Blog
/
/
November 15, 2021

Darktrace Defends McLaren Racing From Supply Chain Attacks

McLaren Racing chose Darktrace's self-learning AI to fight off supply chain attacks. Learn how Darktrace safeguards their organization with elite cybersecurity.
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
15
Nov 2021

McLaren Racing has a track record of forming valuable and innovative partnerships. Without these partnerships and the web of organisations that make up our supply chain, it’s unlikely we could be where we are today.

Figure 1: The origins of the different components of McLaren’s 2021 car

Each component of the McLaren Formula 1 car – engine, tyres, brakes, suspension – has a long and complicated backstory, from the R&D labs where it was conceived, to the factory floor on which it was manufactured, to transport and logistics getting it to where it needs to be.

Looking at the entire organisation, the situation is even more complex. IT hardware and software, telemetry, and data analysis tools, each represent a critical component to McLaren Racing’s ecosystem. Without it, we couldn’t function at the top of our game.

But from a security perspective, each of these represent a potential chink in the team’s defensive armour, against a backdrop of a cyber-threat landscape which becomes more hostile every year. As we’ve seen this year from the likes of the SolarWinds hack and the Kaseya software exploit, attackers are waking up to the fact that the supply chain represents a significant opportunity.

A single supplier may represent a point of entry into thousands of organisations. For cyber-criminals, this means one successful compromise can result in more access, more data, and ultimately greater profit.

McLaren Racing is all too aware of recent shifts in the cyber security landscape. A successful cyber-attack on our organisation could have implications on race-day performance, as well as our wider reputation. Last year, we brought in a new line of defence with Darktrace’s Self-Learning AI technology, that learns our business from the ground up, and interrupts subtle and fast-moving cyber-threats wherever they emerge – including from our supply chain.

Threat find: Attacking through the inbox

In this attack, 12 employees were targeted in a systematic phishing attack, receiving an email from a long-established team supplier, notifying them that a voicemail had been left for them.

Figure 2: An extract of the phishing email coaxing the recipient to click

The link to play the voicemail led to a legitimate-looking voicemail service site.

When following the link to access the message, the site requested Office 365 credentials to authenticate the user, designed to harvest the McLaren Racing credentials that could be used to access our environment.

Figure 3: The fake login page

Of the 12 recipients, several key people within our team were targeted, including technical directors and purchase ledgers. The attackers behind this phishing campaign no doubt hand-picked these individuals both due to their authorization powers and the likelihood their accounts had access to sensitive data.

Had these accounts been compromised, the attackers would have had access to some of the highest sensitivity of intellectual property, finance information and executive level strategy within racing.

Darktrace’s email security technology, Antigena Email, assessed the content of these emails as they were delivered, and identified several unusual indicators of attack. While it recognised that the account was one familiar to McLaren, it compared this attack with previous emails sent from the supplier and recognised several risk indicators. Darktrace Antigena autonomously took the decision to hold the email from being delivered to users’ mailboxes.

Figure 4: Antigena Email reveals in plain language why the email was suspicious and the action it took

Legitimate communication between our team and the supplier was still flowing uninterrupted, as Darktrace Antigena was assessing each email’s indicators for risk. The following day, the supplier’s account manager in our team received an email from the supplier in question, informing them that one of their accounts had been compromised and was used to send phishing emails to some of their customers. This confirmed that Antigena Email had correctly identified the email as malicious.

Traditional email security tools rely on historical attack data to determine friend from foe, but this is only effective in cases where an email domain or a malicious URL has been previously encountered. In this case, traditional filtering allowed the email through. Only by having Darktrace’s understanding of ‘self’ and Autonomous Response was McLaren able to avoid exposure to risk on this occasion.

This is reflective of a wider pattern noticed by the security team. Darktrace determines that around 40% of emails going through Antigena Email would have been detected by our other security tools, suggesting that Darktrace is detecting an extra 60% of malicious emails and taking action to ensure we are protected 24/7.

This was just one example of an attempted attack on McLaren through the inbox. On another occasion, Antigena Email identified an email that was attempting to impersonate a sponsor. The email in question was requesting that a senior McLaren Racing figure reset their password and contained a suspicious link that led to a credential harvester. Again, Antigena took action on the emails at time of delivery, and our internal cyber team never had to respond to what could have been a serious incident. It’s through Darktrace taking autonomous action like this on a daily basis that we are able to focus our time on higher-value, strategic work, driving success for the wider team.

Why the supply chain demands a new approach to security

In today’s digitised world, it is impossible to operate as a fluid, dynamic organisation without interacting with suppliers and partners at every digital layer: from email, to file sharing services and technology partners delivered through the cloud. As McLaren grows and works with leading global organisations to improve its performance, its supply chain ecosystem will only get broader.

Attackers are targeting suppliers because they represent a single key that opens potentially dozens or even hundreds of locks, and email is just one avenue of attack. By partnering with Darktrace, McLaren experiences the value of self-learning protection on a daily basis, across its email systems, cloud services, and corporate network.

Whether it’s email or some other form of communication from a supplier, you cannot assume you know who’s on the other side of the keyboard. This is what so many existing security defences do – with static rules and signatures unable to truly tell friend from foe and reveal account takeovers and compromised systems. Modern organisations need a solution that is able to identify potentially malicious activity from suppliers by analysing a broad range of indicators and revealing subtle deviations that indicate threat, and this is where Self-Learning AI shines.

No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.

More in this series

No items found.

Blog

/

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI