Blog
/
Network
/
July 4, 2024

A Busy Agenda: Darktrace's Detection of Qilin Ransomware as a Service Operator

This blog breaks down how Darktrace detected and analyzed Qilin, a Ransomware-as-a-Service group behind recent high-impact attacks. You’ll see how Qilin affiliates customize attacks with flexible encryption, process termination, and double-extortion techniques, as well as why its cross-platform builds in Rust and Golang make it especially evasive. Darktrace highlights three real-world cases where its AI identified likely Qilin activity across customer environments, offering insights into how behavioral detection can spot novel ransomware before disruption occurs. Readers will gain a clear view of Qilin’s toolkit, tactics, and how self-learning defense adapts to these evolving threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Jul 2024

What is Qilin Ransomware and what's its impact?

Qilin ransomware has recently dominated discussions across the cyber security landscape following its deployment in an attack on Synnovis, a UK-based medical laboratory company. The ransomware attack ultimately affected patient services at multiple National Health Service (NHS) hospitals that rely on Synnovis diagnostic and pathology services. Qilin’s origins, however, date back further to October 2022 when the group was observed seemingly posting leaked data from its first known victim on its Dedicated Leak Site (DLS) under the name Agenda[1].

The Darktrace Threat Research team investigated network artifacts related to Qilin and identified three probable cases of the ransomware across the Darktrace customer base between June 2022 and May 2024.

How Qilin Ransowmare Operates as RaaS

Qilin operates as a Ransomware-as-a-Service (RaaS) that employs double extortion tactics, whereby harvested data is exfiltrated and threatened of publication on the group's DLS, which is hosted on Tor. Qilin ransomware has samples written in both the Golang and Rust programming languages, making it compilable with various operating systems, and is highly customizable.

Techniques Qilin Ransomware uses to avoid detection

When building Qilin ransomware variants to be used on their target(s), affiliates can configure settings such as:

  • Encryption modes (skip-step, percent, or speed)
  • File extensions, directories, or processes to exclude
  • Unique company IDs used as extensions on encrypted files
  • Services or processes to terminate during execution [1] [2].
  • Trend Micro analysts, who were the first to discover Qilin samples in August 2022, when the name "Agenda" was still used in ransom notes, found that each analyzed sample was customized for the intended victims and that "unique company IDs were used as extensions of encrypted files" [3]. This information is configurable from within the Qilin's affiliate panel's 'Targets' section, shown below.

    Qilin's affiliate panel and branding

    The panel's background image features the eponym Chinese legendary chimerical creature Qilin (pronounced “Ke Lin”). Despite this Chinese mythology reference, Russian language was observed being used by a Qilin operator in an underground forum post aimed at hiring affiliates and advertising their RaaS operation[2].

    Figure 1: Qilin ransomware’s affiliate panel.

    Qilin’s affiliate payment model

    Qilin's RaaS program purportedly has an attractive affiliates' payment structure,

    • Affiliates earn 80% of ransom payments under USD 3 million
    • Affiliates earn 85% of ransom payments above USD 3 million [2]

    Publication of stolen data and ransom payment negotiations are purportedly handled by Qilin operators. Qilin affiliates have been known to target companies located around the world and within a variety of industries, including critical sectors such as healthcare and energy.

    Qilin target industries and victims

    As Qilin is a RaaS operation, the choice of targets does not necessarily reflect Qilin operators' intentions, but rather that of its affiliates.  

    Similarly, the tactics, techniques, procedures (TTPs) and indicators of compromise (IoC) identified by Darktrace are associated with the given affiliate deploying Qilin ransomware for their own purpose, rather than TTPs and IoCs of the Qilin group. Likewise, initial vectors of infection may vary from affiliate to affiliate.

    Previous studies show that initial access to networks were gained via spear phishing emails or by leveraging exposed applications and interfaces.

    Differences have been observed in terms of data exfiltration and potential C2 external endpoints, suggesting the below investigations are not all related to the same group or actor(s).

    [related-resource]

    Darktrace’s threat research investigation

    Qlin ransomware attack breakdown

    June 2022: Qilin ransomware attack exploiting VPN and SCCM servers

    Key findings:

    • Initial access: VPN and compromised admin account
    • Lateral movement: SCCM and VMware ESXi hosts
    • Malware observed: SystemBC, Tofsee
    • Ransom notes: Linked to Qilin naming conventions
    • Darktrace visibility: Analysts worked with customer via Ask the Expert (ATE) to expand coverage, revealing unusual scanning, rare external connections, and malware indicators tied to Qilin

    Full story:

    Darktrace first detected an instance of Qilin ransomware back in June 2022, when an attacker was observed successfully accessing a customer’s Virtual Private Network (VPN) and compromising an administrative account, before using RDP to gain access to the customer’s Microsoft System Center Configuration Manager (SCCM) server.

    From there, an attack against the customer's VMware ESXi hosts was launched. Fortunately, a reboot of their virtual machines (VM) caught the attention of the security team who further uncovered that custom profiles had been created and remote scripts executed to change root passwords on their VM hosts. Three accounts were found to have been compromised and three systems encrypted by ransomware.  

    Unfortunately, Darktrace was not configured to monitor the affected subnets at the time of the attack. Despite this, the customer was able to work directly with Darktrace analysts via the Ask the Expert (ATE) service to add the subnets in question to Darktrace’s visibility, allowing it to monitor for any further unusual behavior.

    Once visibility over the compromised SCCM server was established, Darktrace observed:

    • A series of unusual network scanning activities  
    • The use of Kali (a Linux distribution designed for digital forensics and penetration testing).
    • Connections to multiple rare external hosts. Many of which were using the “[.]ru” Top Level Domain (TLD).

    One of the external destinations the server was attempting to connect was found to be related to SystemBC, a malware that turns infected hosts into SOCKS5 proxy bots and provides command-and-control (C2) functionality.

    Additionally, the server was observed making external connections over ports 993 and 143 (typically associated with the use of the Interactive Message Access Protocol (IMAP) to multiple rare external endpoints. This was likely due to the presence of Tofsee malware on the device.

    After the compromise had been contained, Darktrace identified several ransom notes following the naming convention “README-RECOVER-<extension/company_id>.txt”” on the network. This naming convention, as well as the similar “<company_id>-RECOVER-README.txt” have been referenced by open-source intelligence (OSINT) providers as associated with Qilin ransom notes[5] [6] [7].

    April 2023: Manufacturing sector breach with large-scale exfiltration

    Key findings:

    • Initial access & movement: Extensive scanning and lateral movement via SMB, RDP, and WMI
    • Credential abuse: Use of default credentials (admin, administrator)
    • Malware/Indicators: Evidence of Cobalt Strike; suspicious WebDAV user agent and JA3 fingerprint
    • Data exfiltration: ~30 GB stolen via SSL to MEGA cloud storage
    • Darktrace analysis: Detected anomalous SMB and DCE-RPC traffic from domain controller, high-volume RDP activity, and rare external connectivity to IPs tied to command-and-control (C2). Confirmed ransom notes followed Qilin naming conventions.

    Full story:

    The next case of Qilin ransomware observed by Darktrace took place in April 2023 on the network of a customer in the manufacturing sector in APAC. Unfortunately for the customer in this instance, Darktrace's Autonomous Response was not active on their environment and no autonomous actions were taken to contain the compromise.

    Over the course of two days, Darktrace identified a wide range of malicious activity ranging from extensive initial scanning and lateral movement attempts to the writing of ransom notes that followed the aforementioned naming convention (i.e., “README-RECOVER-<extension/company_id>.txt”).

    Darktrace observed two affected devices attempting to move laterally through the SMB, DCE-RPC and RDP network protocols. Default credentials (e.g., UserName, admin, administrator) were also observed in the large volumes of SMB sessions initiated by these devices. One of the target devices of these SMB connections was a domain controller, which was subsequently seen making suspicious WMI requests to multiple devices over DCE-RPC and enumerating SMB shares by binding to the ‘server service’ (srvsvc) named pipe to a high number of internal devices within a short time frame. The domain controller was further detected establishing an anomalously high number of connections to several internal devices, notably using the RDP administrative protocol via a default admin cookie.  

    Repeated connections over the HTTP and SSL protocol to multiple newly observed IPs located in the 184.168.123.0/24 range were observed, indicating C2 connectivity.  WebDAV user agent and a JA3 fingerprint potentially associated with Cobalt Strike were notably observed in these connections. A few hours later, Darktrace detected additional suspicious external connections, this time to IPs associated with the MEGA cloud storage solution. Storage solutions such as MEGA are often abused by attackers to host stolen data post exfiltration. In this case, the endpoints were all rare for the network, suggesting this solution was not commonly used by legitimate users. Around 30 GB of data was exfiltrated over the SSL protocol.

    Darktrace did not observe any encryption-related activity on this customer’s network, suggesting that encryption may have taken place locally or within network segments not monitored by Darktrace.

    May 2024: US enterprise compromise

    Key findings:

    • Initial access & movement: Abuse of administrative and default credentials; lateral movement via DCE-RPC and RDP
    • Malware/Indicators: Suspicious executables (‘a157496.exe’, ‘83b87b2.exe’); abuse of RPC service LSM_API_service
    • Data exfiltration: Large amount of data exfiltrated via FTP and other channels to rare external endpoint (194.165.16[.]13)
    • C2 communications: HTTP/SSL traffic linked to Cobalt Strike, including PowerShell request for sihost64.dll
    • Darktrace analysis: Flagged unusual SMB writes, malicious file transfers, and large-scale exfiltration as highly anomalous. Confirmed widespread encryption activity targeting numerous devices and shares.

    Full story:

    The most recent instance of Qilin observed by Darktrace took place in May 2024 and involved a customer in the US.

    In this case, Darktrace initially detected affected devices using unusual administrative and default credentials. Then Darktrace observed additional Internal systems conducting abnormal activity such as:

    • Making extensive suspicious DCE-RPC requests to a range of internal locations
    • Performing network scanning
    • Making unusual internal RDP connections
    • And transferring suspicious executable files like 'a157496.exe' and '83b87b2.exe'.  

    SMB writes of the file "LSM_API_service" were also observed, activity which was considered 100% unusual by Darktrace; this is an RPC service that can be abused to enumerate logged-in users and steal their tokens. Various repeated connections likely representative of C2 communications were detected via both HTTP and SSL to rare external endpoints linked in OSINT to Cobalt Strike use. During these connections, HTTP GET requests for the following URIs were observed:

    /asdffHTTPS

    /asdfgdf

    /asdfgHTTP

    /download/sihost64.dll

    Notably, this included a GET request a DLL file named "sihost64.dll" from a domain controller using PowerShell.  

    Over 102 GB of data may have been transferred to another previously unseen endpoint, 194.165.16[.]13, via the unencrypted File Transfer Protocol (FTP). Additionally, many non-FTP connections to the endpoint could be observed, over which more than 783 GB of data was exfiltrated. Regarding file encryption activity, a wide range of destination devices and shares were targeted.

    Figure 2: Advanced Search graph displaying the total volume of data transferred over FTP to a malicious IP.

    During investigations, Darktrace’s Threat Research team identified an additional customer, also based in the United States, where similar data exfiltration activity was observed in April 2024. Although no indications of ransomware encryption were detected on the network, multiple similarities were observed with the case discussed just prior. Notably, the same exfiltration IP and protocol (194.165.16[.]13 and FTP, respectively) were identified in both cases. Additional HTTP connectivity was further observed to another IP using a self-signed certificate (i.e., CN=ne[.]com,OU=key operations,O=1000,L=,ST=,C=KM) located within the same ASN (i.e., AS48721 Flyservers S.A.). Some of the URIs seen in the GET requests made to this endpoint were the same as identified in that same previous case.

    Information regarding another device also making repeated connections to the same IP was described in the second event of the same Cyber AI Analyst incident. Following this C2 connectivity, network scanning was observed from a compromised domain controller, followed by additional reconnaissance and lateral movement over the DCE-RPC and SMB protocols. Darktrace again observed SMB writes of the file "LSM_API_service", as in the previous case, activity which was also considered 100% unusual for the network. These similarities suggest the same actor or affiliate may have been responsible for activity observed, even though no encryption was observed in the latter case.

    Figure 3: First event of the Cyber AI Analyst investigation following the compromise activity.

    According to researchers at Microsoft, some of the IoCs observed on both affected accounts are associated with Pistachio Tempest, a threat actor reportedly associated with ransomware distribution. The Microsoft threat actor naming convention uses the term "tempest" to reference criminal organizations with motivations of financial gain that are not associated with high confidence to a known non-nation state or commercial entity. While Pistachio Tempest’s TTPs have changed over time, their key elements still involve ransomware, exfiltration, and extortion. Once they've gained access to an environment, Pistachio Tempest typically utilizes additional tools to complement their use of Cobalt Strike; this includes the use of the SystemBC RAT and the SliverC2 framework, respectively. It has also been reported that Pistacho Tempest has experimented with various RaaS offerings, which recently included Qilin ransomware[4].

    Conclusion

    Qilin is a RaaS group that has gained notoriety recently due to high-profile attacks perpetrated by its affiliates. Despite this, the group likely includes affiliates and actors who were previously associated with other ransomware groups. These individuals bring their own modus operandi and utilize both known and novel TTPs and IoCs that differ from one attack to another.

    Darktrace’s anomaly-based technology is inherently threat-agnostic, treating all RaaS variants equally regardless of the attackers’ tools and infrastructure. Deviations from a device’s ‘learned’ pattern of behavior during an attack enable Darktrace to detect and contain potentially disruptive ransomware attacks.

    [related-resource]

    Credit to: Alexandra Sentenac, Emma Foulger, Justin Torres, Min Kim, Signe Zaharka for their contributions.

    References

    [1] https://www.sentinelone.com/anthology/agenda-qilin/  

    [2] https://www.group-ib.com/blog/qilin-ransomware/

    [3] https://www.trendmicro.com/en_us/research/22/h/new-golang-ransomware-agenda-customizes-attacks.html

    [4] https://www.microsoft.com/en-us/security/security-insider/pistachio-tempest

    [5] https://www.trendmicro.com/en_us/research/22/h/new-golang-ransomware-agenda-customizes-attacks.html

    [6] https://www.bleepingcomputer.com/forums/t/790240/agenda-qilin-ransomware-id-random-10-char;-recover-readmetxt-support/

    [7] https://github.com/threatlabz/ransomware_notes/tree/main/qilin

    Darktrace Model Detections

    Internal Reconnaissance

    Device / Suspicious SMB Scanning Activity

    Device / Network Scan

    Device / RDP Scan

    Device / ICMP Address Scan

    Device / Suspicious Network Scan Activity

    Anomalous Connection / SMB Enumeration

    Device / New or Uncommon WMI Activity

    Device / Attack and Recon Tools

    Lateral Movement

    Device / SMB Session Brute Force (Admin)

    Device / Large Number of Model Breaches from Critical Network Device

    Device / Multiple Lateral Movement Model Breaches

    Anomalous Connection / Unusual Admin RDP Session

    Device / SMB Lateral Movement

    Compliance / SMB Drive Write

    Anomalous Connection / New or Uncommon Service Control

    Anomalous Connection / Anomalous DRSGetNCChanges Operation

    Anomalous Server Activity / Domain Controller Initiated to Client

    User / New Admin Credentials on Client

    C2 Communication

    Anomalous Server Activity / Outgoing from Server

    Anomalous Connection / Multiple Connections to New External TCP Port

    Anomalous Connection / Anomalous SSL without SNI to New External

    Anomalous Connection / Rare External SSL Self-Signed

    Device / Increased External Connectivity

    Unusual Activity / Unusual External Activity

    Compromise / New or Repeated to Unusual SSL Port

    Anomalous Connection / Multiple Failed Connections to Rare Endpoint

    Device / Suspicious Domain

    Device / Increased External Connectivity

    Compromise / Sustained SSL or HTTP Increase

    Compromise / Botnet C2 Behaviour

    Anomalous Connection / POST to PHP on New External Host

    Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

    Anomalous File / EXE from Rare External Location

    Exfiltration

    Unusual Activity / Enhanced Unusual External Data Transfer

    Anomalous Connection / Data Sent to Rare Domain

    Unusual Activity / Unusual External Data Transfer

    Anomalous Connection / Uncommon 1 GiB Outbound

    Unusual Activity / Unusual External Data to New Endpoint

    Compliance / FTP / Unusual Outbound FTP

    File Encryption

    Compromise / Ransomware / Suspicious SMB Activity

    Anomalous Connection / Sustained MIME Type Conversion

    Anomalous File / Internal / Additional Extension Appended to SMB File

    Compromise / Ransomware / Possible Ransom Note Write

    Compromise / Ransomware / Possible Ransom Note Read

    Anomalous Connection / Suspicious Read Write Ratio

    IoC List

    IoC – Type – Description + Confidence

    93.115.25[.]139 IP C2 Server, likely associated with SystemBC

    194.165.16[.]13 IP Probable Exfiltration Server

    91.238.181[.]230 IP C2 Server, likely associated with Cobalt Strike

    ikea0[.]com Hostname C2 Server, likely associated with Cobalt Strike

    lebondogicoin[.]com Hostname C2 Server, likely associated with Cobalt Strike

    184.168.123[.]220 IP Possible C2 Infrastructure

    184.168.123[.]219 IP Possible C2 Infrastructure

    184.168.123[.]236 IP Possible C2 Infrastructure

    184.168.123[.]241 IP Possible C2 Infrastructure

    184.168.123[.]247 IP Possible C2 Infrastructure

    184.168.123[.]251 IP Possible C2 Infrastructure

    184.168.123[.]252 IP Possible C2 Infrastructure

    184.168.123[.]229 IP Possible C2 Infrastructure

    184.168.123[.]246 IP Possible C2 Infrastructure

    184.168.123[.]230 IP Possible C2 Infrastructure

    gfs440n010.userstorage.me ga.co[.]nz Hostname Possible Exfiltration Server. Not inherently malicious; associated with MEGA file storage.

    gfs440n010.userstorage.me ga.co[.]nz Hostname Possible Exfiltration Server. Not inherently malicious; associated with MEGA file storage.

    Get the latest insights on emerging cyber threats

    This report explores the latest trends shaping the cybersecurity landscape and what defenders need to know in 2025

    Inside the SOC
    Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
    Written by
    Alexandra Sentenac
    Cyber Analyst

    More in this series

    No items found.

    Blog

    /

    Network

    /

    September 9, 2025

    The benefits of bringing together network and email security

    Default blog imageDefault blog image

    In many organizations, network and email security operate in isolation. Each solution is tasked with defending its respective environment, even though both are facing the same advanced, multi-domain threats.  

    This siloed approach overlooks a critical reality: email remains the most common vector for initiating cyber-attacks, while the network is the primary stage on which those attacks progress. Without direct integration between these two domains, organizations risk leaving blind spots that adversaries can exploit.  

    A modern security strategy needs to unify email and network defenses, not just in name, but in how they share intelligence, conduct investigations, and coordinate response actions. Let’s take a look at how this joined-up approach delivers measurable technical, operational, and commercial benefits.

    Technical advantages

    Pre-alert intelligence: Gathering data before the threat strikes

    Most security tools start working when something goes wrong – an unusual login, a flagged attachment, a confirmed compromise. But by then, attackers may already be a step ahead.

    By unifying network and email security under a single AI platform (like the Darktrace Active AI Security Platform), you can analyze patterns across both environments in real time, even when there are no alerts. This ongoing monitoring builds a behavioral understanding of every user, device, and domain in your ecosystem.

    That means when an email arrives from a suspicious domain, the system already knows whether that domain has appeared on your network before – and whether its behavior has been unusual. Likewise, when new network activity involves a domain first spotted in an email, it’s instantly placed in the right context.

    This intelligence isn’t built on signatures or after-the-fact compromise indicators – it’s built on live behavioral baselines, giving your defenses the ability to flag threats before damage is done.

    Alert-related intelligence: Connecting the dots in real time

    Once an alert does fire, speed and context matter. The Darktrace Cyber AI Analyst can automatically investigate across both environments, piecing together network and email evidence into a single, cohesive incident.

    Instead of leaving analysts to sift through fragmented logs, the AI links events like a phishing email to suspicious lateral movement on the recipient’s device, keeping the full attack chain intact. Investigations that might take hours – or even days – can be completed in minutes, with far fewer false positives to wade through.

    This is more than a time-saver. It ensures defenders maintain visibility after the first sign of compromise, following the attacker as they pivot into network infrastructure, cloud services, or other targets. That cross-environment continuity is impossible to achieve with disconnected point solutions or siloed workflows.

    Operational advantages

    Streamlining SecOps across teams

    In many organizations, email security is managed by IT, while network defense belongs to the SOC. The result? Critical information is scattered between tools and teams, creating blind spots just when you need clarity.

    When email and network data flow into a single platform, everyone is working from the same source of truth. SOC analysts gain immediate visibility into email threats without opening another console or sending a request to another department. The IT team benefits from the SOC’s deeper investigative context.

    The outcome is more than convenience: it’s faster, more informed decision-making across the board.

    Reducing time-to-meaning and enabling faster response

    A unified platform removes the need to manually correlate alerts between tools, reducing time-to-meaning for every incident. Built-in AI correlation instantly ties together related events, guiding analysts toward coordinated responses with higher confidence.

    Instead of relying on manual SIEM rules or pre-built SOAR playbooks, the platform connects the dots in real time, and can even trigger autonomous response actions across both environments simultaneously. This ensures attacks are stopped before they can escalate, regardless of where they begin.

    Commercial advantages

    While purchasing “best-of-breed" for all your different tools might sound appealing, it often leads to a patchwork of solutions with overlapping costs and gaps in coverage. However good a “best-in-breed" email security solution might be in the email realm, it won't be truly effective without visibility across domains and an AI analyst piecing intelligence together. That’s why we think “best-in-suite" is the only “best-in-breed" approach that works – choosing a high-quality platform ensures that every new capability strengthens the whole system.  

    On top of that, security budgets are under constant pressure. Managing separate vendors for email and network defense means juggling multiple contracts, negotiating different SLAs, and stitching together different support models.

    With a single provider for both, procurement and vendor management become far simpler. You deal with one account team, one support channel, and one unified strategy for both environments. If you choose to layer on managed services, you get consistent expertise across your whole security footprint.

    Even more importantly, an integrated AI platform sets the stage for growth. Once email and network are under the same roof, adding coverage for other attack surfaces – like cloud or identity – is straightforward. You’re building on the same architecture, not bolting on new point solutions that create more complexity.

    Check out the white paper, The Modern Security Stack: Why Your NDR and Email Security Solutions Need to Work Together, to explore these benefits in more depth, with real-world examples and practical steps for unifying your defenses.

    [related-resource]

    Continue reading
    About the author
    Mikey Anderson
    Product Marketing Manager, Network Detection & Response

    Blog

    /

    Cloud

    /

    September 9, 2025

    Unpacking the Salesloft Incident: Insights from Darktrace Observations

    solesloft incident Default blog imageDefault blog image

    Introduction

    On August 26, 2025, Google Threat intelligence Group released a report detailing a widespread data theft campaign targeting the sales automation platform Salesloft, via compromised OAuth tokens used by the third-party Drift AI chat agent [1][2].  The attack has been attributed to the threat actor UNC6395 by Google Threat Intelligence and Mandiant [1].

    The attack is believed to have begun in early August 2025 and continued through until mid-August 2025 [1], with the threat actor exporting significant volumes of data from multiple Salesforce instances [1]. Then sifting through this data for anything that could be used to compromise the victim’s environments such as access keys, tokens or passwords. This had led to Google Threat Intelligence Group assessing that the primary intent of the threat actor is credential harvesting, and later reporting that it was aware of in excess of 700 potentially impacted organizations [3].

    Salesloft previously stated that, based on currently available data, customers that do not integrate with Salesforce are unaffected by this campaign [2]. However, on August 28, Google Threat Intelligence Group announced that “Based on new information identified by GTIG, the scope of this compromise is not exclusive to the Salesforce integration with Salesloft Drift and impacts other integrations” [2]. Google Threat Intelligence has since advised that any and all authentication tokens stored in or connected to the Drift platform be treated as potentially compromised [1].

    This campaign demonstrates how attackers are increasingly exploiting trusted Software-as-a-Service (SaaS) integrations as a pathway into enterprise environment.

    By abusing these integrations, threat actors were able to exfiltrate sensitive business data at scale, bypassing traditional security controls. Rather than relying on malware or obvious intrusion techniques, the adversaries leveraged legitimate credentials and API traffic that resembled legitimate Salesforce activity to achieve their goals. This type of activity is far harder to detect with conventional security tools, since it blends in with the daily noise of business operations.

    The incident underscores the escalating significance of autonomous coverage within SaaS and third-party ecosystems. As businesses increasingly depend on interconnected platforms, visibility gaps become evident that cannot be managed by conventional perimeter and endpoint defenses.

    By developing a behavioral comprehension of each organization's distinct use of cloud services, anomalies can be detected, such as logins from unexpected locations, unusually high volumes of API requests, or unusual document activity. These indications serve as an early alert system, even when intruders use legitimate tokens or accounts, enabling security teams to step in before extensive data exfiltration takes place

    What happened?

    The campaign is believed to have started on August 8, 2025, with malicious activity continuing until at least August 18. The threat actor, tracked as UNC6395, gained access via compromised OAuth tokens associated with Salesloft Drift integrations into Salesforce [1]. Once tokens were obtained, the attackers were able to issue large volumes of Salesforce API requests, exfiltrating sensitive customer and business data.

    Initial Intrusion

    The attackers first established access by abusing OAuth and refresh tokens from the Drift integration. These tokens gave them persistent access into Salesforce environments without requiring further authentication [1]. To expand their foothold, the threat actor also made use of TruffleHog [4], an open-source secrets scanner, to hunt for additional exposed credentials. Logs later revealed anomalous IAM updates, including unusual UpdateAccessKey activity, which suggested attempts to ensure long-term persistence and control within compromised accounts.

    Internal Reconnaissance & Data Exfiltration

    Once inside, the adversaries began exploring the Salesforce environments. They ran queries designed to pull sensitive data fields, focusing on objects such as Cases, Accounts, Users, and Opportunities [1]. At the same time, the attackers sifted through this information to identify secrets that could enable access to other systems, including AWS keys and Snowflake credentials [4]. This phase demonstrated the opportunistic nature of the campaign, with the actors looking for any data that could be repurposed for further compromise.

    Lateral Movement

    Salesloft and Mandiant investigations revealed that the threat actor also created at least one new user account in early September. Although follow-up activity linked to this account was limited, the creation itself suggested a persistence mechanism designed to survive remediation efforts. By maintaining a separate identity, the attackers ensured they could regain access even if their stolen OAuth tokens were revoked.

    Accomplishing the mission

    The data taken from Salesforce environments included valuable business records, which attackers used to harvest credentials and identify high-value targets. According to Mandiant, once the data was exfiltrated, the actors actively sifted through it to locate sensitive information that could be leveraged in future intrusions [1]. In response, Salesforce and Salesloft revoked OAuth tokens associated with Drift integrations on August 20 [1], a containment measure aimed at cutting off the attackers’ primary access channel and preventing further abuse.

    How did the attack bypass the rest of the security stack?

    The campaign effectively bypassed security measures by using legitimate credentials and OAuth tokens through the Salesloft Drift integration. This rendered traditional security defenses like endpoint protection and firewalls ineffective, as the activity appeared non-malicious [1]. The attackers blended into normal operations by using common user agents and making queries through the Salesforce API, which made their activity resemble legitimate integrations and scripts. This allowed them to operate undetected in the SaaS environment, exploiting the trust in third-party connections and highlighting the limitations of traditional detection controls.

    Darktrace Coverage

    Anomalous activities have been identified across multiple Darktrace deployments that appear associated with this campaign. This included two cases on customers based within the United States who had a Salesforce integration, where the pattern of activities was notably similar.

    On August 17, Darktrace observed an account belonging to one of these customers logging in from the rare endpoint 208.68.36[.]90, while the user was seen active from another location. This IP is a known indicator of compromise (IoC) reported by open-source intelligence (OSINT) for the campaign [2].

    Cyber AI Analyst Incident summarizing the suspicious login seen for the account.
    Figure 1: Cyber AI Analyst Incident summarizing the suspicious login seen for the account.

    The login event was associated with the application Drift, further connecting the events to this campaign.

    Advanced Search logs showing the Application used to login.
    Figure 2: Advanced Search logs showing the Application used to login.

    Following the login, the actor initiated a high volume of Salesforce API requests using methods such as GET, POST, and DELETE. The GET requests targeted endpoints like /services/data/v57.0/query and /services/data/v57.0/sobjects/Case/describe, where the former is used to retrieve records based on a specific criterion, while the latter provides metadata for the Case object, including field names and data types [5,6].

    Subsequently, a POST request to /services/data/v57.0/jobs/query was observed, likely to initiate a Bulk API query job for extracting large volumes of data from the Ingest Job endpoint [7,8].

    Finally, a DELETE request to remove an ingestion job batch, possibly an attempt to obscure traces of prior data access or manipulation.

    A case on another US-based customer took place a day later, on August 18. This again began with an account logging in from the rare IP 208.68.36[.]90 involving the application Drift. This was followed by Salesforce GET requests targeting the same endpoints as seen in the previous case, and then a POST to the Ingest Job endpoint and finally a DELETE request, all occurring within one minute of the initial suspicious login.

    The chain of anomalous behaviors, including a suspicious login and delete request, resulted in Darktrace’s Autonomous Response capability suggesting a ‘Disable user’ action. However, the customer’s deployment configuration required manual confirmation for the action to take effect.

    An example model alert for the user, triggered due to an anomalous API DELETE request.
    Figure 3: An example model alert for the user, triggered due to an anomalous API DELETE request.
    Figure 4: Model Alert Event Log showing various model alerts for the account that ultimately led to an Autonomous Response model being triggered.

    Conclusion

    In conclusion, this incident underscores the escalating risks of SaaS supply chain attacks, where third-party integrations can become avenues for attacks. It demonstrates how adversaries can exploit legitimate OAuth tokens and API traffic to circumvent traditional defenses. This emphasizes the necessity for constant monitoring of SaaS and cloud activity, beyond just endpoints and networks, while also reinforcing the significance of applying least privilege access and routinely reviewing OAuth permissions in cloud environments. Furthermore, it provides a wider perspective into the evolution of the threat landscape, shifting towards credential and token abuse as opposed to malware-driven compromise.

    Credit to Emma Foulger (Global Threat Research Operations Lead), Calum Hall (Technical Content Researcher), Signe Zaharka (Principal Cyber Analyst), Min Kim (Senior Cyber Analyst), Nahisha Nobregas (Senior Cyber Analyst), Priya Thapa (Cyber Analyst)

    Appendices

    Darktrace Model Detections

    ·      SaaS / Access / Unusual External Source for SaaS Credential Use

    ·      SaaS / Compromise / Login From Rare Endpoint While User Is Active

    ·      SaaS / Compliance / Anomalous Salesforce API Event

    ·      SaaS / Unusual Activity / Multiple Unusual SaaS Activities

    ·      Antigena / SaaS / Antigena Unusual Activity Block

    ·      Antigena / SaaS / Antigena Suspicious Source Activity Block

    Customers should consider integrating Salesforce with Darktrace where possible. These integrations allow better visibility and correlation to spot unusual behavior and possible threats.

    IoC List

    (IoC – Type)

    ·      208.68.36[.]90 – IP Address

    References

    1.     https://cloud.google.com/blog/topics/threat-intelligence/data-theft-salesforce-instances-via-salesloft-drift

    2.     https://trust.salesloft.com/?uid=Drift+Security+Update%3ASalesforce+Integrations+%283%3A30PM+ET%29

    3.     https://thehackernews.com/2025/08/salesloft-oauth-breach-via-drift-ai.html

    4.     https://unit42.paloaltonetworks.com/threat-brief-compromised-salesforce-instances/

    5.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_query.htm

    6.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_sobject_describe.htm

    7.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/get_job_info.htm

    8.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/query_create_job.htm

    Continue reading
    About the author
    Emma Foulger
    Global Threat Research Operations Lead
    Your data. Our AI.
    Elevate your network security with Darktrace AI