suggest a parallel between the two endpoints, indicating they might be hosting AsyncRAT C2 servers, as inferred from our previous analysis of the endpoint 185.49.126[.]50 and its association with AsyncRAT [5]. OSINT reporting suggests that the “kashuub[.]com” endpoint may be associated with ScreenConnect scam domains, further supporting the assumption that the endpoint could be a C2 server.

Darktrace’s Autonomous Response technology was once again able to support the customer here, blocking connections to “kashuub[.]com”. Ultimately, this intervention halted the compromise and prevented the attack from escalating or any sensitive data from being exfiltrated from the customer’s network into the hands of the threat actors.

Darktrace’s Autonomous Response applied a total of nine actions against the IP address 191.96.207[.]246 and the domain 'kashuub[.]com', successfully blocking the connections.
Figure 8: Darktrace’s Autonomous Response applied a total of nine actions against the IP address 191.96.207[.]246 and the domain 'kashuub[.]com', successfully blocking the connections.

Due to the popularity of this RAT, it is difficult to determine the motive behind the attack; however, from existing knowledge of what the RAT does, we can assume accessing and exfiltrating sensitive customer data may have been a factor.

Conclusion

While some cybercriminals seek stability and simplicity, openly available RATs like AsyncRAT provide the infrastructure and open the door for even the most amateur threat actors to compromise sensitive networks. As the cyber landscape continually shifts, RATs are now being used in all types of attacks.

Darktrace’s suite of AI-driven tools provides organizations with the infrastructure to achieve complete visibility and control over emerging threats within their network environment. Although AsyncRAT’s lack of concealment allowed Darktrace to quickly detect the developing threat and alert on unusual behaviors, it was ultimately Darktrace Autonomous Response's consistent blocking of suspicious connections that prevented a more disruptive attack.

Credit to Isabel Evans (Cyber Analyst), Priya Thapa (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

  • Real-time Detection Models
       
    • Compromise / Suspicious SSL Activity
    •  
    • Compromise / Beaconing Activity To      External Rare
    •  
    • Compromise / High Volume of      Connections with Beacon Score
    •  
    • Anomalous Connection / Suspicious      Self-Signed SSL
    •  
    • Compromise / Sustained SSL or HTTP      Increase
    •  
    • Compromise / SSL Beaconing to Rare      Destination
    •  
    • Compromise / Suspicious Beaconing      Behaviour
    •  
    • Compromise / Large Number of      Suspicious Failed Connections
  •  
  • Autonomous     Response Models
       
    • Antigena / Network / Significant      Anomaly / Antigena Controlled and Model Alert
    •  
    • Antigena / Network / Significant      Anomaly / Antigena Enhanced Monitoring from Client Block

List of IoCs

·     185.49.126[.]50 - IP – AsyncRAT C2 Endpoint

·     195.26.255[.]81 – IP - AsyncRAT C2 Endpoint

·      191.96.207[.]246 – IP – Likely AsyncRAT C2 Endpoint

·     CN=AsyncRAT Server - SSL certificate - AsyncRATC2 Infrastructure

·      Kashuub[.]com– Hostname – Likely AsyncRAT C2 Endpoint

MITRE ATT&CK Mapping:

Tactic –Technique – Sub-Technique  

 

Execution– T1053 - Scheduled Task/Job: Scheduled Task

DefenceEvasion – T1497 - Virtualization/Sandbox Evasion: System Checks

Discovery– T1057 – Process Discovery

Discovery– T1082 – System Information Discovery

LateralMovement - T1021.001 - Remote Services: Remote Desktop Protocol

Collection/ Credential Access – T1056 – Input Capture: Keylogging

Collection– T1125 – Video Capture

Commandand Control – T1105 - Ingress Tool Transfer

Commandand Control – T1219 - Remote Access Software

Exfiltration– T1041 - Exfiltration Over C2 Channel

 

References

[1]  https://blog.talosintelligence.com/operation-layover-how-we-tracked-attack/

[2] https://intel471.com/blog/china-cybercrime-undergrond-deepmix-tea-horse-road-great-firewall

[3] https://www.attackiq.com/2024/08/01/emulate-asyncrat/

[4] https://www.fortinet.com/blog/threat-research/spear-phishing-campaign-with-new-techniques-aimed-at-aviation-companies

[5] https://www.virustotal.com/gui/ip-address/185.49.126[.]50/community

[6] https://dfir.ch/posts/asyncrat_quasarrat/

[7] https://www.virustotal.com/gui/ip-address/195.26.255[.]81

[8] https://www.speedguide.net/port.php?port=8041

[9] https://www.esentire.com/blog/exploring-the-infection-chain-screenconnects-link-to-asyncrat-deployment

[10] https://scammer.info/t/taking-out-connectwise-sites/153479/518?page=26

Continue reading
About the author
Isabel Evans
Cyber Analyst

Blog

/

OT

/

May 13, 2025

Revolutionizing OT Risk Prioritization with Darktrace 6.3

man in hard hat on tabletDefault blog imageDefault blog image

Powering smarter protection for industrial systems

In industrial environments, security challenges are deeply operational. Whether you’re running a manufacturing line, a power grid, or a semiconductor fabrication facility (fab), you need to know: What risks can truly disrupt my operations, and what should I focus on first?

Teams need the right tools to shift from reactive defense, constantly putting out fires, to proactively thinking about their security posture. However, most OT teams are stuck using IT-centric tools that don’t speak the language of industrial systems, are consistently overwhelmed with static CVE lists, and offer no understanding of OT-specific protocols. The result? Compliance gaps, siloed insights, and risk models that don’t reflect real-world exposure, making risk prioritization seem like a luxury.

Darktrace / OT 6.3 was built in direct response to these challenges. Developed in close collaboration with OT operators and engineers, this release introduces powerful upgrades that deliver the context, visibility, and automation security teams need, without adding complexity. It’s everything OT defenders need to protect critical operations in one platform that understands the language of industrial systems.

additions to darktrace / ot 6/3

Contextual risk modeling with smarter Risk Scoring

Darktrace / OT 6.3 introduces major upgrades to OT Risk Management, helping teams move beyond generic CVE lists with AI-driven risk scoring and attack path modeling.

By factoring in real-world exploitability, asset criticality, and operational context, this release delivers a more accurate view of what truly puts critical systems at risk.

The platform now integrates:

  • CISA’s Known Exploited Vulnerabilities (KEV) database
  • End-of-life status for legacy OT devices
  • Firewall misconfiguration analysis
  • Incident response plan alignment

Most OT environments are flooded with vulnerability data that lacks context. CVE scores often misrepresent risk by ignoring how threats move through the environment or whether assets are even reachable. Firewalls are frequently misconfigured or undocumented, and EOL (End of Life) devices, some of the most vulnerable, often go untracked.

Legacy tools treat these inputs in isolation. Darktrace unifies them, showing teams exactly which attack paths adversaries could exploit, mapped to the MITRE ATT&CK framework, with visibility into where legacy tech increases exposure.

The result: teams can finally focus on the risks that matter most to uptime, safety, and resilience without wasting resources on noise.

Automating compliance with dynamic IEC-62443 reporting

Darktrace / OT now includes a purpose-built IEC-62443-3-3 compliance module, giving industrial teams real-time visibility into their alignment with regulatory standards. No spreadsheets required!

Industrial environments are among the most heavily regulated. However, for many OT teams, staying compliant is still a manual, time-consuming process.

Darktrace / OT introduces a dedicated IEC-62443-3-3 module designed specifically for industrial environments. Security and operations teams can now map their security posture to IEC standards in real time, directly within the platform. The module automatically gathers evidence across all four security levels, flags non-compliance, and generates structured reports to support audit preparation, all in just a few clicks.Most organizations rely on spreadsheets or static tools to track compliance, without clear visibility into which controls meet standards like IEC-62443. The result is hidden gaps, resource-heavy audits, and slow remediation cycles.

Even dedicated compliance tools are often built for IT, require complex setup, and overlook the unique devices found in OT environments. This leaves teams stuck with fragmented reporting and limited assurance that their controls are actually aligned with regulatory expectations.

By automating compliance tracking, surfacing what matters most, and being purpose built for industrial environments, Darktrace / OT empowers organizations to reduce audit fatigue, eliminate blind spots, and focus resources where they’re needed most.

Expanding protocol visibility with deep insights for specialized OT operations

Darktrace has expanded its Deep Packet Inspection (DPI) capabilities to support five industry-specific protocols, across healthcare, semiconductor manufacturing, and ABB control systems.

The new protocols build on existing capabilities across all OT industry verticals and protocol types to ensure the Darktrace Self-Learning AI TM can learn intelligently about even more assets in complex industrial environments. By enabling native, AI-driven inspection of these protocols, Darktrace can identify both security threats and operational issues without relying on additional appliances or complex integrations.

Most security platforms lack native support for industry-specific protocols, creating critical visibility gaps in customer environments like healthcare, semiconductor manufacturing, and ABB-heavy industrial automation. Without deep protocol awareness, organizations struggle to accurately identify specialized OT and IoT assets, detect malicious activity concealed within proprietary protocol traffic, and generate reliable device risk profiles due to insufficient telemetry.

These blind spots result in incomplete asset inventories, and ultimately, flawed risk posture assessments which over-index for CVE patching and legacy equipment.

By combining protocol-aware detection with full-stack visibility across IT, OT, and IoT, Darktrace’s AI can correlate anomalies across domains. For example, connecting an anomaly from a Medical IoT (MIoT) device with suspicious behavior in IT systems, providing actionable, contextual insights other solutions often miss.

Conclusion

Together, these capabilities take OT security beyond alert noise and basic CVE matching, delivering continuous compliance, protocol-aware visibility, and actionable, prioritized risk insights, all inside a single, unified platform built for the realities of industrial environments.

[related-resource]

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI