Blog
/
Network
/
October 18, 2022

Kill Chain Insights: Detecting AutoIT Malware Compromise

Discover how AutoIt malware operates and learn strategies to combat this emerging threat in our latest blog post.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Joel Davidson
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
18
Oct 2022

Introduction 

Good defence is like an onion, it has layers. Each part of a security implementation should have checks built in so that if one wall is breached, there are further contingencies. Security aficionados call this ‘defence in depth’, a military concept introduced to the cyber-sphere in 2009 [1]. Since then, it has remained a central tenet when designing secure systems, digital or otherwise [2]. Despite this, the attacker’s advantage is ever-present with continued development of malware and zero-day exploits. No matter how many layers a security platform has, how can organisations be expected to protect against a threat they do not know or even understand? 

Take the case of one Darktrace customer, a government-contracted manufacturing company located in the Americas. This company possesses a modern OT and IT network comprised of several thousand devices. They have dozens of servers, a few of which host Microsoft Exchange. Every week, these few mail servers receive hundreds of malicious payloads which will ultimately attempt to make their way into over a thousand different inboxes while dodging different security gateways. Had the RESPOND portion of Darktrace for Email been properly enabled, this is where the story would have ended. However, in June 2022 an employee made an instinctual decision that could have potentially cost the company its time, money, and reputation as a government contractor. Their crime: opening an unknown html file attached to a compelling phishing email. 

Following this misstep, a download was initiated which resulted in compromise of the system via vulnerable Microsoft admin tools from endpoints largely unknown to conventional OSINT sources. Using these tools, further malicious connectivity was accomplished before finally petering out. Fortunately, their existing Microsoft security gateway was up to date on the command and control (C2) domains observed in this breach and refused the connections.

Darktrace detected this activity at every turn, from the initial email to the download and subsequent attempted C2. Cyber AI Analyst stitched the events together for easy understanding and detected Indicators of Compromise (IOCs) that were not yet flagged in the greater intelligence community and, critically, did this all at machine speed. 

So how did the attacker evade action for so long? The answer is product misconfiguration - they did not refine their ‘layers’.  

Attack Details

On the night of June 8th an employee received a malicious email. Darktrace detected that this email contained a html attachment which itself contained links to endpoints 100% rare to the network. This email also originated from a never-before-seen sender. Although it would usually have been withheld based on these factors, the customer’s Darktrace/Email deployment was set to Advisory Mode meaning it continued through to the inbox. Late the next day, this user opened the attachment which then routed them to the 100% rare endpoint ‘xberxkiw[.]club’, a probable landing page for malware that did not register on OSINT available at the time.

Figure 1- Popular OSINT VirusTotal showing zero hits against the rare endpoint 

Only seconds after reaching the endpoint, Darktrace detected the Microsoft BITS user agent reaching out to another 100% rare endpoint ‘yrioer[.]mikigertxyss[.]com’, which generated a DETECT/Network model breach, ‘Unusual BITS Activity’. This was immediately suspicious since BITS is a deprecated and insecure windows admin tool which has been known to facilitate the movement of malicious payloads into and around a network. Upon successfully establishing a connection, the affected device began downloading a self-professed .zip file. However, Darktrace detected this file to be an extension-swapped .exe file. A PCAP of this activity can be seen below in Figure 2.

Figure 2- PCAP highlighting BITs service connections and false .zip (.exe) download

This activity also triggered a correlating breach of the ‘Masqueraded File Transfer’ model and pushed a high-fidelity alert to the Darktrace Proactive Threat Notification (PTN) service. This ensured both Darktrace and the customer’s SOC team were alerted to the anomalous activity.

At this stage the local SOC were likely beginning their triage. However further connections were being made to extend the compromise on the employee’s device and the network. The file they downloaded was later revealed to be ‘AutoIT3.exe’, a default filename given to any AutoIt script. AutoIt scripts do have legitimate use cases but are often associated with malicious activity for their ability to interact with the Windows GUI and bypass client protections. After opening, these scripts would launch on the host device and probe for other weaknesses. In this case, the script may have attempted to hunt passwords/default credentials, scan the local directory for common sensitive files, or scout local antivirus software on the device. It would then share any information gathered via established C2 channels.  

After the successful download of this mismatched MIME type, the device began attempting to further establish C2 to the endpoint ‘dirirxhitoq[.]kialsoyert[.]tk’. Even though OSINT still did not flag this endpoint, Darktrace detected this outreach as suspicious and initiated its first Cyber AI Analyst investigation into the beaconing activity. Following the sixth connection made to this endpoint on the 10th of June, the infected device breached C2 models, such as ‘Agent Beacon (Long Period)’ and ‘HTTP Beaconing to Rare Destination’. 

As the beaconing continued, it was clear that internal reconnaissance from AutoIt was not widely achieved, although similar IOCs could be detected on at least two other internal devices. This may represent other users opening the same malicious email, or successful lateral movement and infection propagation from the initial user/device. However comparatively, these devices did not experience the same level of infection as the first employee’s machine and never downloaded any malicious executables. AutoIt has a history of being used to deliver information stealers, which suggests a possible motivation had wider network compromise been successful [3].

Thankfully, after the 10th of June no further exploitation was observed. This was likely due to the combined awareness and action brought by the PTN alerting, static security gateways and action from the local security team. The company were protected thanks to defence in depth.  

Darktrace Coverage

Despite this, the role of Darktrace itself cannot be understated. Darktrace/Email was integral to the early detection process and provided insight into the vector and delivery methods used by this attacker. Post-compromise, Darktrace/Network also observed the full range of suspicious activity brought about by this incursion. In particular, the AI analyst feature played a major role in reducing the time for the SOC team to triage by detecting and flagging key information regarding some of the earliest IOCs.

Figure 3- Sample information pulled by AI analyst about one of the involved endpoints

Alongside the early detection, there were several instances where RESPOND/Network would have intervened however autonomous actions were limited to a small test group and not enabled widely throughout the customer’s deployment. As such, this activity continued unimpeded- a weak layer. Figure 4 highlights the first Darktrace RESPOND action which would have been taken.

Figure 4- Upon detecting the download of a mismatched mime from a rare endpoint, Darktrace RESPOND would have blocked all connections to the rare endpoint on the relevant port in a targeted manner

This Darktrace RESPOND action provides a precise and limited response by blocking the anomalous file download. However, after continued anomalous activity, RESPOND would have strengthened its posture and enforced stronger curbs across the wider anomalous activity. This stronger enforcement is a measure designed to relegate a device to its established norm. The breach which would generate this response can be seen below:

Figure 5- After a prolonged period of anomalous activity, Darktrace RESPOND would have stepped in to enforce the typical pattern of life observed on this device

Although Darktrace RESPOND was not fully enabled, this company had an extra layer of security in the PTN service, which alerted them just minutes after the initial file download was detected, alongside details relevant to the investigation. This ensured both Darktrace analysts and their own could review the activity and begin to isolate and remediate the threat. 

Concluding Insights

Thankfully, with multiple layers in their security, the customer managed to escape this incident largely unscathed. Quick and comprehensive email and network detection, customer alerting and local gateway blocking C2 connections ensured that the infection did not have leeway to propagate laterally throughout the network. However, even though this infection did not lead to catastrophe, the fact that it happened in the first place should be a learning point. 

Had RESPOND/Email been properly configured, this threat would have been stopped before reaching its intended recipients, removing the need to rely on end-users as a security measure. Furthermore, had RESPOND/Network been utilized beyond a limited test group, this activity would have been blocked at every other step of the network-level kill chain. From the anomalous MIME download to the establishment of C2, Darktrace RESPOND would have been able to effectively isolate and quarantine this activity to the host device, without any reliance on slow-to-update OSINT sources. RESPOND allows for the automation of time-sensitive security decisions and adds a powerful layer of defence that conventional security solutions cannot provide. Although it can be difficult to relinquish human ownership of these decisions, doing so is necessary to prevent unknown attackers from infiltrating using unknown vectors to achieve unknown ends.  

In conclusion, this incident demonstrates an effective case study around detecting a threat with novel IOCs. However, it is also a reminder that a company’s security makeup can always be improved. Overall, when building security layers in a company’s ‘onion’, it is great to have the best tools, but it is even greater to use them in the best way. Only with continued refining can organisations guarantee defence in depth. 

Thanks to Connor Mooney and Stefan Rowe for their contributions.

Appendices

Darktrace Model Detections

·      Anomalous File / EXE from Rare External Location 

·      Compromise / Agent Beacon (Long Period) 

·      Compromise / HTTP Beaconing to Rare Destination 

·      Device / Large Number of Model Breaches 

·      Device / Suspicious Domain 

·      Device / Unusual BITS Activity 

·      Enhanced Monitoring: Anomalous File / Masqueraded File Transfer 

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Joel Davidson
Cyber Analyst

More in this series

No items found.

Blog

/

Email

/

September 30, 2025

Out of Character: Detecting Vendor Compromise and Trusted Relationship Abuse with Darktrace

vendor email compromiseDefault blog imageDefault blog image

What is Vendor Email Compromise?

Vendor Email Compromise (VEC) refers to an attack where actors breach a third-party provider to exploit their access, relationships, or systems for malicious purposes. The initially compromised entities are often the target’s existing partners, though this can extend to any organization or individual the target is likely to trust.

It sits at the intersection of supply chain attacks and business email compromise (BEC), blending technical exploitation with trust-based deception. Attackers often infiltrate existing conversations, leveraging AI to mimic tone and avoid common spelling and grammar pitfalls. Malicious content is typically hosted on otherwise reputable file sharing platforms, meaning any shared links initially seem harmless.

While techniques to achieve initial access may have evolved, the goals remain familiar. Threat actors harvest credentials, launch subsequent phishing campaigns, attempt to redirect invoice payments for financial gain, and exfiltrate sensitive corporate data.

Why traditional defenses fall short

These subtle and sophisticated email attacks pose unique challenges for defenders. Few busy people would treat an ongoing conversation with a trusted contact with the same level of suspicion as an email from the CEO requesting ‘URGENT ASSISTANCE!’ Unfortunately, many traditional secure email gateways (SEGs) struggle with this too. Detecting an out-of-character email, when it does not obviously appear out of character, is a complex challenge. It’s hardly surprising, then, that 83% of organizations have experienced a security incident involving third-party vendors [1].  

This article explores how Darktrace detected four different vendor compromise campaigns for a single customer, within a two-week period in 2025.  Darktrace / EMAIL successfully identified the subtle indicators that these seemingly benign emails from trusted senders were, in fact, malicious. Due to the configuration of Darktrace / EMAIL in this customer’s environment, it was unable to take action against the malicious emails. However, if fully enabled to take Autonomous Response, it would have held all offending emails identified.

How does Darktrace detect vendor compromise?

The answer lies at the core of how Darktrace operates: anomaly detection. Rather than relying on known malicious rules or signatures, Darktrace learns what ‘normal’ looks like for an environment, then looks for anomalies across a wide range of metrics. Despite the resourcefulness of the threat actors involved in this case, Darktrace identified many anomalies across these campaigns.

Different campaigns, common traits

A wide variety of approaches was observed. Individuals, shared mailboxes and external contractors were all targeted. Two emails originated from compromised current vendors, while two came from unknown compromised organizations - one in an associated industry. The sender organizations were either familiar or, at the very least, professional in appearance, with no unusual alphanumeric strings or suspicious top-level domains (TLDs). Subject line, such as “New Approved Statement From [REDACTED]” and “[REDACTED] - Proposal Document” appeared unremarkable and were not designed to provoke heightened emotions like typical social engineering or BEC attempts.

All emails had been given a Microsoft Spam Confidence Level of 1, indicating Microsoft did not consider them to be spam or malicious [2]. They also passed authentication checks (including SPF, and in some cases DKIM and DMARC), meaning they appeared to originate from an authentic source for the sender domain and had not been tampered with in transit.  

All observed phishing emails contained a link hosted on a legitimate and commonly used file-sharing site. These sites were often convincingly themed, frequently featuring the name of a trusted vendor either on the page or within the URL, to appear authentic and avoid raising suspicion. However, these links served only as the initial step in a more complex, multi-stage phishing process.

A legitimate file sharing site used in phishing emails to host a secondary malicious link.
Figure 1: A legitimate file sharing site used in phishing emails to host a secondary malicious link.
Another example of a legitimate file sharing endpoint sent in a phishing email and used to host a malicious link.
Figure 2: Another example of a legitimate file sharing endpoint sent in a phishing email and used to host a malicious link.

If followed, the recipient would be redirected, sometimes via CAPTCHA, to fake Microsoft login pages designed to capturing credentials, namely http://pub-ac94c05b39aa4f75ad1df88d384932b8.r2[.]dev/offline[.]html and https://s3.us-east-1.amazonaws[.]com/s3cure0line-0365cql0.19db86c3-b2b9-44cc-b339-36da233a3be2ml0qin/s3cccql0.19db86c3-b2b9-44cc-b339-36da233a3be2%26l0qn[.]html#.

The latter made use of homoglyphs to deceive the user, with a link referencing ‘s3cure0line’, rather than ‘secureonline’. Post-incident investigation using open-source intelligence (OSINT) confirmed that the domains were linked to malicious phishing endpoints [3] [4].

Fake Microsoft login page designed to harvest credentials.
Figure 3: Fake Microsoft login page designed to harvest credentials.
Phishing kit with likely AI-generated image, designed to harvest user credentials. The URL uses ‘s3cure0line’ instead of ‘secureonline’, a subtle misspelling intended to deceive users.
Figure 4: Phishing kit with likely AI-generated image, designed to harvest user credentials. The URL uses ‘s3cure0line’ instead of ‘secureonline’, a subtle misspelling intended to deceive users.

Darktrace Anomaly Detection

Some senders were unknown to the network, with no previous outbound or inbound emails. Some had sent the email to multiple undisclosed recipients using BCC, an unusual behavior for a new sender.  

Where the sender organization was an existing vendor, Darktrace recognized out-of-character behavior, in this case it was the first time a link to a particular file-sharing site had been shared. Often the links themselves exhibited anomalies, either being unusually prominent or hidden altogether - masked by text or a clickable image.

Crucially, Darktrace / EMAIL is able to identify malicious links at the time of processing the emails, without needing to visit the URLs or analyze the destination endpoints, meaning even the most convincing phishing pages cannot evade detection – meaning even the most convincing phishing emails cannot evade detection. This sets it apart from many competitors who rely on crawling the endpoints present in emails. This, among other things, risks disruption to user experience, such as unsubscribing them from emails, for instance.

Darktrace was also able to determine that the malicious emails originated from a compromised mailbox, using a series of behavioral and contextual metrics to make the identification. Upon analysis of the emails, Darktrace autonomously assigned several contextual tags to highlight their concerning elements, indicating that the messages contained phishing links, were likely sent from a compromised account, and originated from a known correspondent exhibiting out-of-character behavior.

A summary of the anomalous email, confirming that it contained a highly suspicious link.
Figure 5: Tags assigned to offending emails by Darktrace / EMAIL.

Figure 6: A summary of the anomalous email, confirming that it contained a highly suspicious link.

Out-of-character behavior caught in real-time

In another customer environment around the same time Darktrace / EMAIL detected multiple emails with carefully crafted, contextually appropriate subject lines sent from an established correspondent being sent to 30 different recipients. In many cases, the attacker hijacked existing threads and inserted their malicious emails into an ongoing conversation in an effort to blend in and avoid detection. As in the previous, the attacker leveraged a well-known service, this time ClickFunnels, to host a document containing another malicious link. Once again, they were assigned a Microsoft Spam Confidence Level of 1, indicating that they were not considered malicious.

The legitimate ClickFunnels page used to host a malicious phishing link.
Figure 7: The legitimate ClickFunnels page used to host a malicious phishing link.

This time, however, the customer had Darktrace / EMAIL fully enabled to take Autonomous Response against suspicious emails. As a result, when Darktrace detected the out-of-character behavior, specifically, the sharing of a link to a previously unused file-sharing domain, and identified the likely malicious intent of the message, it held the email, preventing it from reaching recipients’ inboxes and effectively shutting down the attack.

Figure 8: Darktrace / EMAIL’s detection of malicious emails inserted into an existing thread.*

*To preserve anonymity, all real customer names, email addresses, and other identifying details have been redacted and replaced with fictitious placeholders.

Legitimate messages in the conversation were assigned an Anomaly Score of 0, while the newly inserted malicious emails identified and were flagged with the maximum score of 100.

Key takeaways for defenders

Phishing remains big business, and as the landscape evolves, today’s campaigns often look very different from earlier versions. As with network-based attacks, threat actors are increasingly leveraging legitimate tools and exploiting trusted relationships to carry out their malicious goals, often staying under the radar of security teams and traditional email defenses.

As attackers continue to exploit trusted relationships between organizations and their third-party associates, security teams must remain vigilant to unexpected or suspicious email activity. Protecting the digital estate requires an email solution capable of identifying malicious characteristics, even when they originate from otherwise trusted senders.

Credit to Jennifer Beckett (Cyber Analyst), Patrick Anjos (Senior Cyber Analyst), Ryan Traill (Analyst Content Lead), Kiri Addison (Director of Product)

Appendices

IoC - Type - Description + Confidence  

- http://pub-ac94c05b39aa4f75ad1df88d384932b8.r2[.]dev/offline[.]html#p – fake Microsoft login page

- https://s3.us-east-1.amazonaws[.]com/s3cure0line-0365cql0.19db86c3-b2b9-44cc-b339-36da233a3be2ml0qin/s3cccql0.19db86c3-b2b9-44cc-b339-36da233a3be2%26l0qn[.]html# - link to domain used in homoglyph attack

MITRE ATT&CK Mapping  

Tactic – Technique – Sub-Technique  

Initial Access - Phishing – (T1566)  

References

1.     https://gitnux.org/third-party-risk-statistics/

2.     https://learn.microsoft.com/en-us/defender-office-365/anti-spam-spam-confidence-level-scl-about

3.     https://www.virustotal.com/gui/url/5df9aae8f78445a590f674d7b64c69630c1473c294ce5337d73732c03ab7fca2/detection

4.     https://www.virustotal.com/gui/url/695d0d173d1bd4755eb79952704e3f2f2b87d1a08e2ec660b98a4cc65f6b2577/details

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content

Continue reading
About the author

Blog

/

OT

/

October 1, 2025

Announcing Unified OT Security with Dedicated OT Workflows, Segmentation-Aware Risk Insights, and Next-Gen Endpoint Visibility for Industrial Teams

Default blog imageDefault blog image

The challenge of convergence without clarity

Convergence is no longer a roadmap idea, it is the daily reality for industrial security teams. As Information Technology (IT) and Operational Technology (OT) environments merge, the line between a cyber incident and an operational disruption grows increasingly hard to define. A misconfigured firewall rule can lead to downtime. A protocol misuse might look like a glitch. And when a pump stalls but nothing appears in the Security Operations Center (SOC) dashboard, teams are left asking: is this operational or is this a threat?

The lack of shared context slows down response, creates friction between SOC analysts and plant engineers, and leaves organizations vulnerable at exactly the points where IT and OT converge. Defenders need more than alerts, they need clarity that both sides can trust.

The breakthrough with Darktrace / OT

This latest Darktrace / OT release was built to deliver exactly that. It introduces shared context between Security, IT, and OT operations, helping reduce friction and close the security gaps at the intersection of these domains.

With a dedicated dashboard built for operations teams, extended visibility into endpoints for new forms of detection and CVE collection, expanded protocol coverage, and smarter risk modeling aligned to segmentation policies, teams can now operate from a shared source of truth. These enhancements are not just incremental upgrades, they are foundational improvements designed to bring clarity, efficiency, and trust to converged environments.

A dashboard built for OT engineers

The new Operational Overview provides OT engineers with a workspace designed for them, not for SOC analysts. It brings asset management, risk insights and operational alerts into one place. Engineers can now see activity like firmware changes, controller reprograms or the sudden appearance of a new workstation on the network, providing a tailored view for critical insights and productivity gains without navigating IT-centric workflows. Each device view is now enriched with cross-linked intelligence, make, model, firmware version and the roles inferred by Self-Learning AI, making it easier to understand how each asset behaves, what function it serves, and where it fits within the broader industrial process. By suppressing IT-centric noise, the dashboard highlights only the anomalies that matter to operations, accelerating triage, enabling smoother IT/OT collaboration, and reducing time to root cause without jumping between tools.

This is usability with purpose, a view that matches OT workflows and accelerates response.

Figure 1: The Operational Overview provides an intuitive dashboard summarizing all OT Assets, Alerts, and Risk.

Full-spectrum coverage across endpoints, sensors and protocols

The release also extends visibility into areas that have traditionally been blind spots. Engineering workstations, Human-Machine Interfaces (HMIs), contractor laptops and field devices are often the entry points for attackers, yet the hardest to monitor.

Darktrace introduces Network Endpoint eXtended Telemetry (NEXT) for OT, a lightweight collector built for segmented and resource-constrained environments. NEXT for OT uses Endpoint sensors to capture localized network, and now process-level telemetry, placing it in context alongside other network and asset data to:

  1. Identify vulnerabilities and OS data, which is leveraged by OT Risk Management for risk scoring and patching prioritization, removing the need for third-party CVE collection.
  1. Surface novel threats using Self-Learning AI that standalone Endpoint Detection and Response (EDR) would miss.
  1. Extend Cyber AI Analyst investigations through to the endpoint root cause.

NEXT is part of our existing cSensor endpoint agent, can be deployed standalone or alongside existing EDR tools, and allows capabilities to be enabled or disabled depending on factors such as security or OT team objectives and resource utilization.

Figure 2: Darktrace / OT delivers CVE patch priority insights by combining threat intelligence with extended network and endpoint telemetry

The family of Darktrace Endpoint sensors also receive a boost in deployment flexibility, with on-prem server-based setups, as well as a Windows driver tailored for zero-trust and high-security environments.

Protocol coverage has been extended where it matters most. Darktrace now performs protocol analysis of a wider range of GE and Mitsubishi protocols, giving operators real-time visibility into commands and state changes on Programmable Logic Controllers (PLCs), robots and controllers. Backed by Self-Learning AI, this inspection does more than parse traffic, it understands what normal looks like and flags deviations that signal risk.

Integrated risk and governance workflows

Security data is only valuable when it drives action. Darktrace / OT delivers risk insights that go beyond patching, helping teams take meaningful steps even when remediation isn't possible. Risk is assessed not just by CVE presence, but by how network segmentation, firewall policies, and attack path logic neutralize or contain real-world exposure. This approach empowers defenders to deprioritize low-impact vulnerabilities and focus effort where risk truly exists. Building on the foundation introduced in release 6.3, such as KEV enrichment, endpoint OS data, and exploit mapping, this release introduces new integrations that bring Darktrace / OT intelligence directly into governance workflows.

Fortinet FortiGate firewall ingestion feeds segmentation rules into attack path modeling, revealing real exposure when policies fail and closing feeds into patching prioritization based on a policy to CVE exposure assessment.

  • ServiceNow Configuration Management Database (CMDB) sync ensures asset intelligence stays current across governance platforms, eliminating manual inventory work.

Risk modeling has also been made more operationally relevant. Scores are now contextualized by exploitability, asset criticality, firewall policy, and segmentation posture. Patch recommendations are modeled in terms of safety, uptime and compliance rather than just Common Vulnerability Scoring System (CVSS) numbers. And importantly, risk is prioritized across the Purdue Model, giving defenders visibility into whether vulnerabilities remain isolated to IT or extend into OT-critical layers.

Figure 3: Attack Path Modeling based on NetFlow and network topology reveals high risk points of IT/OT convergence.

The real-world impact for defenders

In today’s environments, attackers move fluidly between IT and OT. Without unified visibility and shared context, incidents cascade faster than teams can respond.

With this release, Darktrace / OT changes that reality. The Operational Overview gives Engineers a dashboard they can use daily, tailored to their workflows. SOC analysts can seamlessly investigate telemetry across endpoints, sensors and protocols that were once blind spots. Operators gain transparency into PLCs and controllers. Governance teams benefit from automated integrations with platforms like Fortinet and ServiceNow. And all stakeholders work from risk models that reflect what truly matters: safety, uptime and compliance.

This release is not about creating more alerts. It is about providing more clarity. By unifying context across IT and OT, Darktrace / OT enables defenders to see more, understand more and act faster.

Because in environments where safety and uptime are non-negotiable, clarity is what matters most.

Join us for our live event where we will discuss these product innovations in greater detail

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI