Blog
/
Network
/
July 4, 2024

Qilin Ransomware: Detection and Analysis

Get insights into the detection of Qilin ransomware operations and how organizations can protect themselves from this threat.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Jul 2024

Qilin ransomware has recently dominated discussions across the cyber security landscape following its deployment in an attack on Synnovis, a UK-based medical laboratory company. The ransomware attack ultimately affected patient services at multiple National Health Service (NHS) hospitals that rely on Synnovis diagnostic and pathology services. Qilin’s origins, however, date back further to October 2022 when the group was observed seemingly posting leaked data from its first known victim on its Dedicated Leak Site (DLS) under the name Agenda[1].

The Darktrace Threat Research team investigated network artifacts related to Qilin and identified three probable cases of the ransomware across the Darktrace customer base between June 2022 and May 2024.

Qilin Ransomware-as-a-Service Operator

Qilin operates as a Ransomware-as-a-Service (RaaS) that employs double extortion tactics, whereby harvested data is exfiltrated and threatened of publication on the group's DLS, which is hosted on Tor. Qilin ransomware has samples written in both the Golang and Rust programming languages, making it compilable with various operating systems, and is highly customizable. When building Qilin ransomware variants to be used on their target(s), affiliates can configure settings such as the encryption mode (i.e., skip-step, percent, and speed), the file extension being appended, files, extensions and directories to be skipped during the encryption, and the processes and services to be terminated, among others[1] [2].  

Trend Micro analysts, who were the first to discover Qilin samples in August 2022, when the name "Agenda" was still used in ransom notes, found that each analyzed sample was customized for the intended victims and that "unique company IDs were used as extensions of encrypted files" [3]. This information is configurable from within the Qilin's affiliate panel's 'Targets' section, shown below. The panel's background image features the eponym Chinese legendary chimerical creature Qilin (pronounced “Ke Lin”). Despite this Chinese mythology reference, Russian language was observed being used by a Qilin operator in an underground forum post aimed at hiring affiliates and advertising their RaaS operation[2].

Figure 1: Qilin ransomware’s affiliate panel.

Qilin's RaaS program purportedly has an attractive affiliates' payment structure, with affiliates allegedly able to earn 80% of ransom payments of USD 3m or less and 85% for payments above that figure[2], making it a possibly appealing option in the RaaS ecosystem.  Publication of stolen data and ransom payment negotiations are purportedly handled by Qilin operators. Qilin affiliates have been known to target companies located around the world and within a variety of industries, including critical sectors such as healthcare and energy.

As Qilin is a RaaS operation, the choice of targets does not necessarily reflect Qilin operators' intentions, but rather that of its affiliates.  Similarly, the tactics, techniques, procedures (TTPs) and indicators of compromise (IoC) identified by Darktrace are associated with the given affiliate deploying Qilin ransomware for their own purpose, rather than TTPs and IoCs of the Qilin group. Likewise, initial vectors of infection may vary from affiliate to affiliate. Previous studies show that initial access to networks were gained via spear phishing emails or by leveraging exposed applications and interfaces.

Differences have been observed in terms of data exfiltration and potential C2 external endpoints, suggesting the below investigations are not all related to the same group or actor(s).

Darktrace’s Threat Research Investigation

June 2022

Darktrace first detected an instance of Qilin ransomware back in June 2022, when an attacker was observed successfully accessing a customer’s Virtual Private Network (VPN) and compromising an administrative account, before using RDP to gain access to the customer’s Microsoft System Center Configuration Manager (SCCM) server

From there, an attack against the customer's VMware ESXi hosts was launched. Fortunately, a reboot of their virtual machines (VM) caught the attention of the security team who further uncovered that custom profiles had been created and remote scripts executed to change root passwords on their VM hosts. Three accounts were found to have been compromised and three systems encrypted by ransomware.  

Unfortunately, Darktrace was not configured to monitor the affected subnets at the time of the attack. Despite this, the customer was able to work directly with Darktrace analysts via the Ask the Expert (ATE) service to add the subnets in question to Darktrace’s visibility, allowing it to monitor for any further unusual behavior.

Once visibility over the compromised SCCM server was established, Darktrace observed a series of unusual network scanning activities and the use of Kali (a Linux distribution designed for digital forensics and penetration testing). Furthermore, the server was observed making connections to multiple rare external hosts, many using the “[.]ru” Top Level Domain (TLD). One of the external destinations the server was attempting to connect was found to be related to SystemBC, a malware that turns infected hosts into SOCKS5 proxy bots and provides command-and-control (C2) functionality.

Additionally, the server was observed making external connections over ports 993 and 143 (typically associated with the use of the Interactive Message Access Protocol (IMAP) to multiple rare external endpoints. This was likely due to the presence of Tofsee malware on the device.

After the compromise had been contained, Darktrace identified several ransom notes following the naming convention “README-RECOVER-<extension/company_id>.txt”” on the network. This naming convention, as well as the similar “<company_id>-RECOVER-README.txt” have been referenced by open-source intelligence (OSINT) providers as associated with Qilin ransom notes[5] [6] [7].

April 2023

The next case of Qilin ransomware observed by Darktrace took place in April 2023 on the network of a customer in the manufacturing sector in APAC. Unfortunately for the customer in this instance, Darktrace's Autonomous Response was not active on their environment and no autonomous actions were taken to contain the compromise.

Over the course of two days, Darktrace identified a wide range of malicious activity ranging from extensive initial scanning and lateral movement attempts to the writing of ransom notes that followed the aforementioned naming convention (i.e., “README-RECOVER-<extension/company_id>.txt”).

Darktrace observed two affected devices attempting to move laterally through the SMB, DCE-RPC and RDP network protocols. Default credentials (e.g., UserName, admin, administrator) were also observed in the large volumes of SMB sessions initiated by these devices. One of the target devices of these SMB connections was a domain controller, which was subsequently seen making suspicious WMI requests to multiple devices over DCE-RPC and enumerating SMB shares by binding to the ‘server service’ (srvsvc) named pipe to a high number of internal devices within a short time frame. The domain controller was further detected establishing an anomalously high number of connections to several internal devices, notably using the RDP administrative protocol via a default admin cookie.  

Repeated connections over the HTTP and SSL protocol to multiple newly observed IPs located in the 184.168.123.0/24 range were observed, indicating C2 connectivity.  WebDAV user agent and a JA3 fingerprint potentially associated with Cobalt Strike were notably observed in these connections. A few hours later, Darktrace detected additional suspicious external connections, this time to IPs associated with the MEGA cloud storage solution. Storage solutions such as MEGA are often abused by attackers to host stolen data post exfiltration. In this case, the endpoints were all rare for the network, suggesting this solution was not commonly used by legitimate users. Around 30 GB of data was exfiltrated over the SSL protocol.

Darktrace did not observe any encryption-related activity on this customer’s network, suggesting that encryption may have taken place locally or within network segments not monitored by Darktrace.

May 2024

The most recent instance of Qilin observed by Darktrace took place in May 2024 and involved a customer in the US. In this case, Darktrace initially detected affected devices using unusual administrative and default credentials, before additional internal systems were observed making extensive suspicious DCE-RPC requests to a range of internal locations, performing network scanning, making unusual internal RDP connections, and transferring suspicious executable files like 'a157496.exe' and '83b87b2.exe'.  SMB writes of the file "LSM_API_service" were also observed, activity which was considered 100% unusual by Darktrace; this is an RPC service that can be abused to enumerate logged-in users and steal their tokens. Various repeated connections likely representative of C2 communications were detected via both HTTP and SSL to rare external endpoints linked in OSINT to Cobalt Strike use. During these connections, HTTP GET requests for the following URIs were observed:

/asdffHTTPS

/asdfgdf

/asdfgHTTP

/download/sihost64.dll

Notably, this included a GET request a DLL file named "sihost64.dll" from a domain controller using PowerShell.  

Over 102 GB of data may have been transferred to another previously unseen endpoint, 194.165.16[.]13, via the unencrypted File Transfer Protocol (FTP). Additionally, many non-FTP connections to the endpoint could be observed, over which more than 783 GB of data was exfiltrated. Regarding file encryption activity, a wide range of destination devices and shares were targeted.

Figure 2: Advanced Search graph displaying the total volume of data transferred over FTP to a malicious IP.

During investigations, Darktrace’s Threat Research team identified an additional customer, also based in the United States, where similar data exfiltration activity was observed in April 2024. Although no indications of ransomware encryption were detected on the network, multiple similarities were observed with the case discussed just prior. Notably, the same exfiltration IP and protocol (194.165.16[.]13 and FTP, respectively) were identified in both cases. Additional HTTP connectivity was further observed to another IP using a self-signed certificate (i.e., CN=ne[.]com,OU=key operations,O=1000,L=,ST=,C=KM) located within the same ASN (i.e., AS48721 Flyservers S.A.). Some of the URIs seen in the GET requests made to this endpoint were the same as identified in that same previous case.

Information regarding another device also making repeated connections to the same IP was described in the second event of the same Cyber AI Analyst incident. Following this C2 connectivity, network scanning was observed from a compromised domain controller, followed by additional reconnaissance and lateral movement over the DCE-RPC and SMB protocols. Darktrace again observed SMB writes of the file "LSM_API_service", as in the previous case, activity which was also considered 100% unusual for the network. These similarities suggest the same actor or affiliate may have been responsible for activity observed, even though no encryption was observed in the latter case.

Figure 3: First event of the Cyber AI Analyst investigation following the compromise activity.

According to researchers at Microsoft, some of the IoCs observed on both affected accounts are associated with Pistachio Tempest, a threat actor reportedly associated with ransomware distribution. The Microsoft threat actor naming convention uses the term "tempest" to reference criminal organizations with motivations of financial gain that are not associated with high confidence to a known non-nation state or commercial entity. While Pistachio Tempest’s TTPs have changed over time, their key elements still involve ransomware, exfiltration, and extortion. Once they've gained access to an environment, Pistachio Tempest typically utilizes additional tools to complement their use of Cobalt Strike; this includes the use of the SystemBC RAT and the SliverC2 framework, respectively. It has also been reported that Pistacho Tempest has experimented with various RaaS offerings, which recently included Qilin ransomware[4].

Conclusion

Qilin is a RaaS group that has gained notoriety recently due to high-profile attacks perpetrated by its affiliates. Despite this, the group likely includes affiliates and actors who were previously associated with other ransomware groups. These individuals bring their own modus operandi and utilize both known and novel TTPs and IoCs that differ from one attack to another.

Darktrace’s anomaly-based technology is inherently threat-agnostic, treating all RaaS variants equally regardless of the attackers’ tools and infrastructure. Deviations from a device’s ‘learned’ pattern of behavior during an attack enable Darktrace to detect and contain potentially disruptive ransomware attacks.

Credit to: Alexandra Sentenac, Emma Foulger, Justin Torres, Min Kim, Signe Zaharka for their contributions.

References

[1] https://www.sentinelone.com/anthology/agenda-qilin/  

[2] https://www.group-ib.com/blog/qilin-ransomware/

[3] https://www.trendmicro.com/en_us/research/22/h/new-golang-ransomware-agenda-customizes-attacks.html

[4] https://www.microsoft.com/en-us/security/security-insider/pistachio-tempest

[5] https://www.trendmicro.com/en_us/research/22/h/new-golang-ransomware-agenda-customizes-attacks.html

[6] https://www.bleepingcomputer.com/forums/t/790240/agenda-qilin-ransomware-id-random-10-char;-recover-readmetxt-support/

[7] https://github.com/threatlabz/ransomware_notes/tree/main/qilin

Darktrace Model Detections

Internal Reconnaissance

Device / Suspicious SMB Scanning Activity

Device / Network Scan

Device / RDP Scan

Device / ICMP Address Scan

Device / Suspicious Network Scan Activity

Anomalous Connection / SMB Enumeration

Device / New or Uncommon WMI Activity

Device / Attack and Recon Tools

Lateral Movement

Device / SMB Session Brute Force (Admin)

Device / Large Number of Model Breaches from Critical Network Device

Device / Multiple Lateral Movement Model Breaches

Anomalous Connection / Unusual Admin RDP Session

Device / SMB Lateral Movement

Compliance / SMB Drive Write

Anomalous Connection / New or Uncommon Service Control

Anomalous Connection / Anomalous DRSGetNCChanges Operation

Anomalous Server Activity / Domain Controller Initiated to Client

User / New Admin Credentials on Client

C2 Communication

Anomalous Server Activity / Outgoing from Server

Anomalous Connection / Multiple Connections to New External TCP Port

Anomalous Connection / Anomalous SSL without SNI to New External

Anomalous Connection / Rare External SSL Self-Signed

Device / Increased External Connectivity

Unusual Activity / Unusual External Activity

Compromise / New or Repeated to Unusual SSL Port

Anomalous Connection / Multiple Failed Connections to Rare Endpoint

Device / Suspicious Domain

Device / Increased External Connectivity

Compromise / Sustained SSL or HTTP Increase

Compromise / Botnet C2 Behaviour

Anomalous Connection / POST to PHP on New External Host

Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

Anomalous File / EXE from Rare External Location

Exfiltration

Unusual Activity / Enhanced Unusual External Data Transfer

Anomalous Connection / Data Sent to Rare Domain

Unusual Activity / Unusual External Data Transfer

Anomalous Connection / Uncommon 1 GiB Outbound

Unusual Activity / Unusual External Data to New Endpoint

Compliance / FTP / Unusual Outbound FTP

File Encryption

Compromise / Ransomware / Suspicious SMB Activity

Anomalous Connection / Sustained MIME Type Conversion

Anomalous File / Internal / Additional Extension Appended to SMB File

Compromise / Ransomware / Possible Ransom Note Write

Compromise / Ransomware / Possible Ransom Note Read

Anomalous Connection / Suspicious Read Write Ratio

IoC List

IoC – Type – Description + Confidence

93.115.25[.]139 IP C2 Server, likely associated with SystemBC

194.165.16[.]13 IP Probable Exfiltration Server

91.238.181[.]230 IP C2 Server, likely associated with Cobalt Strike

ikea0[.]com Hostname C2 Server, likely associated with Cobalt Strike

lebondogicoin[.]com Hostname C2 Server, likely associated with Cobalt Strike

184.168.123[.]220 IP Possible C2 Infrastructure

184.168.123[.]219 IP Possible C2 Infrastructure

184.168.123[.]236 IP Possible C2 Infrastructure

184.168.123[.]241 IP Possible C2 Infrastructure

184.168.123[.]247 IP Possible C2 Infrastructure

184.168.123[.]251 IP Possible C2 Infrastructure

184.168.123[.]252 IP Possible C2 Infrastructure

184.168.123[.]229 IP Possible C2 Infrastructure

184.168.123[.]246 IP Possible C2 Infrastructure

184.168.123[.]230 IP Possible C2 Infrastructure

gfs440n010.userstorage.me ga.co[.]nz Hostname Possible Exfiltration Server. Not inherently malicious; associated with MEGA file storage.

gfs440n010.userstorage.me ga.co[.]nz Hostname Possible Exfiltration Server. Not inherently malicious; associated with MEGA file storage.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

August 14, 2025

From Exploit to Escalation: Tracking and Containing a Real-World Fortinet SSL-VPN Attack

Fortinet SSL-VPN AttackDefault blog imageDefault blog image

Threat actors exploiting Fortinet CVEs

Over the years, Fortinet has issued multiple alerts about a wave of sophisticated attacks targeting vulnerabilities in its SSL-VPN infrastructure. Despite the release of patches to address these vulnerabilities, threat actors have continued to exploit a trio of Common Vulnerabilities and Exposures (CVEs) disclosed between 2022 and 2024 to gain unauthorized access to FortiGate devices.

Which vulnerabilities are exploited?

The vulnerabilities—CVE-2022-42475, CVE-2023-27997, and CVE-2024-21762—affect Fortinet’s SSL-VPN services and have been actively exploited by threat actors to establish initial access into target networks.

The vulnerabilities affect core components of FortiOS, allowing attackers to execute remote code on affected systems.

CVE-2022-42475

Type: Heap-Based Buffer Overflow in FortiOS SSL-VPN

Impact: Remote Code Execution (Actively Exploited)

This earlier vulnerability also targets the SSL-VPN interface and has been actively exploited in the wild. It allows attackers to execute arbitrary code remotely by overflowing a buffer in memory, often used to deploy malware or establish persistent backdoors [6].

CVE-2023-27997

Type: Heap-Based Buffer Overflow in FortiOS and FortiProxy

Impact: Remote Code Execution

This flaw exists in the SSL-VPN component of both FortiOS and FortiProxy. By exploiting a buffer overflow in the heap memory, attackers can execute malicious code remotely. This vulnerability is particularly dangerous because it can be triggered without authentication, making it ideal for an initial compromise [5].

CVE-2024-21762

Type: Out-of-Bounds Write in sslvpnd

Impact: Remote Code Execution

This vulnerability affects the SSL-VPN daemon (sslvpnd) in FortiOS. It allows unauthenticated remote attackers to send specially crafted HTTP requests that write data outside of allocated memory bounds. This can lead to arbitrary code execution, giving attackers full control over a device [4].

In short, these flaws enable remote attackers to execute arbitrary code without authentication by exploiting memory corruption issues such as buffer overflows and out-of-bounds writes. Once inside, threat actors use symbolic link (symlink) in order to maintain persistence on target devices across patches and firmware updates. This persistence then enables them to bypass security controls and manipulate firewall configurations, effectively turning patched systems into long-term footholds for deeper network compromise [1][2][3].

Darktrace’s Coverage

Darktrace detected a series of suspicious activities originating from a compromised Fortinet VPN device, including anomalous HTTP traffic, internal network scanning, and SMB reconnaissance, all indicative of post-exploitation behavior. Following initial detection by Darktrace’s real-time models, its Autonomous Response capability swiftly acted on the malicious activity, blocking suspicious connections and containing the threat before further compromise could occur.

Further investigation by Darktrace’s Threat Research team uncovered a stealthy and persistent attack that leveraged known Fortinet SSL-VPN vulnerabilities to facilitate lateral movement and privilege escalation within the network.

Phase 1: Initial Compromise – Fortinet VPN Exploitation

The attack on a Darktrace customer likely began on April 11 with the exploitation of a Fortinet VPN device running an outdated version of FortiOS. Darktrace observed a high volume of HTTP traffic originating from this device, specifically targeting internal systems. Notably, many of these requests were directed at the /cgi-bin/ directory,  a common target for attackers attempting to exploit web interfaces to run unauthorized scripts or commands. This pattern strongly indicated remote code execution attempts via the SSL-VPN interface [7].

Once access was gained, the threat actor likely modified existing firewall rules, a tactic often used to disable security controls or create hidden backdoors for future access. While Darktrace does not have direct visibility into firewall configuration changes, the surrounding activity and post-exploitation behavior indicated that such modifications were made to support long-term persistence within the network.

HTTP activity from the compromised Fortinet device, including repeated requests to /cgi-bin/ over port 8080.
Figure 1: HTTP activity from the compromised Fortinet device, including repeated requests to /cgi-bin/ over port 8080

Phase 2: Establishing Persistence & Lateral Movement

Shortly after the initial compromise of the Fortinet VPN device, the threat actor began to expand their foothold within the internal network. Darktrace detected initial signs of network scanning from this device, including the use of Nmap to probe the internal environment, likely in an attempt to identify accessible services and vulnerable systems.

Darktrace’s detection of unusual network scanning activities on the affected device.
Figure 2: Darktrace’s detection of unusual network scanning activities on the affected device.

Around the same time, Darktrace began detecting anomalous activity on a second device, specifically an internal firewall interface device. This suggested that the attacker had established a secondary foothold and was leveraging it to conduct deeper reconnaissance and move laterally through the network.

In an effort to maintain persistence within the network, the attackers likely deployed symbolic links in the SSL-VPN language file directory on the Fortinet device. While Darktrace did not directly observe symbolic link abuse, Fortinet has identified this as a known persistence technique in similar attacks [2][3]. Based on the observed post-exploitation behavior and likely firewall modifications, it is plausible that such methods were used here.

Phase 3: Internal Reconnaissance & Credential Abuse

With lateral movement initiated from the internal firewall interface device, the threat actor proceeded to escalate their efforts to map the internal network and identify opportunities for privilege escalation.

Darktrace observed a successful NTLM authentication from the internal firewall interface to the domain controller over the outdated protocol SMBv1, using the account ‘anonymous’. This was immediately followed by a failed NTLM session connection using the hostname ‘nmap’, further indicating the use of Nmap for enumeration and brute-force attempts. Additional credential probes were also identified around the same time, including attempts using the credential ‘guest’.

Darktrace detection of a series of login attempts using various credentials, with a mix of successful and unsuccessful attempts.
Figure 3: Darktrace detection of a series of login attempts using various credentials, with a mix of successful and unsuccessful attempts.

The attacker then initiated DCE_RPC service enumeration, with over 300 requests to the Endpoint Mapper endpoint on the domain controller. This technique is commonly used to discover available services and their bindings, often as a precursor to privilege escalation or remote service manipulation.

Over the next few minutes, Darktrace detected more than 1,700 outbound connections from the internal firewall interface device to one of the customer’s subnets. These targeted common services such as FTP (port 21), SSH (22), Telnet (23), HTTP (80), and HTTPS (443). The threat actor also probed administrative and directory services, including ports 135, 137, 389, and 445, as well as remote access via RDP on port 3389.

Further signs of privilege escalation attempts were observed with the detection of over 300 Netlogon requests to the domain controller. Just over half of these connections were successful, indicating possible brute-force authentication attempts, credential testing, or the use of default or harvested credentials.

Netlogon and DCE-RPC activity from the affected device, showing repeated service bindings to epmapper and Netlogon, followed by successful and failed NetrServerAuthenticate3 attempts.
Figure 4: Netlogon and DCE-RPC activity from the affected device, showing repeated service bindings to epmapper and Netlogon, followed by successful and failed NetrServerAuthenticate3 attempts.

Phase 4: Privilege Escalation & Remote Access

A few minutes later, the attacker initiated an RDP session from the internal firewall interface device to an internal server. The session lasted over three hours, during which more than 1.5MB of data was uploaded and over 5MB was downloaded.

Notably, no RDP cookie was observed during this session, suggesting manual access, tool-less exploitation, or a deliberate attempt to evade detection. While RDP cookie entries were present on other occasions, none were linked to this specific session—reinforcing the likelihood of stealthy remote access.

Additionally, multiple entries during and after this session show SSL certificate validation failures on port 3389, indicating that the RDP connection may have been established using self-signed or invalid certificates, a common tactic in unauthorized or suspicious remote access scenarios.

Darktrace’s detection of an RDP session from the firewall interface device to the server, lasting over 3 hours.
Figure 5: Darktrace’s detection of an RDP session from the firewall interface device to the server, lasting over 3 hours.

Darktrace Autonomous Response

Throughout the course of this attack, Darktrace’s Autonomous Response capability was active on the customer’s network. This enabled Darktrace to autonomously intervene by blocking specific connections and ports associated with the suspicious activity, while also enforcing a pre-established “pattern of life” on affected devices to ensure they were able to continue their expected business activities while preventing any deviations from it. These actions were crucial in containing the threat and prevent further lateral movement from the compromised device.

Darktrace’s Autonomous Response targeted specific connections and restricted affected devices to their expected patterns of life.
Figure 6: Darktrace’s Autonomous Response targeted specific connections and restricted affected devices to their expected patterns of life.

Conclusion

This incident highlights the importance of important staying on top of patching and closely monitoring VPN infrastructure, especially for internet-facing systems like Fortinet devices. Despite available patches, attackers were still able to exploit known vulnerabilities to gain access, move laterally and maintain persistence within the customer’s network.

Attackers here demonstrated a high level of stealth and persistence. Not only did they gain access to the network and carry out network scans and lateral movement, but they also used techniques such as symbolic link abuse, credential probing, and RDP sessions without cookies to avoid detection.  Darktrace’s detection of the post-exploitation activity, combined with the swift action of its Autonomous Response technology, successfully blocked malicious connections and contained the attack before it could escalate

Credit to Priya Thapa (Cyber Analyst), Vivek Rajan (Cyber Analyst), and Ryan Traill (Analyst Content Lead)

Appendices

Real-time Detection Model Alerts

·      Device / Suspicious SMB Scanning Activity

·      Device / Anomalous Nmap Activity

·      Device / Network Scan

·      Device / RDP Scan

·      Device / ICMP Address Scan

Autonomous Response Model Alerts:  

·      Antigena / Network / Insider Threat / Antigena Network Scan Block

·       Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

MITRE ATT&CK Mapping

Initial Access – External Remote Services – T1133

Initial Access – Valid Accounts – T1078

Execution – Exploitation for Client Execution – T1203

Persistence – Account Manipulation – T1098

Persistence – Application Layer Protocol – T1071.001

Privilege Escalation – Exploitation for Privilege Escalation – T1068

Privilege Escalation – Valid Accounts – T1078

Defense Evasion – Masquerading – T1036

Credential Access – Brute Force – T1110

Discovery – Network Service Scanning – T1046

Discovery – Remote System Discovery – T1018

Lateral Movement – Remote Services – T1021

Lateral Movement – Software Deployment Tools – T1072

Collection – Data from Local System – T1005

Collection – Data Staging – T1074

Exfiltration – Exfiltration Over Alternative Protocol – T1048

References

[1]  https://www.tenable.com/blog/cve-2024-21762-critical-fortinet-fortios-out-of-bound-write-ssl-vpn-vulnerability

[2] https://thehackernews.com/2025/04/fortinet-warns-attackers-retain.html

[3] https://www.cisa.gov/news-events/alerts/2025/04/11/fortinet-releases-advisory-new-post-exploitation-technique-known-vulnerabilities

[4] https://www.fortiguard.com/psirt/FG-IR-24-015

[5] https://www.tenable.com/blog/cve-2023-27997-heap-based-buffer-overflow-in-fortinet-fortios-and-fortiproxy-ssl-vpn-xortigate

[6]  https://www.tenable.com/blog/cve-2022-42475-fortinet-patches-zero-day-in-fortios-ssl-vpns

[7] https://www.fortiguard.com/encyclopedia/ips/12475

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content without notice.

Continue reading
About the author
Priya Thapa
Cyber Analyst

Blog

/

Cloud

/

August 14, 2025

How Organizations are Addressing Cloud Investigation and Response

Cloud investigation and responseDefault blog imageDefault blog image

Why cloud investigation and response needs to evolve

As organizations accelerate their move to the cloud, they’re confronting two interrelated pressures: a rapidly expanding attack surface and rising regulatory scrutiny. The dual pressure is forcing security practitioners to evolve their strategies in the cloud, particularly around investigation and response, where we see analysts spending the most time. This work is especially difficult in the cloud, often requiring experienced analysts to manually stitch together evidence across fragmented systems, unfamiliar platforms, and short-lived assets.

However, adapting isn’t easy. Many teams are operating with limited budgets and face a shortage of cloud-specific security talent. That’s why more organizations are now prioritizing tools that not only deliver deep visibility and rapid response in the cloud, but also help upskill their analysts to keep pace with threats and compliance demands.

Our 2024 survey report highlights just how organizations are recognizing gaps in their cloud security, feeling the heat from regulators, and making significant investments to bolster their cloud investigation capabilities.

In this blog post, we’ll explore the current challenges, approaches, and strategies organizations are employing to enhance their cloud investigation and incident response.

Recognizing the gaps in current cloud investigation and response methods

Complex environments & static tools

Due to the dynamic nature of cloud infrastructure, ephemeral assets, autoscaling environments, and multi-cloud complexity, traditional investigation and response methods which rely on static snapshots and point-in-time data, are fundamentally mismatched. And with Cloud environment APIs needing deep provider knowledge and scripting skills to extract much needed evidence its unrealistic for one person to master all aspects of cloud incident response.

Analysts are still stitching together logs from fragmented systems, manually correlating events, and relying on post-incident forensics that often arrive too late to drive meaningful response. These approaches were built for environments that rarely changed. In the cloud, where assets may only exist for minutes and attacker movement can span regions or accounts in seconds, point-in-time visibility simply can’t keep up. As a result, critical evidence is missed, timelines are incomplete, and investigations drag on longer than they should.

Even some modern approaches still depend heavily on static configurations, delayed snapshots, or siloed visibility that can’t keep pace with real-time attacker movement.

There is even the problem of  identifying what cloud data sources hold the valuable information needed to investigate in the first place. With AWS alone having over 200 products, each with its own security practices and data sources.It can be challenging to identify where you need to be looking.  

To truly secure the cloud, investigation and response must be continuous, automated, and context-rich. Tools should be able to surface the signal from the noise and support analysts at every step, even without deep forensics expertise.

Increasing compliance pressure

With the rise of data privacy regulations and incident reporting mandates worldwide, organizations face heightened scrutiny. Noncompliance can lead to severe penalties, making it crucial to have robust cloud investigation and response mechanisms in place. 74% of organizations surveyed reported that data privacy regulations complicate incident response, underscoring the urgency to adapt to regulatory requirements.

In addition, a majority of organizations surveyed (89%) acknowledged that they suffer damage before they can fully contain and investigate incidents, particularly in cloud environments, highlighting the need for enhanced cloud capabilities.  

Enhancing cloud investigation and response

To address these challenges, organizations are actively growing their capabilities to perform investigations in the cloud. Key steps include:

Allocating and increasing budgets:  

Recognizing the importance of cloud-specific investigation tools, many organizations have started to allocate dedicated budgets for cloud forensics. 83% of organizations have budgeted for cloud forensics, with 77% expecting this budget to increase. This reflects a strong commitment to improving cloud security.

Implementing automation that understands cloud behavior

Automation isn’t just about speeding up tasks. While modern threats require speed and efficiency from defenders, automation aims to achieve this by enabling consistent decision making across unique and dynamic environments. Traditional SOAR platforms, often designed for static on-prem environments, struggle to keep pace with the dynamic and ephemeral nature of the cloud, where resources can disappear before a human analyst even has a chance to look at them. Cloud-native automation, designed to act on transient infrastructure and integrate seamlessly with cloud APIs, is rapidly emerging as the more effective approach for real-time investigation and response. Automation can cover collection, processing, and storage of incident evidence without ever needing to wait for human intervention and the evidence is ready and waiting all in once place, regardless of if the evidence is cloud-provider logs, disk images, or  memory dumps. With the right automation tools you can even go further and automate the full process from end to end covering acquisition, processing, analysis, and response.

Artificial Intelligence (AI) that augments analysts’ intuition not just adds speed

While many vendors tout AI’s ability to “analyze large volumes of data,” that’s table stakes. The real differentiator is how AI understands the narrative of an incident, surfacing high-fidelity alerts, correlating attacker movement across cloud and hybrid environments, and presenting findings in a way that upskills rather than overwhelms analysts.  

In this space, AI isn’t just accelerating investigations, it’s democratizing them by reducing the reliance on highly specialized forensic expertise.  

Strategies for effective cloud investigation and response

Organizations are also exploring various strategies to optimize their cloud investigation and response capabilities:

Enhancing visibility and control:

  • Unified platforms: Implementing platforms that provide a unified view across multiple cloud environments can help organizations achieve better visibility and control. This consolidation reduces the complexity of managing disparate tools and data sources.
  • Improved integration: Ensuring that all security tools and platforms are seamlessly integrated is critical. This integration facilitates better data sharing and cohesive incident management.
  • Cloud specific expertise: Training and Recruitment: Investing in training programs to develop cloud-specific skills among existing staff and recruiting experts with cloud security knowledge can bridge the skill gap.
  • Continuous learning: Given the constantly evolving nature of cloud threats, continuous learning and adaptation are essential for maintaining effective security measures.

Leveraging automation and AI:

  • Automation solutions: Automation solutions for cloud environments can significantly speed up and simplify incident response efficiency. These solutions can handle repetitive tasks, allowing security teams to focus on more complex issues.
  • AI powered analysis: AI can assist in rapidly analyzing incident data, identifying anomalies, and predicting potential threats. This proactive approach can help prevent incidents before they escalate.

Cloud investigation and response with Darktrace

Darktrace’s  forensic acquisition & investigation capabilities helps organizations address the complexities of cloud investigations and incident response with ease. The product seamlessly integrates with AWS, GCP, and Azure, consolidating data from multiple cloud environments into one unified platform. This integration enhances visibility and control, making it easier to manage and respond to incidents across diverse cloud infrastructures.

By leveraging machine learning and automation, Forensic Acquisition & Investigation accelerates the investigation process by quickly analyzing vast amounts of data, identifying patterns, and providing actionable insights. Automation reduces manual effort and response times, allowing your security team to focus on the most pressing issues.

Forensic Acquisition & Investigation can help you stay ahead of threats whilst also meeting regulatory requirements, helping you to maintain a robust cloud security position.

Continue reading
About the author
Calum Hall
Technical Content Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI