Enhancing Security Teams with AI-Powered Email Solutions
Discover email-based attack challenges & how AI security solutions can tackle these attacks with autonomous action, optimized workflows, and user visibility.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Share
02
Apr 2023
The modern security team faces challenges on all fronts – it is too often overstretched dealing with an increased attack surface, enabling workforces for secure remote work, and managing multiple security tools to protect that workforce. Added to that, the surge in more sophisticated phishing campaigns – now supported by AI tools – means that it’s harder than ever to pre-empt attacks.
The needs of the security team should be a key consideration when deploying an email security solution, as it’s them who will be accountable for the success and maintenance of the product. Minimizing time spent inside the user interface – through trusted detection and response technology combined with intuitive reporting and optimized workflows – should be front of mind for vendors in order to assure teams of their value.
Taking security teams off the frontline
No team should be spending all of their time maintaining email security policies, releasing emails that shouldn’t have been held, or holding back emails that should have been – all the things that traditional email security solutions have almost forced them to become accustomed to. A day in the life of an admin shouldn’t include tens – and certainly not hundreds – of minutes spent in their email security dashboard.
At the moment, teams are logging in far too often, and when they do, they’re forced to make individual decisions about safe listing and blocking domains, or releasing emails. These can lead to the creation of blanket rules that open up future windows for attackers – unintended consequences that ultimately create more work in the future. This type of hand-to-hand combat puts security teams on the frontline, when their time could be much better spent doing the high-level strategic work humans are best at.
Understanding You: A Different Approach to Email Security
In today’s discussions about email security, there is a consensus that relying on a gateway is no longer feasible. The new era is one of ICES (Integrated cloud email security) solutions and other tools leveraging artificial intelligence and APIs. But there's no point adopting new technology with an old philosophy – and most of these solutions use AI to automate the same old approach: looking at past attacks to try and stop the next.
This is where Darktrace/Email takes a fundamentally different and unique approach. It’s not just about using AI; it’s about using it in the right capacity. Our AI understands you – learning where users log in from, who they email, their behavior throughout the day – to tailor the detection and response process according to their individual profile. There’s no point withholding an email if only a tiny element of it poses a risk – Darktrace/Email takes the least aggressive action required to neutralize a threat. Instead of a blanket allow-deny criteria, it can rewrite links or withhold attachments based on its knowledge of the user’s normal inbox activity. Stopping malicious emails while allowing legitimate emails through – with risky elements neutralized – lifts security teams out of the fire-fighting activities described earlier and frees up their time for more strategic and valuable decision-making.
This is going to get me to reduce my current email security stack… this is going to take it to that level that I need it to”
Embedded account takeover protection is an essential component of modern email security. Security teams need visibility not just over email breaches but of what happens once an attacker has control of an inbox, particularly in the most damaging use cases like Business Email Compromise (BEC) and ransomware. This entails understanding a user’s behavior in their inbox, outbound emails and beyond into their wider account activity. Darktrace captures a user’s activity across email and their Microsoft or Google account in a single pane of glass – detecting and countering all of the markers that could signify a compromised account.
Insights from other cloud applications and network devices gleaned from Darktrace's wider visibility of the business can bring a 360° understanding of the user, further enhancing detection of account takeover and other harmful activity.
Figure 1: A 360° understanding of a user reveals their digital touchpoints beyond Microsoft
What ‘user-friendly’ actually looks like
The best user interface is one that you never have to log into. In an ideal world, teams are able to visit their tools less frequently because intelligent AI is automating work previously done by humans. This is made possible by Darktrace’s precision detection and response technology, which takes appropriate action on emails and accounts to neutralize threats without disrupting day-to-day business operations.
The second-best user interface is one where you can quickly log in and get key insights fast, whether that’s regarding an action taken or the current activity of a user – and then get out. Darktrace/Email enables teams to get key information quickly, at both a high and granular level. The dashboard offers immediate insights into users and emails, with a real-time snapshot of active user identities, targeted user and actioned emails, segmented by type of attack.
At every touchpoint, Darktrace reduces friction with optimized workflows. From being able to quickly identify VIPs to safely previewing links and attachments, security teams can get the information they need without needing to switch between windows or navigate inaccessible interfaces. Explainable AI gives users natural-language summaries of individual emails or the overall health of an email environment, and simplified action flows allow security teams to personalize security for different employees – for example, sending VIPs a unique notification, or taking extra precautions around employees who work in accounting. Taken together, this meaning that admins can spend even less time managing policies.
Figure 2: Darktrace/Email dashboard displaying key information about the email environment in a single pane of glass
The ideal interface is also the one that’s the most accessible to you. The mobile app guarantees convenience for security teams, making available all the main functions of the interface for on-the-go analysis at any time or place. Teams can travel or leave the office while retaining the peace of mind that if a critical incident was to occur, they would be able to get instant visibility on the data and take action without needing to get back to their desks.
Figure 3: Security admins are able to preview, analyze, and act on emails directly from the Darktrace Mobile App
With every passing day, the security team can rest easier. Every activity is taken into account to help the AI tune and adapt over time to become even better at detecting and responding to threats.
Having email on the app is going to be game changing”
- Early Look Customer, Darktrace/Email
Getting the full picture
Most often, email is the entry point from which a threat actor moves stealthily throughout an organization collecting information and assets. Most solutions look at email in isolation, without prioritizing or connecting disparate events into a wider pattern.
In contrast, Darktrace/Email integrates seamlessly with Darktrace's Cyber AI Analyst, a technology that conducts autonomous enterprise-wide investigations around every alert produced by the wider Darktrace platform. Through this integration, malicious email activity is analyzed and displayed in the context of the full security incident to which it belongs. As a result, security teams can see why and how a wider problem might have originated in email and spread to other apps, endpoints, or the wider corporate network.
Empowering employees to take an active role in security
The role of the security team can be made more difficult if employees take a lax or disengaged approach to security – or if a user is given too much control, and has the ability to make potentially dangerous decisions. Training employees on security procedures is another to-do which can easily fall to the bottom of the agenda during busy periods, especially as point-in-time phishing simulations have proven to be not particularly effective.
To this end, Darktrace/Email uses Explainable AI to say in natural language what it thought about an email, and delivers its findings not just to the security team, but optionally to the wider workforce as well. Delivered in the form of contextual banners in emails, periodic digests, or directly in Outlook, these insights transform security education from a quarterly or yearly exercise into real-time security awareness. Our next blog will dive deeper into how employee engagement can support the security team’s efforts and harden defenses throughout the organization.
Because Darktrace is built on a fundamentally different approach, it not only stops novel and targeted sophisticated attacks but allows legitimate emails to flow through. This is what makes it a truly set-and-forget technology, with the AI taking on much of the heavy lifting previously undertaken by security teams.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Out of Character: Detecting Vendor Compromise and Trusted Relationship Abuse with Darktrace
Phishing emails from compromised vendors are increasingly difficult to distinguish from genuine correspondence. They challenge workers, security teams and traditional email SEGs alike. Anomaly detection can be a game-changer in spotting the subtle signs of these meticulous attacks.
Darktrace Collaborates with Microsoft: Unifying Email Security with a Shared Vision
Darktrace and Microsoft have joined forces to enhance email security through a new integration, unifying threat response and quarantine capabilities. This collaboration strengthens defenses and streamlines visibility for security teams, reflecting a shared vision for proactive cyber protection.
Inside Akira’s SonicWall Campaign: Darktrace’s Detection and Response
Introduction: Background on Akira SonicWall campaign
Between July and August 2025, security teams worldwide observed a surge in Akira ransomware incidents involving SonicWall SSL VPN devices [1]. Initially believed to be the result of an unknown zero-day vulnerability, SonicWall later released an advisory announcing that the activity was strongly linked to a previously disclosed vulnerability, CVE-2024-40766, first identified over a year earlier [2].
On August 20, 2025, Darktrace observed unusual activity on the network of a customer in the US. Darktrace detected a range of suspicious activity, including network scanning and reconnaissance, lateral movement, privilege escalation, and data exfiltration. One of the compromised devices was later identified as a SonicWall virtual private network (VPN) server, suggesting that the incident was part of the broader Akira ransomware campaign targeting SonicWall technology.
As the customer was subscribed to the Managed Detection and Response (MDR) service, Darktrace’s Security Operations Centre (SOC) team was able to rapidly triage critical alerts, restrict the activity of affected devices, and notify the customer of the threat. As a result, the impact of the attack was limited - approximately 2 GiB of data had been observed leaving the network, but any further escalation of malicious activity was stopped.
Threat Overview
CVE-2024-40766 and other misconfigurations
CVE-2024-40766 is an improper access control vulnerability in SonicWall’s SonicOS, affecting Gen 5, Gen 6, and Gen 7 devices running SonicOS version 7.0.1 5035 and earlier [3]. The vulnerability was disclosed on August 23, 2024, with a patch released the same day. Shortly after, it was reported to be exploited in the wild by Akira ransomware affiliates and others [4].
Almost a year later, the same vulnerability is being actively targeted again by the Akira ransomware group. In addition to exploiting unpatched devices affected by CVE-2024-40766, security researchers have identified three other risks potentially being leveraged by the group [5]:
*The Virtual Office Portal can be used to initially set up MFA/TOTP configurations for SSLVPN users.
Thus, even if SonicWall devices were patched, threat actors could still target them for initial access by reusing previously stolen credentials and exploiting other misconfigurations.
Akira Ransomware
Akira ransomware was first observed in the wild in March 2023 and has since become one of the most prolific ransomware strains across the threat landscape [6]. The group operates under a Ransomware-as-a-Service (RaaS) model and frequently uses double extortion tactics, pressuring victims to pay not only to decrypt files but also to prevent the public release of sensitive exfiltrated data.
The ransomware initially targeted Windows systems, but a Linux variant was later observed targeting VMware ESXi virtual machines [7]. In 2024, it was assessed that Akira would continue to target ESXi hypervisors, making attacks highly disruptive due to the central role of virtualisation in large-scale cloud deployments. Encrypting the ESXi file system enables rapid and widespread encryption with minimal lateral movement or credential theft. The lack of comprehensive security protections on many ESXi hypervisors also makes them an attractive target for ransomware operators [8].
Victimology
Akira is known to target organizations across multiple sectors, most notably those in manufacturing, education, and healthcare. These targets span multiple geographic regions, including North America, Latin America, Europe and Asia-Pacific [9].
Figure 1: Geographical distribution of organization’s affected by Akira ransomware in 2025 [9].
Common Tactics, Techniques and Procedures (TTPs) [7][10]
Initial Access Targets remote access services such as RDP and VPN through vulnerability exploitation or stolen credentials.
Reconnaissance Uses network scanning tools like SoftPerfect and Advanced IP Scanner to map the environment and identify targets.
Lateral Movement Moves laterally using legitimate administrative tools, typically via RDP.
Persistence Employs techniques such as Kerberoasting and pass-the-hash, and tools like Mimikatz to extract credentials. Known to create new domain accounts to maintain access.
Command and Control Utilizes remote access tools including AnyDesk, RustDesk, Ngrok, and Cloudflare Tunnel.
Exfiltration Uses tools such as FileZilla, WinRAR, WinSCP, and Rclone. Data is exfiltrated via protocols like FTP and SFTP, or through cloud storage services such as Mega.
Darktrace’s Coverage of Akira ransomware
Reconnaissance
Darktrace first detected of unusual network activity around 05:10 UTC, when a desktop device was observed performing a network scan and making an unusual number of DCE-RPC requests to the endpoint mapper (epmapper) service. Network scans are typically used to identify open ports, while querying the epmapper service can reveal exposed RPC services on the network.
Multiple other devices were also later seen with similar reconnaissance activity, and use of the Advanced IP Scanner tool, indicated by connections to the domain advanced-ip-scanner[.]com.
Lateral movement
Shortly after the initial reconnaissance, the same desktop device exhibited unusual use of administrative tools. Darktrace observed the user agent “Ruby WinRM Client” and the URI “/wsman” as the device initiated a rare outbound Windows Remote Management (WinRM) connection to two domain controllers (REDACTED-dc1 and REDACTED-dc2). WinRM is a Microsoft service that uses the WS-Management (WSMan) protocol to enable remote management and control of network devices.
Darktrace also observed the desktop device connecting to an ESXi device (REDACTED-esxi1) via RDP using an LDAP service credential, likely with administrative privileges.
Credential access
At around 06:26 UTC, the desktop device was seen fetching an Active Directory certificate from the domain controller (REDACTED-dc1) by making a DCE-RPC request to the ICertPassage service. Shortly after, the device made a Kerberos login using the administrative credential.
Figure 3: Darktrace’s detection of the of anomalous certificate download and subsequent Kerberos login.
Further investigation into the device’s event logs revealed a chain of connections that Darktrace’s researchers believe demonstrates a credential access technique known as “UnPAC the hash.”
This method begins with pre-authentication using Kerberos’ Public Key Cryptography for Initial Authentication (PKINIT), allowing the client to use an X.509 certificate to obtain a Ticket Granting Ticket (TGT) from the Key Distribution Center (KDC) instead of a password.
The next stage involves User-to-User (U2U) authentication when requesting a Service Ticket (ST) from the KDC. Within Darktrace's visibility of this traffic, U2U was indicated by the client and service principal names within the ST request being identical. Because PKINIT was used earlier, the returned ST contains the NTLM hash of the credential, which can then be extracted and abused for lateral movement or privilege escalation [11].
Figure 4: Flowchart of Kerberos PKINIT pre-authentication and U2U authentication [12]
Figure 5: Device event log showing the Kerberos Login and Kerberos Ticket events
Analysis of the desktop device’s event logs revealed a repeated sequence of suspicious activity across multiple credentials. Each sequence included a DCE-RPC ICertPassage request to download a certificate, followed by a Kerberos login event indicating PKINIT pre-authentication, and then a Kerberos ticket event consistent with User-to-User (U2U) authentication.
Darktrace identified this pattern as highly unusual. Cyber AI Analyst determined that the device used at least 15 different credentials for Kerberos logins over the course of the attack.
By compromising multiple credentials, the threat actor likely aimed to escalate privileges and facilitate further malicious activity, including lateral movement. One of the credentials obtained via the “UnPAC the hash” technique was later observed being used in an RDP session to the domain controller (REDACTED-dc2).
C2 / Additional tooling
At 06:44 UTC, the domain controller (REDACTED-dc2) was observed initiating a connection to temp[.]sh, a temporary cloud hosting service. Open-source intelligence (OSINT) reporting indicates that this service is commonly used by threat actors to host and distribute malicious payloads, including ransomware [13].
Shortly afterward, the ESXi device was observed downloading an executable named “vmwaretools” from the rare external endpoint 137.184.243[.]69, using the user agent “Wget.” The repeated outbound connections to this IP suggest potential command-and-control (C2) activity.
Figure 6: Cyber AI Analyst investigation into the suspicious file download and suspected C2 activity between the ESXI device and the external endpoint 137.184.243[.]69.
Figure 7: Packet capture (PCAP) of connections between the ESXi device and 137.184.243[.]69.
Data exfiltration
The first signs of data exfiltration were observed at around 7:00 UTC. Both the domain controller (REDACTED-dc2) and a likely SonicWall VPN device were seen uploading approximately 2 GB of data via SSH to the rare external endpoint 66.165.243[.]39 (AS29802 HVC-AS). OSINT sources have since identified this IP as an indicator of compromise (IoC) associated with the Akira ransomware group, known to use it for data exfiltration [14].
Figure 8: Cyber AI Analyst incident view highlighting multiple unusual events across several devices on August 20. Notably, it includes the “Unusual External Data Transfer” event, which corresponds to the anomalous 2 GB data upload to the known Akira-associated endpoint 66.165.243[.]39.
Cyber AI Analyst
Throughout the course of the attack, Darktrace’s Cyber AI Analyst autonomously investigated the anomalous activity as it unfolded and correlated related events into a single, cohesive incident. Rather than treating each alert as isolated, Cyber AI Analyst linked them together to reveal the broader narrative of compromise. This holistic view enabled the customer to understand the full scope of the attack, including all associated activities and affected assets that might otherwise have been dismissed as unrelated.
Figure 9: Overview of Cyber AI Analyst’s investigation, correlating all related internal and external security events across affected devices into a single pane of glass.
Containing the attack
In response to the multiple anomalous activities observed across the network, Darktrace's Autonomous Response initiated targeted mitigation actions to contain the attack. These included:
Blocking connections to known malicious or rare external endpoints, such as 137.184.243[.]69, 66.165.243[.]39, and advanced-ip-scanner[.]com.
Blocking internal traffic to sensitive ports, including 88 (Kerberos), 3389 (RDP), and 49339 (DCE-RPC), to disrupt lateral movement and credential abuse.
Enforcing a block on all outgoing connections from affected devices to contain potential data exfiltration and C2 activity.
Figure 10: Autonomous Response actions taken by Darktrace on an affected device, including the blocking of malicious external endpoints and internal service ports.
Managed Detection and Response
As this customer was an MDR subscriber, multiple Enhanced Monitoring alerts—high-fidelity models designed to detect activity indicative of compromise—were triggered across the network. These alerts prompted immediate investigation by Darktrace’s SOC team.
Upon determining that the activity was likely linked to an Akira ransomware attack, Darktrace analysts swiftly acted to contain the threat. At around 08:05 UTC, devices suspected of being compromised were quarantined, and the customer was promptly notified, enabling them to begin their own remediation procedures without delay.
A wider campaign?
Darktrace’s SOC and Threat Research teams identified at least three additional incidents likely linked to the same campaign. All targeted organizations were based in the US, spanning various industries, and each have indications of using SonicWall VPN, indicating it had likely been targeted for initial access.
Across these incidents, similar patterns emerged. In each case, a suspicious executable named “vmwaretools” was downloaded from the endpoint 85.239.52[.]96 using the user agent “Wget”, bearing some resemblance to the file downloads seen in the incident described here. Data exfiltration was also observed via SSH to the endpoints 107.155.69[.]42 and 107.155.93[.]154, both of which belong to the same ASN also seen in the incident described in this blog: S29802 HVC-AS. Notably, 107.155.93[.]154 has been reported in OSINT as an indicator associated with Akira ransomware activity [15]. Further recent Akira ransomware cases have been observed involving SonicWall VPN, where no similar executable file downloads were observed, but SSH exfiltration to the same ASN was. These overlapping and non-overlapping TTPs may reflect the blurring lines between different affiliates operating under the same RaaS.
Lessons from the campaign
This campaign by Akira ransomware actors underscores the critical importance of maintaining up-to-date patching practices. Threat actors continue to exploit previously disclosed vulnerabilities, not just zero-days, highlighting the need for ongoing vigilance even after patches are released. It also demonstrates how misconfigurations and overlooked weaknesses can be leveraged for initial access or privilege escalation, even in otherwise well-maintained environments.
Darktrace’s observations further reveal that ransomware actors are increasingly relying on legitimate administrative tools, such as WinRM, to blend in with normal network activity and evade detection. In addition to previously documented Kerberos-based credential access techniques like Kerberoasting and pass-the-hash, this campaign featured the use of UnPAC the hash to extract NTLM hashes via PKINIT and U2U authentication for lateral movement or privilege escalation.
Credit to Emily Megan Lim (Senior Cyber Analyst), Vivek Rajan (Senior Cyber Analyst), Ryan Traill (Analyst Content Lead), and Sam Lister (Specialist Security Researcher)
Appendices
Darktrace Model Detections
Anomalous Connection / Active Remote Desktop Tunnel
Anomalous Connection / Data Sent to Rare Domain
Anomalous Connection / New User Agent to IP Without Hostname
Anomalous Connection / Possible Data Staging and External Upload
Anomalous Connection / Rare WinRM Incoming
Anomalous Connection / Rare WinRM Outgoing
Anomalous Connection / Uncommon 1 GiB Outbound
Anomalous Connection / Unusual Admin RDP Session
Anomalous Connection / Unusual Incoming Long Remote Desktop Session
Anomalous Connection / Unusual Incoming Long SSH Session
Anomalous Connection / Unusual Long SSH Session
Anomalous File / EXE from Rare External Location
Anomalous Server Activity / Anomalous External Activity from Critical Network Device
Anomalous Server Activity / Outgoing from Server
Anomalous Server Activity / Rare External from Server
Compliance / Default Credential Usage
Compliance / High Priority Compliance Model Alert
Compliance / Outgoing NTLM Request from DC
Compliance / SSH to Rare External Destination
Compromise / Large Number of Suspicious Successful Connections
Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
Device / Anomalous Certificate Download Activity
Device / Anomalous SSH Followed By Multiple Model Alerts
Device / Anonymous NTLM Logins
Device / Attack and Recon Tools
Device / ICMP Address Scan
Device / Large Number of Model Alerts
Device / Network Range Scan
Device / Network Scan
Device / New User Agent To Internal Server
Device / Possible SMB/NTLM Brute Force
Device / Possible SMB/NTLM Reconnaissance
Device / RDP Scan
Device / Reverse DNS Sweep
Device / Suspicious SMB Scanning Activity
Device / UDP Enumeration
Unusual Activity / Unusual External Data to New Endpoint
Unusual Activity / Unusual External Data Transfer
User / Multiple Uncommon New Credentials on Device
User / New Admin Credentials on Client
User / New Admin Credentials on Server
Enhanced Monitoring Models
Compromise / Anomalous Certificate Download and Kerberos Login
Device / Initial Attack Chain Activity
Device / Large Number of Model Alerts from Critical Network Device
Device / Multiple Lateral Movement Model Alerts
Device / Suspicious Network Scan Activity
Unusual Activity / Enhanced Unusual External Data Transfer
Antigena/Autonomous Response Models
Antigena / Network / External Threat / Antigena File then New Outbound Block
Out of Character: Detecting Vendor Compromise and Trusted Relationship Abuse with Darktrace
What is Vendor Email Compromise?
Vendor Email Compromise (VEC) refers to an attack where actors breach a third-party provider to exploit their access, relationships, or systems for malicious purposes. The initially compromised entities are often the target’s existing partners, though this can extend to any organization or individual the target is likely to trust.
Itsits at the intersection of supply chain attacks and business email compromise (BEC), blending technical exploitation with trust-based deception. Attackers often infiltrate existing conversations, leveraging AI to mimic tone and avoid common spelling and grammar pitfalls. Malicious content is typically hosted on otherwise reputable file sharing platforms, meaning any shared links initially seem harmless.
While techniques to achieve initial access may have evolved, the goals remain familiar. Threat actors harvest credentials, launch subsequent phishing campaigns, attempt to redirect invoice payments for financial gain, and exfiltrate sensitive corporate data.
Why traditional defenses fall short
These subtle and sophisticated email attacks pose unique challenges for defenders. Few busy people would treat an ongoing conversation with a trusted contact with the same level of suspicion as an email from the CEO requesting ‘URGENT ASSISTANCE!’ Unfortunately, many traditional secure email gateways (SEGs) struggle with this too. Detecting an out-of-character email, when it does not obviously appear out of character, is a complex challenge. It’s hardly surprising, then, that 83% of organizations have experienced a security incident involving third-party vendors [1].
This article explores how Darktrace detected four different vendor compromise campaigns for a single customer, within a two-week period in 2025. Darktrace / EMAIL successfully identified the subtle indicators that these seemingly benign emails from trusted senders were, in fact, malicious. Due to the configuration of Darktrace / EMAIL in this customer’s environment, it was unable to take action against the malicious emails. However, if fully enabled to take Autonomous Response, it would have held all offending emails identified.
How does Darktrace detect vendor compromise?
The answer lies at the core of how Darktrace operates: anomaly detection. Rather than relying on known malicious rules or signatures, Darktrace learns what ‘normal’ looks like for an environment, then looks for anomalies across a wide range of metrics. Despite the resourcefulness of the threat actors involved in this case, Darktrace identified many anomalies across these campaigns.
Different campaigns, common traits
A wide variety of approaches was observed. Individuals, shared mailboxes and external contractors were all targeted. Two emails originated from compromised current vendors, while two came from unknown compromised organizations - one in an associated industry. The sender organizations were either familiar or, at the very least, professional in appearance, with no unusual alphanumeric strings or suspicious top-level domains (TLDs). Subject line, such as “New Approved Statement From [REDACTED]” and “[REDACTED] - Proposal Document” appeared unremarkable and were not designed to provoke heightened emotions like typical social engineering or BEC attempts.
All emails had been given a Microsoft Spam Confidence Level of 1, indicating Microsoft did not consider them to be spam or malicious [2]. They also passed authentication checks (including SPF, and in some cases DKIM and DMARC), meaning they appeared to originate from an authentic source for the sender domain and had not been tampered with in transit.
All observed phishing emails contained a link hosted on a legitimate and commonly used file-sharing site. These sites were often convincingly themed, frequently featuring the name of a trusted vendor either on the page or within the URL, to appear authentic and avoid raising suspicion. However, these links served only as the initial step in a more complex, multi-stage phishing process.
Figure 1: A legitimate file sharing site used in phishing emails to host a secondary malicious link.
Figure 2: Another example of a legitimate file sharing endpoint sent in a phishing email and used to host a malicious link.
If followed, the recipient would be redirected, sometimes via CAPTCHA, to fake Microsoft login pages designed to capturing credentials, namely http://pub-ac94c05b39aa4f75ad1df88d384932b8.r2[.]dev/offline[.]html and https://s3.us-east-1.amazonaws[.]com/s3cure0line-0365cql0.19db86c3-b2b9-44cc-b339-36da233a3be2ml0qin/s3cccql0.19db86c3-b2b9-44cc-b339-36da233a3be2%26l0qn[.]html#.
The latter made use of homoglyphs to deceive the user, with a link referencing ‘s3cure0line’, rather than ‘secureonline’. Post-incident investigation using open-source intelligence (OSINT) confirmed that the domains were linked to malicious phishing endpoints [3] [4].
Figure 3: Fake Microsoft login page designed to harvest credentials.
Figure 4: Phishing kit with likely AI-generated image, designed to harvest user credentials. The URL uses ‘s3cure0line’ instead of ‘secureonline’, a subtle misspelling intended to deceive users.
Darktrace Anomaly Detection
Some senders were unknown to the network, with no previous outbound or inbound emails. Some had sent the email to multiple undisclosed recipients using BCC, an unusual behavior for a new sender.
Where the sender organization was an existing vendor, Darktrace recognized out-of-character behavior, in this case it was the first time a link to a particular file-sharing site had been shared. Often the links themselves exhibited anomalies, either being unusually prominent or hidden altogether - masked by text or a clickable image.
Crucially, Darktrace / EMAIL is able to identify malicious links at the time of processing the emails, without needing to visit the URLs or analyze the destination endpoints, meaning even the most convincing phishing pages cannot evade detection – meaning even the most convincing phishing emails cannot evade detection. This sets it apart from many competitors who rely on crawling the endpoints present in emails. This, among other things, risks disruption to user experience, such as unsubscribing them from emails, for instance.
Darktrace was also able to determine that the malicious emails originated from a compromised mailbox, using a series of behavioral and contextual metrics to make the identification. Upon analysis of the emails, Darktrace autonomously assigned several contextual tags to highlight their concerning elements, indicating that the messages contained phishing links, were likely sent from a compromised account, and originated from a known correspondent exhibiting out-of-character behavior.
Figure 5: Tags assigned to offending emails by Darktrace / EMAIL.
Figure 6: A summary of the anomalous email, confirming that it contained a highly suspicious link.
Out-of-character behavior caught in real-time
In another customer environment around the same time Darktrace / EMAIL detected multiple emails with carefully crafted, contextually appropriate subject lines sent from an established correspondent being sent to 30 different recipients. In many cases, the attacker hijacked existing threads and inserted their malicious emails into an ongoing conversation in an effort to blend in and avoid detection. As in the previous, the attacker leveraged a well-known service, this time ClickFunnels, to host a document containing another malicious link. Once again, they were assigned a Microsoft Spam Confidence Level of 1, indicating that they were not considered malicious.
Figure 7: The legitimate ClickFunnels page used to host a malicious phishing link.
This time, however, the customer had Darktrace / EMAIL fully enabled to take Autonomous Response against suspicious emails. As a result, when Darktrace detected the out-of-character behavior, specifically, the sharing of a link to a previously unused file-sharing domain, and identified the likely malicious intent of the message, it held the email, preventing it from reaching recipients’ inboxes and effectively shutting down the attack.
Figure 8: Darktrace / EMAIL’s detection of malicious emails inserted into an existing thread.*
*To preserve anonymity, all real customer names, email addresses, and other identifying details have been redacted and replaced with fictitious placeholders.
Legitimate messages in the conversation were assigned an Anomaly Score of 0, while the newly inserted malicious emails identified and were flagged with the maximum score of 100.
Key takeaways for defenders
Phishing remains big business, and as the landscape evolves, today’s campaigns often look very different from earlier versions. As with network-based attacks, threat actors are increasingly leveraging legitimate tools and exploiting trusted relationships to carry out their malicious goals, often staying under the radar of security teams and traditional email defenses.
As attackers continue to exploit trusted relationships between organizations and their third-party associates, security teams must remain vigilant to unexpected or suspicious email activity. Protecting the digital estate requires an email solution capable of identifying malicious characteristics, even when they originate from otherwise trusted senders.
Credit to Jennifer Beckett (Cyber Analyst), Patrick Anjos (Senior Cyber Analyst), Ryan Traill (Analyst Content Lead), Kiri Addison (Director of Product)
Appendices
IoC - Type - Description + Confidence
- http://pub-ac94c05b39aa4f75ad1df88d384932b8.r2[.]dev/offline[.]html#p – fake Microsoft login page
- https://s3.us-east-1.amazonaws[.]com/s3cure0line-0365cql0.19db86c3-b2b9-44cc-b339-36da233a3be2ml0qin/s3cccql0.19db86c3-b2b9-44cc-b339-36da233a3be2%26l0qn[.]html# - link to domain used in homoglyph attack
The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.
Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.
Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.
The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content