Blog
/
Network
/
April 8, 2024

Balada Injector: Darktrace’s Investigation into the Malware Exploiting WordPress Vulnerabilities

This blog explores Darktrace’s detection of Balada Injector, a malware known to exploit vulnerabilities in WordPress to gain unauthorized access to networks. Darktrace was able to define numerous use-cases within customer environments which followed previously identified patterns of activity spikes across multiple weeks.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
08
Apr 2024

Introduction

With millions of users relying on digital platforms in their day-to-day lives, and organizations across the world depending on them for their business operations, they have inevitably also become a prime target for threat actors. The widespread exploitation of popular services, websites and platforms in cyber-attacks highlights the pervasive nature of malicious actors in today’s threat landscape.

A prime illustration can be seen within the content management system WordPress. Its widespread use and extensive plug-in ecosystem make it an attractive target for attackers aiming to breach networks and access sensitive data, thus leading to routine exploitation attempts. In the End of Year Threat Report for 2023, for example, Darktrace reported that a vulnerability in one WordPress plug-in, namely an authentication bypass vulnerability in miniOrange's Social Login and Register. Darktrace observed it as one of the most exploited vulnerabilities observed across its customer base in the latter half of 2023.

Between September and October 2023, Darktrace observed a string of campaign-like activity associated with Balada Injector, a malware strain known to exploit vulnerabilities in popular plug-ins and themes on the WordPress platform in order to inject a backdoor to provide further access to affected devices and networks. Thanks to its anomaly-based detection, Darktrace DETECT™ was able to promptly identify suspicious connections associated with the Balada Injector, ensuring that security teams had full visibility over potential post-compromise activity and allowing them to act against offending devices.

What is Balada Injector?

The earliest signs of the Balada Injector campaign date back to 2017; however, it was not designated the name Balada Injector until December 2022 [1]. The malware utilizes plug-ins and themes in WordPress to inject a backdoor that redirects end users to malicious and fake sites. It then exfiltrates sensitive information, such as database credentials, archive files, access logs and other valuable information which may not be properly secured [1]. Balada Injector compromise activity is also reported to arise in spikes of activity that emerge every couple of weeks [4].

In its most recent attack activity patterns, specifically in September 2023, Balada Injector exploited a cross-site scripting (XSS) vulnerability in CVE-2023-3169 associated with the tagDiv composer plug-in. Some of the injection methods observed included HTML injections, database injections, and arbitrary file injections. In late September 2023, a similar pattern of behavior was observed, with the ability to plant a backdoor that could execute PHP code and install a malicious WordPress plug-in, namely ‘wp-zexit’.

According to external security researchers [2], the most recent infection activity spikes for Balada Injector include the following:

Pattern 1: ‘stay.decentralappps[.]com’ injections

Pattern 2: Autogenerated malicious WordPress users

Pattern 3: Backdoors in the Newspaper theme’s 404.php file

Pattern 4: Malicious ‘wp-zexit’ plug-in installation

Pattern 5: Three new Balada Injector domains (statisticscripts[.]com, dataofpages[.]com, and listwithstats[.]com)

Pattern 6: Promsmotion[.]com domain

Darktrace’s Coverage of Balada Injector

Darktrace detected devices across multiple customer environments making external connections to the malicious Balada Injector domains, including those associated with aforementioned six infection activity patterns. Across the incidents investigated by Darktrace, much of the activity appeared to be associated with TLS/SSL connectivity, related to Balada Injector endpoints, which correlated with the reported infection patterns of this malware. The observed hostnames were all recently registered and, in most cases, had IP geolocations in either the Netherlands or Ukraine.

In the observed cases of Balada Injector across the Darktrace fleet, Darktrace RESPOND™ was not active on the affected customer environments. If RESPOND had been active and enabled in autonomous response mode at the time of these attacks, it would have been able to quickly block connections to malicious Balada Injector endpoints as soon as they were identified by DETECT, thereby containing the threat.

Looking within the aforementioned activity patterns, Darktrace identified a Balada Injector activity within a customer’s environment on October 16, 2023, when a device was observed making a total of 9 connection attempts to ‘sleep[.]stratosbody[.]com’, a domain that had previously been associated with the malware [2]. Darktrace recognized that the endpoint had never been seen on the network, with no other devices having connected to it previously, thus treated it as suspicious.

Figure 1: The connection details above demonstrate 100% rare external connections were made from the internal device to the ‘sleep[.]stratosbody[.]com’ endpoint.

Similarly, on September 21, 2023, Darktrace observed a device on another customer network connecting to an external IP that had never previously been observed on the environment, 111.90.141[.]193. The associated server name was a known malicious endpoint, ‘stay.decentralappps[.]com’, known to be utilized by Balada Injector to host malicious scripts used to compromise WordPress sites. Although the ‘stay.decentralappps[.]com’ domain was only registered in September 2023, it was reportedly used in the redirect chain of the aforementioned stratosbody[.com] domain [2]. Such scripts can be used to upload backdoors, including malicious plug-ins, and create blog administrators who can perform administrative tasks without having to authenticate [2].

Figure 2: Advance Search results displaying the metadata logs surrounding the unusual connections to ‘stay.decentralappps[.]com’. A total of nine HTTP CONNECT requests were observed, with status messages “Proxy Authorization Required” and “Connection established”.

Darktrace observed additional connections within the same customer’s environment on October 10 and October 18, specifically SSL connections from two distinct source devices to the ‘stay.decentralappps[.]com’ endpoint. Within these connections, Darktrace observed the normalized JA3 fingerprints, “473f0e7c0b6a0f7b049072f4e683068b” and “aa56c057ad164ec4fdcb7a5a283be9fc”, the latter of which corresponds to GitHub results mentioning a Python client (curl_cffi) that is able to impersonate the TLS signatures of browsers or JA3 fingerprints [8].

Figure 3: Advanced Search query results showcasing Darktrace’s detection of SSL connections to ‘stay.decentralappps[.]com over port 443.

On September 29, 2023, a device on a separate customer’s network was observed connecting to the hostname ‘cdn[.]dataofpages[.]com’, one of the three new Balada Injector domains identified as part of the fifth pattern of activity outlined above, using a new SSL certificate via port 443. Multiple open-source intelligence (OSINT) vendors flagged this domain as malicious and associated with Balada Injector malware [9].

Figure 4: The Model Breach Event Log detailing the Balada Injector-related connections observed causing the ‘Anomalous External Activity from Critical Network Device’ DETECT model to breach.

On October 2, 2023, Darktrace observed the device of another customer connecting to the rare hostname, ‘js.statisticscripts[.]com’ with the IP address 185.39.206[.]161, both of which had only been registered in late September and are known to be associated with the Balada Injector.

Figure 5: Model Breach Event Log detailing connections to the hostname ‘js.statisticscripts[.]com’ over port 137.

On September 13, 2023, Darktrace identified a device on another customer’s network connecting to the Balada Injector endpoint ‘stay.decentralappps[.]com’ endpoint, with the destination IP 1.1.1[.]1, using the SSL protocol. This time, however, Darktrace also observed the device making subsequent connections to ‘get.promsmotion[.]com’ a subdomain of the ‘promsmotion[.]com’ domain. This domain is known to be used by Balada Injector actors to host malicious scripts that can be injected into the WordPress Newspaper theme as potential backdoors to be leveraged by attackers.

In a separate case observed on September 14, Darktrace identified a device on another environment connecting to the domain ‘collect[.]getmygateway[.]com’ with the IP 88.151.192[.]254. No other device on the customer’s network had visited this endpoint previously, and the device in question was observed repeatedly connecting to it via port 443 over the course of four days. While this specific hostname had not been linked with a specific activity pattern of Balada Injector, it was reported as previously associated with the malware in September 2023 [2].

Figure 6: Model Breach Event Log displaying a customer device making repeated connections to the endpoint ‘collect[.]getmygateway[.]com’, breaching the DETECT model ‘Repeating Connections Over 4 Days’.

In addition to DETECT’s identification of this suspicious activity, Darktrace’s Cyber AI Analyst™ also launched its own autonomous investigation into the connections. AI Analyst was able to recognize that these separate connections that took place over several days were, in fact, connected and likely represented command-and-control (C2) beaconing activity that had been taking place on the customer networks.

By analyzing the large number of external connections taking place on a customer’s network at any one time, AI Analyst is able to view seemingly isolated events as components of a wider incident, ensuring that customers maintain full visibility over their environments and any emerging malicious activity.

Figure 7: Cyber AI Analyst investigation detailing the SSL connectivity observed, including endpoint details and overall summary of the beaconing activity.

Conclusion

While Balada Injector’s tendency to interchange C2 infrastructure and utilize newly registered domains may have been able to bypass signature-based security measures, Darktrace’s anomaly-based approach enabled it to swiftly identify affected devices across multiple customer environments, without needing to update or retrain its models to keep pace with the evolving iterations of WordPress vulnerabilities.

Unlike traditional measures, Darktrace DETECT’s Self-Learning AI focusses on behavioral analysis, crucial for identifying emerging threats like those exploiting commonly used platforms such as WordPress. Rather than relying on historical threat intelligence or static indicators of compromise (IoC) lists, Darktrace identifies the subtle deviations in device behavior, such as unusual connections to newly registered domains, that are indicative of network compromise.

Darktrace’s suite of products, including DETECT+RESPOND, is uniquely positioned to proactively identify and contain network compromises from the onset, offering vital protection against disruptive cyber-attacks.

Credit to: Justin Torres, Cyber Analyst, Nahisha Nobregas, Senior Cyber Analyst

Appendices

Darktrace DETECT Model Coverage

  • Anomalous Server Activity / Anomalous External Activity from Critical Network Device
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Anomalous Connection / Rare External SSL Self-Signed
  • Compliance / Possible DNS Over HTTPS/TLS
  • Compliance / External Windows Communications
  • Compromise / Repeating Connections Over 4 Days
  • Compromise / Beaconing Activity To External Rare
  • Compromise / SSL Beaconing to Rare Destination
  • Compromise / HTTP Beaconing to Rare Destination
  • Compromise / Suspicious TLS Beaconing To Rare External
  • Compromise / Large DNS Volume for Suspicious Domain
  • Anomalous Server Activity / Outgoing from Server
  • Anomalous Server Activity / Rare External from Server
  • Device / Suspicious Domain

List of IoCs

IoC - Type - Description + Confidence

collect[.]getmygateway[.]com - Hostname - Balada C2 Endpoint

cdn[.]dataofpages[.]com - Hostname - Balada C2 Endpoint

stay[.]decentralappps[.]com - Hostname - Balada C2 Endpoint

get[.]promsmotion[.]com - Hostname - Balada C2 Endpoint

js[.]statisticscripts[.]com - Hostname - Balada C2 Endpoint

sleep[.]stratosbody[.]com - Hostname - Balada C2 Endpoint

trend[.]stablelightway[.]com - Hostname - Balada C2 Endpoint

cdn[.]specialtaskevents[.]com - Hostname - Balada C2 Endpoint

88.151.192[.]254 - IP Address - Balada C2 Endpoint

185.39.206[.]160 - IP Address - Balada C2 Endpoint

111.90.141[.]193 - IP Address - Balada C2 Endpoint

185.39.206[.]161 - IP Address - Balada C2 Endpoint

2.59.222[.]121 - IP Address - Balada C2 Endpoint

80.66.79[.]253 - IP Address - Balada C2 Endpoint

Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:68.0) - User Agent - Observed User Agent in Balada C2 Connections

Gecko/20100101 Firefox/68.0 - User Agent - Observed User Agent in Balada C2 Connections

Mozilla/5.0 (Windows NT 10.0; Win64; x64) - User Agent - Observed User Agent in Balada C2 Connections

AppleWebKit/537.36 (KHTML, like Gecko) - User Agent - Observed User Agent in Balada C2 Connections

Chrome/117.0.0.0 - User Agent - Observed User Agent in Balada C2 Connections

Safari/537.36 - User Agent - Observed User Agent in Balada C2 Connections

Edge/117.0.2045.36 - User Agent - Observed User Agent in Balada C2 Connections

MITRE ATT&CK Mapping

Technique - Tactic - ID - Sub Technique

Exploit Public-Facing Application

INITIAL ACCESS

T1190

Web Protocols

COMMAND AND CONTROL

T1071.001

T1071

Protocol Tunneling

COMMAND AND CONTROL

T1572


Default Accounts

DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS

T1078.001

T1078

Domain Accounts

DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS

T1078.002

T1078

External Remote Services

PERSISTENCE, INITIAL ACCESS

T1133

NA

Local Accounts

DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS

T1078.003

T1078

Application Layer Protocol

COMMAND AND CONTROL

T1071

NA

Browser Extensions

PERSISTENCE

T1176

NA

Encrypted Channel

COMMAND AND CONTROL

T1573

Fallback Channels

COMMAND AND CONTROL

T1008

Multi-Stage Channels

COMMAND AND CONTROL

T1104

Non-Standard Port

COMMAND AND CONTROL

T1571

Supply Chain Compromise

INITIAL ACCESS ICS

T0862

Commonly Used Port

COMMAND AND CONTROL ICS

T0885

References

[1] https://blog.sucuri.net/2023/04/balada-injector-synopsis-of-a-massive-ongoing-wordpress-malware-campaign.html

[2] https://blog.sucuri.net/2023/10/balada-injector-targets-unpatched-tagdiv-plugin-newspaper-theme-wordpress-admins.html

[3] https://securityboulevard.com/2021/05/wordpress-websites-redirecting-to-outlook-phishing-pages-travelinskydream-ga-track-lowerskyactive/

[4] https://thehackernews.com/2023/10/over-17000-wordpress-sites-compromised.html

[5] https://www.bleepingcomputer.com/news/security/over-17-000-wordpress-sites-hacked-in-balada-injector-attacks-last-month/

[6]https://nvd.nist.gov/vuln/detail/CVE-2023-3169

[7] https://www.geoedge.com/balda-injectors-2-0-evading-detection-gaining-persistence/

[8] https[:]//github[.]com/yifeikong/curl_cffi/blob/master/README.md

[9] https://www.virustotal.com/gui/domain/cdn.dataofpages.com

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst

More in this series

No items found.

Blog

/

/

August 7, 2025

How CDR & Automated Forensics Transform Cloud Incident Response

cloud security investigation guy on computer doing workDefault blog imageDefault blog image

Introduction: Cloud investigations

In cloud security, speed, automation and clarity are everything. However, for many SOC teams, responding to incidents in the cloud is often very difficult especially when attackers move fast, infrastructure is ephemeral, and forensic skills are scarce.

In this blog we will walk through an example that shows exactly how Darktrace Cloud Detection and Response (CDR) and automated cloud forensics together, solve these challenges, automating cloud detection, and deep forensic investigation in a way that’s fast, scalable, and deeply insightful.

The Problem: Cloud incidents are hard to investigate

Security teams often face three major hurdles when investigating cloud detections:

Lack of forensic expertise: Most SOCs and security teams aren’t natively staffed with forensics specialists.

Ephemeral infrastructure: Cloud assets spin up and down quickly, leaving little time to capture evidence.

Lack of existing automation: Gathering forensic-level data often requires manual effort and leaves teams scrambling around during incidents — accessing logs, snapshots, and system states before they disappear. This process is slow and often blocked by permissions, tooling gaps, or lack of visibility.

How Darktrace augments cloud investigations

1. Darktrace’s CDR finds anomalous activity in the cloud

An alert is generated for a large outbound data transfer from an externally facing EC2 instance to a rare external endpoint. It’s anomalous, unexpected, and potentially serious.

2. AI-led investigation stitches together the incident for a SOC analyst to look into

When a security incident unfolds, Darktrace’s Cyber AI Analyst TM is the first to surface it, automatically correlating behaviors, surfacing anomalies, and presenting a cohesive incident summary. It’s fast, detailed, and invaluable.

Once the incident is created, more questions are raised.

  • How were the impacted resources compromised?
  • How did the attack unfold over time – what tools and malware were used?
  • What data was accessed and exfiltrated?

What you’ll see as a SOC analyst: The incident begins in Darktrace’s Threat Visualizer, where a Cyber AI Analyst incident has been generated automatically highlighting large anomalous data transfer to a suspicious external IP. This isn’t just another alert, it’s a high-fidelity signal backed by Darktrace’s Self-Learning AI.

Cyber AI Analyst incident created for anomalous outbound data transfer
Figure 1: Cyber AI Analyst incident created for anomalous outbound data transfer

The analyst can then immediately pivot to Darktrace / CLOUD’s architecture view (see below), gaining context on the asset’s environment, ingress/egress points, connected systems, potential attack paths and whether there are any current misconfigurations detected on the asset.

Darktrace / CLOUD architecture view providing critical cloud context
Figure 2: Darktrace / CLOUD architecture view providing critical cloud context

3. Automated forensic capture — No expertise required

Then comes the game-changer, Darktrace’s recent acquisition of Cado enhances its cloud forensics capabilities. From the first alert triggered, Darktrace has already kicked in and automatically processed and analyzed a full volume capture of the EC2. Everything, past and present, is preserved. No need for manual snapshots, CLI commands, or specialist intervention.

Darktrace then provides a clear timeline highlighting the evidence and preserving it. In our example we identify:

  • A brute-force attempt on a file management app, followed by a successful login
  • A reverse shell used to gain unauthorized remote access to the EC2
  • A reverse TCP connection to the same suspicious IP flagged by Darktrace
  • Attacker commands showing how the data was split and prepared for exfiltration
  • A file (a.tar) created from two sensitive archives: product_plans.zip and research_data.zip

All of this is surfaced through the timeline view, ranked by significance using machine learning. The analyst can pivot through time, correlate events, and build a complete picture of the attack — without needing cloud forensics expertise.

Darktrace even gives the ability to:

  • Download and inspect gathered files in full detail, enabling teams to verify exactly what data was accessed or exfiltrated.
  • Interact with the file system as if it were live, allowing investigators to explore directories, uncover hidden artifacts, and understand attacker movement with precision.
Figure 3 Cado critical forensic investigation automated insights
Figure 3: Cado critical forensic investigation automated insights
Figure 4: Cado forensic file analysis of reverse shell and download option
Figure 5: a.tar created from two sensitive archives: product_plans.zip and research_data.zip
Figure 6: Traverse the full file system of the asset

Why this matters?

This workflow solves the hardest parts of cloud investigation:

  1. Capturing evidence before it disappears
  2. Understanding attacker behavior in detail - automatically
  3. Linking detections to impact with full incident visibility

This kind of insight is invaluable for organizations especially regulated industries, where knowing exactly what data was affected is critical for compliance and reporting. It’s also a powerful tool for detecting insider threats, not just external attackers.

Darktrace / CLOUD and Cado together acts as a force multiplier helping with:

  • Reducing investigation time from hours to minutes
  • Preserving ephemeral evidence automatically
  • Empowering analysts with forensic-level visibility

Cloud threats aren’t slowing down. Your response shouldn’t either. Darktrace / CLOUD + Cado gives your SOC the tools to detect, contain, and investigate cloud incidents — automatically, accurately, and at scale.

[related-resource]

Continue reading
About the author
Adam Stevens
Director of Product, Cloud Security

Blog

/

Network

/

August 6, 2025

2025 Cyber Threat Landscape: Darktrace’s Mid-Year Review

cyberseucity 2025 half year threat report Default blog imageDefault blog image

2025: Threat landscape in review

The following is a retrospective of the first six months of 2025, highlighting key findings across the threat landscape impacting Darktrace customers.

Darktrace observed a wide range of tactics during this period, used by various types of threat actors including advanced persistent threats (APTs), Malware-as-a-Service (MaaS) and Ransomware-as-a-Service (RaaS) groups.

Methodology

Darktrace’s Analyst team conduct investigations and research into threats facing organizations and security teams across our customer base.  This includes direct investigations with our 24/7 Security Operations Centre (SOC), via services such as Managed Detection and Response (MDR) and Managed Threat Detection, as well as broader cross-fleet research through our Threat Research function.

At the core of our research is Darktrace’s anomaly-based detection, which the Analyst team contextualizes and analyzes to provide additional support to customers and deepen our understanding of the threats they face.

Threat actors are incorporating AI into offensive operations

Threat actors are continuously evolving their tactics, techniques, and procedures (TTPs), posing an ongoing challenge to effective defense hardening. Increasingly, many threat actors are adopting AI, particularly large language models (LLMs), into their operations to enhance the scale, sophistication, and efficacy of their attacks.

The evolving functionality of malware, such as the recently reported LameHug malware by CERT-UA, which uses an open-source LLM, exemplifies this observation [1].

Threat landscape trends in 2025

Threat actors applying AI to Email attacks

LLMs present a clear opportunity for attackers to take advantage of AI and create effective phishing emails at speed. While Darktrace cannot definitively confirm the use of AI to create the phishing emails observed across the customer base, the high volume of phishing emails and notable shifts in tactic could potentially be explained by threat actors adopting new tooling such as LLMs.

  • The total number of malicious emails detected by Darktrace from January to May 2025 was over 12.6 million
  • VIP users continue to face significant threat, with over 25% of all phishing emails targeting these users in the first five months of 2025
  • QR code-based phishing emails have remained a consistent tactic, with a similar proportion observed in January-May 2024 and 2025. The highest numbers were observed in February 2025, with over 1 million detected in that month alone.
  • Shifts towards increased sophistication within phishing emails are emerging, with a year-on-year increase in the proportion of phishing emails containing either a high text volume or multistage payloads. In the first five months of 2025, 32% of phishing emails contained a high volume of text.

The increase in proportion of phishing emails with a high volume of text in particular could point towards threat actors leveraging LLMs to create phishing emails with large, but believable, text in an easy and efficient way.

The above email statistics are derived from analysis of monitored Darktrace / EMAIL model data for all customer deployments hosted in the cloud between January 1 and May 31, 2025.

Campaign Spotlight: Simple, Quick - ClickFix

An interesting technique Darktrace observed multiple times throughout March and April was ClickFix social engineering, which exploits the intersection between humans and technology to trick users into executing malicious code on behalf of the attacker.

  • While this technique has been around since 2024, Darktrace observed campaign activity in the first half of 2025 suggesting a resurgence.  
  • A range of threat actors – from APTs to MaaS and RaaS have adopted this technique to deliver secondary payloads, like information stealing malware.
  • Attackers use fraudulent or compromised legitimate websites to inject malicious plugins that masquerade as fake CAPTCHAs.
  • Targeted users believe they are completing human verification or resolving a website issue, unaware that they are being guided through a series of simple steps to execute PowerShell code on their system.
  • Darktrace observed campaign activity during the first half of 2025 across a range of sectors, including Government, Healthcare, Insurance, Retail and, Non-profit.

Not just AI: Automation is enabling Ransomware and SaaS exploitation

The rise of phishing kits like FlowerStorm and Mamba2FA, which enable phishing and abuse users’ trust by mimicking legitimate services to bypass multi-factor authentication (MFA), highlight how the barriers to entry for sophisticated attacks continue to fall, enabling new threat actors. Combined with Software-as-a-Service (SaaS) account compromise, these techniques make up a substantial portion of cybercriminal activity observed by Darktrace so far this year.

Credentials remain the weak link

A key theme across multiple cases of ransomware was threat actors abusing compromised credentials to gain initial entry into networks via:

  • Unauthorized access to internet-facing technology such as RDP servers and virtual private networks (VPNs).
  • Unauthorized access to SaaS accounts.

SaaS targeted ransomware is on the rise

The encryption of files within SaaS environments observed by Darktrace demonstrates a continued trend of ransomware actors targeting these platforms over traditional networks, potentially driven by a higher return on investment.

SaaS accounts are often less protected than traditional systems because of Single Sign-On (SSO).  Additionally, platforms like Salesforce often host sensitive data, including emails, financial records, customer information, and network configuration details. This stresses the need for robust identity management practices and continuous monitoring.

RaaS is adding complexity and speed to cyber attacks

RaaS has dominated the attack landscape, with groups like Qilin, RansomHub, and Lynx all appearing multiple times in cases across Darktrace’s customer base over the past six months. Detecting ransomware attacks before the encryption stage remains a significant challenge, particularly in RaaS operations where different affiliates often use varying techniques for initial entry and earlier stages of the attack. Darktrace’s recent analysis of Scattered Spider underscores the challenge of hardening defenses against such varying techniques.

CVE exploitation continues despite available patches

Darktrace has also observed ransomware gangs exploiting known Common Vulnerabilities and Exposures (CVEs), including the Medusa ransomware group’s use of the SimpleHelp vulnerabilities: CVE-2024-57727 and CVE-2024-57728 in March, despite patches being made available in January [2].

Misused tools + delayed patches = growing cyber risk

The exploitation of common remote management tools like SimpleHelp highlights the serious challenges defenders face when patch management cycles are suboptimal. As threat actors continue to abuse legitimate services for malicious purposes, the challenges facing defenders will only grow more complex.

Edge exploitation

It comes as no surprise that exploitation of internet-facing devices continued to feature prominently in Darktrace’s Threat Research investigations during the first half of 2025.

Observed CVE exploitation included:

Many of Darktrace’s observations of CVE exploitation so far in 2025 align with wider industry reporting, which suggests that Chinese-nexus threat actors were deemed to likely have exploited these technologies prior to public disclosure. In the case of CVE-2025-0994 - a vulnerability affecting Trimble Cityworks, an asset management system designed for use by local governments, utilities, airports, and public work agencies [3].

Darktrace observed signs of exploitation as early as January 19, well before vulnerability’s public disclosure on February 6 [4]. Darktrace’s early identification of the exploitation stemmed from the detection of a suspicious file download from 192.210.239[.]172:3219/z44.exe - later linked to Chinese-speaking threat actors in a campaign targeting the US government [5].

This case demonstrates the risks posed by the exploitation of internet-facing devices, not only those hosting more common technologies, but also software associated specifically tied to Critical National Infrastructure (CNI); a lucrative target for threat actors. This also highlights Darktrace’s ability to detect exploitation of internet-facing systems, even without a publicly disclosed CVE. Further examples of how Darktrace’s anomaly detection can uncover malicious activity ahead of public vulnerability disclosures can be found here.

New threats and returning adversaries

In the first half of 2025, Darktrace observed a wide range of threats, from sophisticated techniques employed by APT groups to large-scale campaigns involving phishing and information stealers.

BlindEagle (APT-C-36)

Among the observed APT activity, BlindEagle (APT-C-36) was seen targeting customers in Latin America (LATM), first identified in February, with additional cases seen as recently as June.

Darktrace also observed a customer targeted in a China-linked campaign involving the LapDogs ORB network, with activity spanning from December 2024 and June 2025. These likely nation-state attacks illustrate the continued adoption of cyber and AI capabilities into the national security goals of certain countries.

Sophisticated malware functionality

Further sophistication has been observed within specific malware functionality - such as the malicious backdoor Auto-Color, which has now been found to employ suppression tactics to cover its tracks if it is unable to complete its kill chain - highlighting the potential for advanced techniques across every layer of an attack.

Familiar foes

Alongside new and emerging threats, previously observed and less sophisticated tools, such as worms, Remote Access Trojans (RATs), and information stealers, continue to impact Darktrace customers.

The Raspberry Robin worm... First seen in 2021, has been repeatedly identified within Darktrace’s customer base since 2022. Most recently, Darktrace’s Threat Research team identified cases in April and May this year. Recent open-source intelligence (OSINT) reporting suggests that Raspberry Robin continues to evolve its role as an Initial Access Broker (IAB), paving the way for various attacks and remaining a concern [6].

RATs also remain a threat, with examples like AsyncRAT and Gh0st RAT impacting Darktrace customers.

In April multiple cases of MaaS were observed in Darktrace’s customer base, with information stealers Amadey and Stealc, as well as GhostSocks being distributed as a follow up payload after an initial Amadey infection.

Conclusion

As cyber threats evolve, attackers are increasingly harnessing AI to craft highly convincing email attacks, automating phishing campaigns at unprecedented scale and speed. This, coupled with rapid exploitation of vulnerabilities and the growing sophistication of ransomware gangs operating as organized crime syndicates, makes today’s threat landscape more dynamic and dangerous than ever. Cyber defenders collaborate to combat these threats – the coordinated takedown of Lumma Stealer in May was a notable win for both industry and law-enforcement [7], however OSINT suggests that this threat persists [8], and new threats will continue to arise.

Traditional security tools that rely on static rules or signature-based detection often struggle to keep pace with these fast-moving, adaptive threats. In this environment, anomaly-based detection tools are no longer optional—they are essential. By identifying deviations in normal user and system behavior, tools like Darktrace provide a proactive layer of defense capable of detecting novel and emerging threats, even those that bypass conventional security measures. Investing in anomaly-based detection is critical to staying ahead of attackers who now operate with automation, intelligence, and global coordination.

Credit to Emma Foulger (Global Threat Research Operations Lead), Nathaniel Jones (VP, Security & AI Strategy, Field CISO),  Eugene Chua (Principal Cyber Analyst & Analyst Team Lead), Nahisha Nobregas (Senior Cyber Analyst), Nicole Wong (Principal Cyber Analyst), Justin Torres (Senior Cyber Analyst), Matthew John (Director of Operations, SOC), Sam Lister (Specialist Security Researcher), Ryan Traill (Analyst Content Lead) and the Darktrace Incident Management team.

The information contained in this blog post is provided for general informational purposes only and represents the views and analysis of Darktrace as of the date of publication. While efforts have been made to ensure the accuracy and timeliness of the information, the cybersecurity landscape is dynamic, and new threats or vulnerabilities may have emerged since this report was compiled.

This content is provided “as is” and without warranties of any kind, either express or implied. Darktrace makes no representations or warranties regarding the completeness, accuracy, reliability, or suitability of the information, and expressly disclaims all warranties.

Nothing in this blog post should be interpreted as legal, technical, or professional advice. Users of this information assume full responsibility for any actions taken based on its content, and Darktrace shall not be liable for any loss or damage resulting from reliance on this material. Reference to any specific products, companies, or services does not constitute or imply endorsement, recommendation, or affiliation.

Appendices

Indicators of Compromise (IoCs)

IoC - Type - Description + Probability

LapDogs ORB network, December 2024-June 2025

www.northumbra[.]com – Hostname – Command and Control (C2) server

103.131.189[.]2 – IP Address - C2 server, observed December 2024 & June 2025

103.106.230[.]31 – IP Address - C2 server, observed December 2024

154.223.20[.]56 – IP Address – Possible C2 server, observed December 2024

38.60.214[.]23 – IP Address – Possible C2 server, observed January & February 2025

154.223.20[.]58:1346/systemd-log – URL – Possible ShortLeash payload, observed December 2024

CN=ROOT,OU=Police department,O=LAPD,L=LA,ST=California,C=US - TLS certificate details for C2 server

CVE-2025-0994, Trimble Cityworks exploitation, January 2025

192.210.239[.]172:3219/z44.exe – URL - Likely malicious file download

AsyncRAT, February-March 2025

windows-cam.casacam[.]net – Hostname – Likely C2 server

88.209.248[.]141 – IP Address – Likely C2 server

207.231.105[.]51 – IP Address – Likely C2 server

163.172.125[.]253 – IP Address – Likely C2 server

microsoft-download.ddnsfree[.]com – Hostname – Likely C2 server

95.217.34[.]113 – IP Address – Likely C2 server

vpnl[.]net – Hostname – Likely C2 server

157.20.182[.]16 – IP Address - Likely C2 server

185.81.157[.]19 – IP Address – Likely C2 server

dynamic.serveftp[.]net – IP Address – Likely C2 server

158.220.96.15 – IP Address – Likely C2 server

CVE-2024-57727 & CVE-2024-57728, SimpleHelp RMM exploitation, March 2025

213.183.63[.]41 – IP Address - C2 server

213.183.63[.]41/access/JWrapper-Windows64JRE-version.txt?time=3512082867 – URL - C2 server

213.183.63[.]41/access/JWrapper-Windows64JRE-00000000002-archive.p2.l2 – URL - C2 server

pruebas.pintacuario[.]mx – Hostname – Possible C2 server

144.217.181[.]205 – IP Address – Likely C2 server

erp.ranasons[.]com – Hostname – Possible destination for exfiltration

143.110.243[.]154 – IP Address – Likely destination for exfiltration

Blind Eagle, April-June 2025

sostenermio2024.duckdns[.]org/31agosto.vbs – URL – Possible malicious file download

Stealc, April 2025

88.214.48[.]93/ea2cb15d61cc476f[.]php – URL – C2 server

Amadey & GhostSocks, April 2025

195.82.147[.]98 – IP Address - Amadey C2 server

195.82.147[.]98/0Bdh3sQpbD/index.php – IP Address – Likely Amadey C2 activity

194.28.226.181 – IP Address – Likely GhostSocks C2 server

RaspberryRobin, May 2025

4j[.]pm – Hostname – C2 server

4xq[.]nl – Hostname – C2 server

8t[.]wf – Hostname – C2 server

Gh0stRAT, May 2025

lu.dssiss[.]icu  - Hostname – Likely C2 server

192.238.133[.]162:7744/1-111.exe – URL – Possible addition payload

8e9dec3b028f2406a8c546a9e9ea3d50609c36bb - SHA1 - Possible additional payload

f891c920f81bab4efbaaa1f7a850d484 - MD5 – Possible additional payload

192.238.133[.]162:7744/c3p.exe – URL - Possible additional payload

03287a15bfd67ff8c3340c0bae425ecaa37a929f - SHA1 - Possible additional payload

02aa02aee2a6bd93a4a8f4941a0e6310 - MD5 - Possible additional payload

192.238.133[.]162:7744/1-1111.exe – URL - Possible additional payload

1473292e1405882b394de5a5857f0b6fa3858fd1 - SHA1 - Possible additional payload

69549862b2d357e1de5bab899ec0c817 - MD5 - Possible additional payload

192.238.133[.]162:7744/1-25.exe – URL -  Possible additional payload

20189164c4cd5cac7eb76ba31d0bd8936761d7a7  - SHA1 - Possible additional payload

f42aa5e68b28a3f335f5ea8b6c60cb57 – MD5 - Possible additional payload

192.238.133[.]162:7744/Project1_se.exe – URL - Possible additional payload

fea1e30dfafbe9fa9abbbdefbcbe245b6b0628ad - SHA1 - Possible additional payload

5ea622c630ef2fd677868cbe8523a3d5 - MD5 - Possible additional payload

192.238.133[.]162:7744/Project1_se.exe - URL - Possible additional payload

aa5a5d2bd610ccf23e58bcb17d6856d7566d71b9  - SHA1 - Possible additional payload

9d33029eaeac1c2d05cf47eebb93a1d0 - MD5 - Possible additional payload

References and further reading

1.        https://cip.gov.ua/en/news/art28-atakuye-sektor-bezpeki-ta-oboroni-za-dopomogoyu-programnogo-zasobu-sho-vikoristovuye-shtuchnii-intelekt?utm_medium=email&_hsmi=113619842&utm_content=113619842&utm_source=hs_email

2.        https://www.s-rminform.com/latest-thinking/cyber-threat-advisory-medusa-and-the-simplehelp-vulnerability

3.        https://assetlifecycle.trimble.com/en/products/software/cityworks

4.     https://nvd.nist.gov/vuln/detail/CVE-2025-0994

5.     https://blog.talosintelligence.com/uat-6382-exploits-cityworks-vulnerability/

6.        https://www.silentpush.com/blog/raspberry-robin/

7.        https://blogs.microsoft.com/on-the-issues/2025/05/21/microsoft-leads-global-action-against-favored-cybercrime-tool/

8.     https://www.trendmicro.com/en_sg/research/25/g/lumma-stealer-returns.html

Related Darktrace investigations

-              ClickFix

-              FlowerStorm

-              Mamba 2FA

-              Qilin Ransomware

-              RansomHub Ransomware

-              RansomHub Revisited

-              Lynx Ransomware

-              Scattered Spider

-              Medusa Ransomware

-              Legitimate Services Malicious Intentions

-              CVE-2025-0282 and CVE-2025-0283 – Ivanti CS, PS and ZTA

-              CVE-2025-31324 – SAP Netweaver

-              Pre-CVE Threat Detection

-              BlindEagle (APT-C-36)

-              Raspberry Robin Worm

-              AsyncRAT

-              Amadey

-              Lumma Stealer

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead
Your data. Our AI.
Elevate your network security with Darktrace AI