Blog
/
Network
/
June 20, 2024

Post-Exploitation Activities on PAN-OS Devices: A Network-Based Analysis

This blog investigates the network-based activity detected by Darktrace in compromises stemming from the exploitation of a vulnerability in Palo Alto Networks firewall devices, namely CVE-2024-3400.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Jun 2024

Update:
Following the initial publication of this blog detailing exploitation campaigns utilizing the recently disclosed vulnerability, Darktrace analysts expanded the scope of the threat research investigation to identify potential earlier, pre-CVE disclosure, exploitation of CVE 2024-3400. While the majority of PAN-OS exploitation activity seen in the Darktrace customer base occurred after the public release of the CVE, Darktrace did also see tooling activity likely related to CVE-2024-3400 exploitation prior to the vulnerability's disclosure. Unlike the post-CVE-release exploitation activity, which largely reflected indiscriminate, opportunistic targeting of unpatched systems, these pre-CVE release activities likely represented selective targeting by more calculated actors.

Between March 26 and 28, Darktrace identified two Palo Alto firewall devices within the network of a public sector customer making HTTP GET requests utilizing both cURL and wget user agents, versions of which were seen in later compromise activity in April. The devices requested multiple shell script files (.sh) from rare external IP addresses. These IPs are likely associated with an operational relay box (ORB) network[1]. The connections also occurred without a specified hostname lookup, suggesting the IPs were hardcoded into process code or already cached through unexpected running processes. One of the destination IPs was later confirmed by Palo Alto Network’s Unit 42 as associated with exploitation of the PAN-OS vulnerability[2]. This observed activity closely resembles post-exploitation activity seen on affected firewall devices in mid-April. However, unlike the more disruptive and noisier follow-on exploitation activity seen in post-CVE-release incidents, the pre-CVE-release case observed by Darktrace appears to have been much more discreet, likely due to the relevant threat actor's desire to remain undetected.

--

Introduction

Perimeter devices such as firewalls, virtual private networks (VPNs), and intrusion prevention systems (IPS), have long been the target of adversarial actors attempting to gain access to internal networks. However, recent publications and public service announcements by leading public institutions underscore the increased emphasis threat actors are putting on leveraging such products to initiate compromises.

A blog post by the UK National Cyber Security Center (NCSC) released in early 2024 notes that as improvements are made in the detection of phishing email payloads, threat actors have again begun re-focusing efforts to exploiting network edge devices, many of which are not secure by design, as a means of breach initiation.[i] As such, it comes as no surprise that new Common Vulnerabilities and Exposures (CVEs) are constantly discovered that exploit such internet-exposed systems.

Darktrace analysts frequently observe the impacts of such CVEs first through their investigations via Darktrace’s Security Operations Center (SOC). Beginning in April 2024, Darktrace’s SOC began handling alerts and customer requests for potential incidents involving Palo Alto Networks firewall devices.  Just days prior, external researchers publicly disclosed what would later be classified as PAN-OS CVE-2024-3400, a form of remote command execution vulnerability that affects several versions of Palo Alto Networks’ firewall operating system (PAN-OS), namely PAN-OS 11.1, 11.0 and 10.2. At the time, multiple Darktrace customers were unaware of the recently announced vulnerability.

The increase in observed SOC activity for Palo Alto firewall devices, coupled with the public announcement of the new CVE prompted Darktrace researchers to look for evidence of PAN-OS exploitation on customer networks. Researchers also focused on documenting post-exploitation activity from threat actors leveraging the recently disclosed vulnerability.

As such, this blog highlights the network-based behaviors involved in the CVE-2024-3400 attack chains investigated by Darktrace’s SOC and Threat Research teams. Moreover, this investigation also provides a deeper insight into the post-compromise activities of threat actors leveraging the novel CVE.  Such insights will not only prove relevant for cybersecurity teams looking to inhibit compromises in this specific instance, but also highlights general patterns of behavior by threat actors utilizing such CVEs to target internet-facing systems.

CVE-2024-3400

In mid-April 2024, the Darktrace SOC observed an uptick in activity involving recurring patterns of malicious activity from Palo Alto firewall appliances. In response to this trend, Darktrace initiated a Threat Research investigation into such activity to try and identify common factors and indicators across seemingly parallel events. Shortly before the Threat Research team opened their investigation, external researchers provided public details of CVE-2024-3400, a form of remote command execution vulnerability in the GlobalProtect feature on Palo Alto Network firewall devices running PAN-OS versions: 10.2, 11.0, and 11.1.[ii]

In their proof of concept, security researchers at watchTowr demonstrated how an attacker can pass session ID (SESSID) values to these PAN-OS devices to request files that do not exist. In response, the system creates a zero-byte file with root privileges with the same name.[iii] Log data is passed on devices running telemetry services to external servers through command line functionality.[iv] Given this functionality, external actors could then request non-existent files in the SESSID containing command parameters which then be interpreted by the command line functionality.[v] Although researchers first believed the exploit could only be used against devices running telemetry services, this was later discovered to be untrue.[vi]

As details of CVE-2024-3400 began to surface, Darktrace’s Threat Research analysts quickly identified distinct overlaps in the observed activity on specific customer deployments and the post-exploitation behavior reported by external researchers. Given the parallels, Darktrace correlated the patterns of activity observed by the SOC team to exploitation of the newly discovered vulnerability in PAN-OS firewall appliances.

Campaign Analysis

Between the April and May 2024, Darktrace identified four main themes of post-exploitation activity involving Palo Alto Network firewall devices likely targeted via CVE-2024-3400: exploitation validation, shell command and tool retrieval, configuration data exfiltration, and ongoing command and control through encrypted channels and application protocols.

1. Exploit Validation and Further Vulnerability Enumeration

Many of the investigated attack chains began with malicious actors using out-of-band application security testing (OAST) services such as Interactsh to validate exploits against Palo Alto firewall appliances. This exploit validation activity typically resulted in devices attempting to contact unusual external endpoints (namely, subdomains of ‘oast[.]pro’, ‘oast[.]live’, ‘oast[.]site’, ‘oast[.]online’, ‘oast[.]fun’, ‘oast[.]me’, and ‘g3n[.]in’) associated with OAST services such as Interactsh. These services can be used by developers to inspect and debug internet traffic, but also have been easily abused by threat actors.

While attempted connections to OAST services do not alone indicate CVE-2024-3400 exploitation, the prevalence of such activities in observed Palo Alto firewall attack chains suggests widespread usage of these OAST services to validate initial access methods and possibly further enumerate systems for additional vulnerabilities.

Figure 1: Model alert log details showcasing a PAN-OS device making DNS queries for Interactsh domain names in what could be exploit validation, and/or further host enumeration.

2. Command and Payload Transmission

The most common feature across analyzed incidents was HTTP GET requests for shell scripts and Linux executable files (ELF) from external IPs associated with exploitation of the CVE. These HTTP requests were frequently initiated using the utilities, cURL and wget. On nearly every device likely targeted by threat actors leveraging the CVE, Darktrace analysts highlighted the retrieval of shell scripts that either featured enumeration commands, the removal of evidence of compromise activity, or commands to retrieve and start binaries on the destination device.

a) Shell Script Retrieval

Investigated devices commonly performed HTTP GET requests to retrieve shell command scripts. Despite this commonality, there was some degree of variety amongst the retrieved payloads and their affiliation with certain command tools. Several distinct types of shell commands and files were identified during the analyzed breaches. For example, some firewall devices were seen requesting .txt files associated with both Sliver C2, whose malicious use has previously been investigated by Darktrace, and Cobalt Strike. The target URIs of devices’ HTTP requests for these files included, “36shr.txt”, “2.txt”, “bin.txt”, and “data.txt”.

More interestingly, though, was the frequency with which analyzed systems requested bash scripts from rare external IP addresses, sometimes over non-standard ports for the HTTP protocol. These bash scripts would feature commands usually for the recipient system to check for certain existing files and or running processes. If the file did not exist, the system would then use cURL or wget to obtain content from external sites, change the permissions of the file, and then execute, sending output to dev/null as a means of likely defense evasion. In some scripts, the system would first make a new folder, and change directories prior to acquiring external content. Additionally, some samples highlighted multiple attempts at enumeration of the host system.

Figure 2: Packet capture (PCAP) data highlighting the incoming shell scripts providing instructions to use cURL to obtain external content, change the permissions of the file to execute, and then run the binary using the credentials and details provided.
Figure 3: PCAP data highlighting a variation of a shell script seen in an HTTP response processed by compromised devices. The script provides instructions to make a directory, retrieve and execute external content, and to hide the output.

Not every retrieved file that was not explicitly a binary featured bash scripts. Model alerts on some deployments also included file masquerading attempts by threat actors, whereby the Palo Alto firewall device would request content with a misleading extension in the URI. In one such instance, the requested URI, and HTTP response header suggests the returned content is an image/png, but the actual body response featured configuration parameters for a new daemon service to be run on the system.

Figure 4: PCAP data indicating configuration details likely for a new daemon on an investigated host. Such HTTP body content differs from the image/png extension within the request URI and declared content type in the HTTP response header.

Bash scripts analyzed across customer deployments also mirrored those identified by external security teams. External researchers previously reported on a series of identifiable shell commands in some cases of CVE-2024-3400 exploitation analyzed by their teams. Commands frequently involved a persistence mechanism they later labeled as the “UPSTYLE” backdoor.[vii]  This python-based program operates by reading commands hidden in error logs generated by 404 requests to the compromised server. The backdoor interprets the requests and writes the output to CSS files on the device. In many cases, Darktrace’s Threat Research team noted clear parallels between shell commands retrieved via HTTP GET request with those directly involving UPSTYLE. There were also matches with some URI patterns identified with the backdoor and requests observed on Darktrace deployments.

Figure 5: HTTP response data containing shell commands potentially relating to the UPSTYLE backdoor.

The presence of these UPSTYLE-related shell commands in response to Palo Alto firewall devices’ HTTP requests provides further evidence for initial exploitation of the CVE. Many bash scripts in examined cases interacted with folders and files likely related to CVE-2024-3400 exploitation. These scripts frequently sought to delete contents of certain folders, such as “/opt/panlogs/tmp/device_telemetry/minute/*” where evidence of exploitation would likely reside. Moreover, recursive removal and copy commands were frequently seen targeting CSS files within the GlobalProtect folder, already noted as the vulnerable element within PAN-OS versions. This evidence is further corroborated by host-based forensic analysis conducted by external researchers.[viii]

Figure 6: PCAP data from investigated system indicating likely defense evasion by removing content on folders where CVE exploitation occurred.

b) Executable File Retrieval

Typically, following command processing, compromised Palo Alto firewall devices proceeded to make web requests for several unusual and potentially malicious files. Many such executables would be retrieved via processed scripts. While there a fair amount of variety in specific executables and binaries obtained, overall, these executables involved either further command tooling such as Sliver C2 or Cobalt Strike payloads, or unknown executables. Affected systems would also employ uncommon ports for HTTP connections, in a likely attempt to evade detection. Extensions featured within the URI, when visible, frequently noted ‘.elf’ (Linux executable) or ‘.exe’ payloads. While most derived hashes did not feature identifiable open-source intelligence (OSINT) details, some samples did have external information tying the sample to specific malware. For example, one such investigation featured a compromised system requesting a file with a hash identified as the Spark malware (backdoor) while another investigated case included a host requesting a known crypto-miner.

Figure 7: PCAP data highlighting compromised system retrieving ELF content from a rare external server running a simple Python HTTP server.
Figure 8: Darktrace model alert logs highlighting a device labeled “Palo Alto” making a HTTP request on an uncommon port for an executable file following likely CVE exploitation.

3. Configuration Data Exfiltration and Unusual HTTP POST Activity

During Darktrace’s investigations, there were also several instances of sensitive data exfiltration from PAN-OS firewall devices. Specifically, targeted systems were observed making HTTP POST requests via destination port 80 to rare external endpoints that OSINT sources associate with CVE-2024-3400 exploitation and activity. PCAP analysis of such HTTP requests revealed that they often contained sensitive configuration details of the targeted Palo Alto firewall devices, including the IP address, default gateway, domain, users, superusers, and password hashes, to name only a few. Threat actors frequently utilized Target URIs such as “/upload” in their HTTP POST requests of this multi-part boundary form data. Again, the User-Agent headers of these HTTP requests largely involved versions of cURL, typically 7.6.1, and wget.

Figure 9: PCAP datahighlighting Palo Alto Firewall device running vulnerable version of PAN-OSposting configuration details to rare external services via HTTP.
Figure 10: Model alert logs highlighting a Palo Alto firewall device performing HTTP POSTs to a rare external IP, without a prior hostname lookup, on an uncommon port using a URI associated with configuration data exfiltration across analyzed incidents
Figure 11: Examples of TargetURIs of HTTP POST requests involving base64 encoded IPs and potential dataegress.

4. Ongoing C2 and Miscellaneous Activity

Lastly, a smaller number of affected Palo Alto firewall devices were seen engaging in repeated beaconing and/or C2 communication via both encrypted and unencrypted protocols during and following the initial series of kill chain events. Such encrypted channels typically involved protocols such as TLS/SSL and SSH. This activity likely represented ongoing communication of targeted systems with attacker infrastructure. Model alerts typically highlighted unusual levels of repeated external connectivity to rare external IP addresses over varying lengths of time. In some investigated incidents, beaconing activity consisted of hundreds of thousands of connections over several days.

Figure 12:  Advanced search details highlighting high levels of ongoing external communication to endpoints associated with C2 infrastructure exploiting CVE-2024-3400.

Some beaconing activity appears to have involved the use of the WebSocket protocol, as indicated by the appearance of “/ws” URIs and validated within packet captures. Such connections were then upgraded to an encrypted connection.

Figure 13:  PCAP highlighting use of WebSocket protocol to engage in ongoing external connectivity to likely C2 infrastructure following CVE-2024-3400 compromise.

While not directly visible in all the deployments, some investigations also yielded evidence of attempts at further post-exploitation activity. For example, a handful of the analyzed binaries that were downloaded by examined devices had OSINT information suggesting a relation to crypto-mining malware strains. However, crypto-mining activity was not directly observed at this time. Furthermore, several devices also triggered model alerts relating to brute-forcing activity via several authentication protocols (namely, Keberos and RADIUS) during the time of compromise. This brute-force activity likely represented attempts to move laterally from the affected firewall system to deeper parts of the network.

Figure 14: Model alert logs noting repeated SSL connectivity to a Sliver C2-affiliated endpoint in what likely constitutes C2 connectivity.
Figure 15: Model alert logs featuring repeated RADIUS login failures from a compromised PAN-OS device using generic usernames, suggesting brute-force activity.

Conclusion

Between April and late May 2024, Darktrace’s SOC and Threat Research teams identified several instances of likely PAN-OS CVE-2024-3400 exploitation across the Darktrace customer base. The subsequent investigation yielded four major themes that categorize the observed network-based post-exploitation activity. These major themes were exploit validation activity, retrieval of binaries and shell scripts, data exfiltration via HTTP POST activity, and ongoing C2 communication with rare external endpoints. The insights shared in this article will hopefully contribute to the ongoing discussion within the cybersecurity community about how to handle the likely continued exploitation of this vulnerability. Moreover, this article may also help cybersecurity professionals better respond to future exploitation of not only Palo Alto PAN-OS firewall devices, but also of edge devices more broadly.

Threat actors will continue to discover and leverage new CVEs impacting edge infrastructure. Since it is not yet known which CVEs threat actors will exploit next, relying on rules and signatures for the detection of exploitation of such CVEs is not a viable approach. Darktrace’s anomaly-based approach to threat detection, however, is well positioned to robustly adapt to threat actors’ changing methods, since although threat actors can change the CVEs they exploit, they cannot change the fact that their exploitation of CVEs results in highly unusual patterns of activity.

Credit to Adam Potter, Cyber Analyst, Sam Lister, Senior Cyber Analyst

Appendices

Pre-CVE-Release IoCs

38.54[.]104[.]14/3.sh
154.223[.]16[.]34/1.sh
154.223[.]16[.]34/co.sh
38.54[.]104[.]14/

Indicators of Compromise

Indicator – Type – Description

94.131.120[.]80              IP             C2 Endpoint

94.131.120[.]80:53/?src=[REDACTED]=hour=root                  URL        C2/Exfiltration Endpoint

134.213.29[.]14/?src=[REDACTED]min=root             URL        C2/Exfiltration Endpoint

134.213.29[.]14/grep[.]mips64            URL        Payload

134.213.29[.]14/grep[.]x86_64             URL        Payload

134.213.29[.]14/?deer               URL        Payload

134.213.29[.]14/?host=IDS   URL        Payload

134.213.29[.]14/ldr[.]sh           URL        Payload

91ebcea4e6d34fd6e22f99713eaf67571b51ab01  SHA1 File Hash               Payload

185.243.115[.]250/snmpd2[.]elf        URL        Payload

23.163.0[.]111/com   URL        Payload

80.92.205[.]239/upload            URL        C2/Exfiltration Endpoint

194.36.171[.]43/upload            URL        C2/Exfiltration Endpoint

update.gl-protect[.]com          Hostname         C2 Endpoint

update.gl-protect[.]com:63869/snmpgp      URL        Payload

146.70.87[.]237              IP address         C2 Endpoint

146.70.87[.]237:63867/snmpdd         URL        Payload

393c41b3ceab4beecf365285e8bdf0546f41efad   SHA1 File Hash               Payload

138.68.44[.]59/app/r URL        Payload

138.68.44[.]59/app/clientr     URL        Payload

138.68.44[.]59/manage            URL        Payload

72.5.43[.]90/patch      URL        Payload

217.69.3[.]218                 IP             C2 Endpoint

5e8387c24b75c778c920f8aa38e4d3882cc6d306                  SHA1 File Hash               Payload

217.69.3[.]218/snmpd[.]elf   URL        Payload

958f13da6ccf98fcaa270a6e24f83b1a4832938a    SHA1 File Hash               Payload

6708dc41b15b892279af2947f143af95fb9efe6e     SHA1 File Hash               Payload

dc50c0de7f24baf03d4f4c6fdf6c366d2fcfbe6c       SHA1 File Hash               Payload

109.120.178[.]253:10000/data[.]txt                  URL        Payload

109.120.178[.]253:10000/bin[.]txt   URL        Payload

bc9dc2e42654e2179210d98f77822723740a5ba6                 SHA1 File Hash               Payload

109.120.178[.]253:10000/123              URL        Payload

65283921da4e8b5eabb926e60ca9ad3d087e67fa                 SHA1 File Hash               Payload

img.dxyjg[.]com/6hiryXjZN0Mx[.]sh                  URL        Payload

149.56.18[.]189/IC4nzNvf7w/2[.]txt                 URL        Payload

228d05fd92ec4d19659d71693198564ae6f6b117 SHA1 File Hash               Payload

54b892b8fdab7c07e1e123340d800e7ed0386600                 SHA1 File Hash               Payload

165.232.121[.]217/rules          URL        Payload

165.232.121[.]217/app/request          URL        Payload

938faec77ebdac758587bba999e470785253edaf SHA1 File Hash               Payload

165.232.121[.]217/app/request63   URL        Payload

165.232.121[.]217:4443/termite/165.232.121[.]217             URL        Payload

92.118.112[.]60/snmpd2[.]elf               URL        Payload

2a90d481a7134d66e8b7886cdfe98d9c1264a386                 SHA1 File Hash               Payload

92.118.112[.]60/36shr[.]txt   URL        Payload

d6a33673cedb12811dde03a705e1302464d8227f                 SHA1 File Hash               Payload

c712712a563fe09fa525dfc01ce13564e3d98d67  SHA1 File Hash               Payload

091b3b33e0d1b55852167c3069afcdb0af5e5e79 SHA1 File Hash               Payload

5eebf7518325e6d3a0fd7da2c53e7d229d7b74b6                  SHA1 File Hash               Payload

183be7a0c958f5ed4816c781a2d7d5aa8a0bca9f SHA1 File Hash               Payload

e7d2f1224546b17d805617d02ade91a9a20e783e                 SHA1 File Hash               Payload

e6137a15df66054e4c97e1f4b8181798985b480d SHA1 File Hash               Payload

95.164.7[.]33:53/sea[.]png    URL        Payload

95.164.7[.]33/rules     URL        Payload

95.164.7[.]33:53/lb64                URL        Payload

c2bc9a7657bea17792048902ccf2d77a2f50d2d7 SHA1 File Hash               Payload

923369bbb86b9a9ccf42ba6f0d022b1cd4f33e9d SHA1 File Hash               Payload

52972a971a05b842c6b90c581b5c697f740cb5b9                 SHA1 File Hash               Payload

95d45b455cf62186c272c03d6253fef65227f63a    SHA1 File Hash               Payload

322ec0942cef33b4c55e5e939407cd02e295973e                  SHA1 File Hash               Payload

6335e08873b4ca3d0eac1ea265f89a9ef29023f2  SHA1 File Hash               Payload

134.213.29[.]14              IP             C2 Endpoint

185.243.115[.]250       IP             C2 Endpoint

80.92.205[.]239              IP             C2 Endpoint

194.36.171[.]43              IP             C2 Endpoint

92.118.112[.]60              IP             C2 Endpoint

109.120.178[.]253       IP             C2 Endpoint

23.163.0[.]111                 IP             C2 Endpoint

72.5.43[.]90     IP             C2 Endpoint

165.232.121[.]217       IP             C2 Endpoint

8.210.242[.]112              IP             C2 Endpoint

149.56.18[.]189              IP             C2 Endpoint

95.164.7[.]33  IP             C2 Endpoint

138.68.44[.]59                 IP             C2 Endpoint

Img[.]dxyjg[.]com         Hostname         C2 Endpoint

Darktrace Model Alert Coverage

·      Anomalous Connection / New User Agent to IP Without Hostname

·      Device / New User Agent (triggered by pre-CVE-release activity)

·      Anomalous File / Script from Rare External Location (triggered by pre-CVE-release activity)

·      Anomalous File / Masqueraded File Transfer

·      Anomalous File / EXE from Rare External Location

·      Anomalous File / Multiple EXE from Rare External Locations

·      Anomalous File / Script and EXE from Rare External

·      Anomalous File / Suspicious Octet Stream Download

·      Anomalous File / Numeric File Download

·      Anomalous Connection / Application Protocol on Uncommon Port

·      Anomalous Connection / Posting HTTP to IP Without Hostname

·      Anomalous Connection / Multiple Failed Connections to Rare Endpoint

·      Anomalous Connection / Suspicious Self-Signed SSL

·      Anomalous Connection / Anomalous SSL without SNI to New External

·      Anomalous Connection / Multiple Connections to New External TCP Port

·      Anomalous Connection / Rare External SSL Self-Signed

·      Anomalous Server Activity / Outgoing from Server

·      Anomalous Server Activity / Rare External from Server

·      Compromise / SSH Beacon

·      Compromise / Beacon for 4 Days

·      Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

·      Compromise / High Priority Tunnelling to Bin Services

·      Compromise / Sustained SSL or HTTP Increase

·      Compromise / Connection to Suspicious SSL Server

·      Compromise / Suspicious File and C2

·      Compromise / Large Number of Suspicious Successful Connections

·      Compromise / Slow Beaconing Activity To External Rare

·      Compromise / HTTP Beaconing to New Endpoint

·      Compromise / SSL or HTTP Beacon

·      Compromise / Suspicious HTTP and Anomalous Activity

·      Compromise / Beacon to Young Endpoint

·      Compromise / High Volume of Connections with Beacon Score

·      Compromise / Suspicious Beaconing Behaviour

·      Compliance / SSH to Rare External Destination

·      Compromise / HTTP Beaconing to Rare Destination

·      Compromise / Beaconing Activity To External Rare

·      Device / Initial Breach Chain Compromise

·      Device / Multiple C2 Model Breaches

MITRE ATTACK Mapping

Tactic – Technique

Initial Access  T1190 – Exploiting Public-Facing Application

Execution           T1059.004 – Command and Scripting Interpreter: Unix Shell

Persistence      T1543.002 – Create or Modify System Processes: Systemd Service

Defense Evasion           T1070.004 – Indicator Removal: File Deletion

Credential Access       T1110.001 – Brute Force: Password Guessing

Discovery           T1083 – File and System Discovery

T1057 – Process Discovery

Collection         T1005 – Data From Local System

Command and Control            

T1071.001 – Application Layer Protocol:  Web Protocols

T1573.002 – Encrypted Channel: Asymmetric Cryptography

T1571 – Non-Standard Port

T1105 – Ingress Tool Transfer

Exfiltration        

T1041 – Exfiltration over C2 Protocol

T1048.002 - Exfiltration Over Alternative Protocol: Exfiltration Over Asymmetric Encrypted Non-C2 Protocol

References

[1] https://cloud.google.com/blog/topics/threat-intelligence/china-nexus-espionage-orb-networks

[2] https://unit42.paloaltonetworks.com/cve-2024-3400/

[i]  https://www.ncsc.gov.uk/blog-post/products-on-your-perimeter

[ii] https://security.paloaltonetworks.com/CVE-2024-3400

[iii] https://labs.watchtowr.com/palo-alto-putting-the-protecc-in-globalprotect-cve-2024-3400/

[iv] https://labs.watchtowr.com/palo-alto-putting-the-protecc-in-globalprotect-cve-2024-3400/

[v] https://labs.watchtowr.com/palo-alto-putting-the-protecc-in-globalprotect-cve-2024-3400/

[vi] https://security.paloaltonetworks.com/CVE-2024-3400

[vii] https://www.volexity.com/blog/2024/04/12/zero-day-exploitation-of-unauthenticated-remote-code-execution-vulnerability-in-globalprotect-cve-2024-3400/

[viii] https://www.volexity.com/blog/2024/05/15/detecting-compromise-of-cve-2024-3400-on-palo-alto-networks-globalprotect-devices/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

December 4, 2025

Atomic Stealer: Darktrace’s Investigation of a Growing macOS Threat

Atomic Stealer: Darktrace’s Investigation of a Growing macOS ThreatDefault blog imageDefault blog image

The Rise of Infostealers Targeting Apple Users

In a threat landscape historically dominated by Windows-based threats, the growing prevalence of macOS information stealers targeting Apple users is becoming an increasing concern for organizations. Infostealers are a type of malware designed to steal sensitive data from target devices, often enabling attackers to extract credentials and financial data for resale or further exploitation. Recent research identified infostealers as the largest category of new macOS malware, with an alarming 101% increase in the last two quarters of 2024 [1].

What is Atomic Stealer?

Among the most notorious is Atomic macOS Stealer (or AMOS), first observed in 2023. Known for its sophisticated build, Atomic Stealer can exfiltrate a wide range of sensitive information including keychain passwords, cookies, browser data and cryptocurrency wallets.

Originally marketed on Telegram as a Malware-as-a-Service (MaaS), Atomic Stealer has become a popular malware due to its ability to target macOS. Like other MaaS offerings, it includes services like a web panel for managing victims, with reports indicating a monthly subscription cost between $1,000 and $3,000 [2]. Although Atomic Stealer’s original intent was as a standalone MaaS product, its unique capability to target macOS has led to new variants emerging at an unprecedented rate

Even more concerning, the most recent variant has now added a backdoor for persistent access [3]. This backdoor presents a significant threat, as Atomic Stealer campaigns are believed to have reached an around 120 countries. The addition of a backdoor elevates Atomic Stealer to the rare category of backdoor deployments potentially at a global scale, something only previously attributed to nation-state threat actors [4].

This level of sophistication is also evident in the wide range of distribution methods observed since its first appearance; including fake application installers, malvertising and terminal command execution via the ClickFix technique. The ClickFix technique is particularly noteworthy: once the malware is downloaded onto the device, users are presented with what appears to be a legitimate macOS installation prompt. In reality, however, the user unknowingly initiates the execution of the Atomic Stealer malware.

This blog will focus on activity observed across multiple Darktrace customer environments where Atomic Stealer was detected, along with several indicators of compromise (IoCs). These included devices that successfully connected to endpoints associated with Atomic Stealer, those that attempted but failed to establish connections, and instances suggesting potential data exfiltration activity.

Darktrace’s Coverage of Atomic Stealer

As this evolving threat began to spread across the internet in June 2025, Darktrace observed a surge in Atomic Stealer activity, impacting numerous customers in 24 different countries worldwide. Initially, most of the cases detected in 2025 affected Darktrace customers within the Europe, Middle East, and Africa (EMEA) region. However, later in the year, Darktrace began to observe a more even distribution of cases across EMEA, the Americas (AMS), and Asia Pacific (APAC). While multiple sectors were impacted by Atomic Stealer, Darktrace customers in the education sector were the most affected, particularly during September and October, coinciding with the return to school and universities after summer closures. This spike likely reflects increased device usage as students returned and reconnected potentially compromised devices to school and campus environments.

Starting from June, Darktrace detected multiple events of suspicious HTTP activity to external connections to IPs in the range 45.94.47.0/24. Investigation by Darktrace’s Threat Research team revealed several distinct patterns ; HTTP POST requests to the URI “/contact”, identical cURL User Agents and HTTP requests to “/api/tasks/[base64 string]” URIs.

Within one observed customer’s environment in July, Darktrace detected two devices making repeated initiated HTTP connections over port 80 to IPs within the same range. The first, Device A, was observed making GET requests to the IP 45.94.47[.]158 (AS60781 LeaseWeb Netherlands B.V.), targeting the URI “/api/tasks/[base64string]” using the “curl/8.7.2” user agent. This pattern suggested beaconing activity and triggered the ‘Beaconing Activity to External Rare' model alert in Darktrace / NETWORK, with Device A’s Model Event Log showing repeated connections. The IP associated with this endpoint has since been flagged by multiple open-source intelligence (OSINT) vendors as being associated with Atomic Stealer [5].

Darktrace’s detection of Device A showing repeated connections to the suspicious IP address over port 80, indicative of beaconing behavior.
Figure 1: Darktrace’s detection of Device A showing repeated connections to the suspicious IP address over port 80, indicative of beaconing behavior.

Darktrace’s Cyber AI Analyst subsequently launched an investigation into the activity, uncovering that the GET requests resulted in a ‘503 Service Unavailable’ response, likely indicating that the server was temporarily unable to process the requests.

Cyber AI Analyst Incident showing the 503 Status Code, indicating that the server was temporarily unavailable.
Figure 2: Cyber AI Analyst Incident showing the 503 Status Code, indicating that the server was temporarily unavailable.

This unusual activity prompted Darktrace’s Autonomous Response capability to recommend several blocking actions for the device in an attempt to stop the malicious activity. However, as the customer’s Autonomous Response configuration was set to Human Confirmation Mode, Darktrace was unable to automatically apply these actions. Had Autonomous Response been fully enabled, these connections would have been blocked, likely rendering the malware ineffective at reaching its malicious command-and-control (C2) infrastructure.

Autonomous Response’s suggested actions to block suspicious connectivity on Device A in the first customer environment.
Figure 3: Autonomous Response’s suggested actions to block suspicious connectivity on Device A in the first customer environment.

In another customer environment in August, Darktrace detected similar IoCs, noting a device establishing a connection to the external endpoint 45.94.47[.]149 (ASN: AS57043 Hostkey B.V.). Shortly after the initial connections, the device was observed making repeated requests to the same destination IP, targeting the URI /api/tasks/[base64string] with the user agent curl/8.7.1, again suggesting beaconing activity. Further analysis of this endpoint after the fact revealed links to Atomic Stealer in OSINT reporting [6].

Cyber AI Analyst investigation finding a suspicious URI and user agent for the offending device within the second customer environment.
Figure 4:  Cyber AI Analyst investigation finding a suspicious URI and user agent for the offending device within the second customer environment.

As with the customer in the first case, had Darktrace’s Autonomous Response been properly configured on the customer’s network, it would have been able to block connectivity with 45.94.47[.]149. Instead, Darktrace suggested recommended actions that the customer’s security team could manually apply to help contain the attack.

Autonomous Response’s suggested actions to block suspicious connectivity to IP 45.94.47[.]149 for the device within the second customer environment.
Figure 5: Autonomous Response’s suggested actions to block suspicious connectivity to IP 45.94.47[.]149 for the device within the second customer environment.

In the most recent case observed by Darktrace in October, multiple instances of Atomic Stealer activity were seen across one customer’s environment, with two devices communicating with Atomic Stealer C2 infrastructure. During this incident, one device was observed making an HTTP GET request to the IP 45.94.47[.]149 (ASN: AS60781 LeaseWeb Netherlands B.V.). These connections targeted the URI /api/tasks/[base64string, using the user agent curl/8.7.1.  

Shortly afterward, the device began making repeated connections over port 80 to the same external IP, 45.94.47[.]149. This activity continued for several days until Darktrace detected the device making an HTTP POST request to a new IP, 45.94.47[.]211 (ASN: AS57043 Hostkey B.V.), this time targeting the URI /contact, again using the curl/8.7.1 user agent. Similar to the other IPs observed in beaconing activity, OSINT reporting later linked this one to information stealer C2 infrastructure [7].

Darktrace’s detection of suspicious beaconing connectivity with the suspicious IP 45.94.47.211.
Figure 6: Darktrace’s detection of suspicious beaconing connectivity with the suspicious IP 45.94.47.211.

Further investigation into this customer’s network revealed that similar activity had been occurring as far back as August, when Darktrace detected data exfiltration on a second device. Cyber AI Analyst identified this device making a single HTTP POST connection to the external IP 45.94.47[.]144, another IP with malicious links [8], using the user agent curl/8.7.1 and targeting the URI /contact.

Cyber AI Analyst investigation finding a successful POST request to 45.94.47[.]144 for the device within the third customer environment.
Figure 7:  Cyber AI Analyst investigation finding a successful POST request to 45.94.47[.]144 for the device within the third customer environment.

A deeper investigation into the technical details within the POST request revealed the presence of a file named “out.zip”, suggesting potential data exfiltration.

Advanced Search log in Darktrace / NETWORK showing “out.zip”, indicating potential data exfiltration for a device within the third customer environment.
Figure 8: Advanced Search log in Darktrace / NETWORK showing “out.zip”, indicating potential data exfiltration for a device within the third customer environment.

Similarly, in another environment, Darktrace was able to collect a packet capture (PCAP) of suspected Atomic Stealer activity, which revealed potential indicators of data exfiltration. This included the presence of the “out.zip” file being exfiltrated via an HTTP POST request, along with data that appeared to contain details of an Electrum cryptocurrency wallet and possible passwords.

Read more about Darktrace’s full deep dive into a similar case where this tactic was leveraged by malware as part of an elaborate cryptocurrency scam.

PCAP of an HTTP POST request showing the file “out.zip” and details of Electrum Cryptocurrency wallet.
Figure 9: PCAP of an HTTP POST request showing the file “out.zip” and details of Electrum Cryptocurrency wallet.

Although recent research attributes the “out.zip” file to a new variant named SHAMOS [9], it has also been linked more broadly to Atomic Stealer [10]. Indeed, this is not the first instance where Darktrace has seen the “out.zip” file in cases involving Atomic Stealer either. In a previous blog detailing a social engineering campaign that targeted cryptocurrency users with the Realst Stealer, the macOS version of Realst contained a binary that was found to be Atomic Stealer, and similar IoCs were identified, including artifacts of data exfiltration such as the “out.zip” file.

Conclusion

The rapid rise of Atomic Stealer and its ability to target macOS marks a significant shift in the threat landscape and should serve as a clear warning to Apple users who were traditionally perceived as more secure in a malware ecosystem historically dominated by Windows-based threats.

Atomic Stealer’s growing popularity is now challenging that perception, expanding its reach and accessibility to a broader range of victims. Even more concerning is the emergence of a variant embedded with a backdoor, which is likely to increase its appeal among a diverse range of threat actors. Darktrace’s ability to adapt and detect new tactics and IoCs in real time delivers the proactive defense organizations need to protect themselves against emerging threats before they can gain momentum.

Credit to Isabel Evans (Cyber Analyst), Dylan Hinz (Associate Principal Cyber Analyst)
Edited by Ryan Traill (Analyst Content Lead)

Appendices

References

1.     https://www.scworld.com/news/infostealers-targeting-macos-jumped-by-101-in-second-half-of-2024

2.     https://www.kandji.io/blog/amos-macos-stealer-analysis

3.     https://www.broadcom.com/support/security-center/protection-bulletin/amos-stealer-adds-backdoor

4.     https://moonlock.com/amos-backdoor-persistent-access

5.     https://www.virustotal.com/gui/ip-address/45.94.47.158/detection

6.     https://www.trendmicro.com/en_us/research/25/i/an-mdr-analysis-of-the-amos-stealer-campaign.html

7.     https://www.virustotal.com/gui/ip-address/45.94.47.211/detection

8.     https://www.virustotal.com/gui/ip-address/45.94.47.144/detection

9.     https://securityaffairs.com/181441/malware/over-300-entities-hit-by-a-variant-of-atomic-macos-stealer-in-recent-campaign.html

10.   https://binhex.ninja/malware-analysis-blogs/amos-stealer-atomic-stealer-malware.html

Darktrace Model Detections

Darktrace / NETWORK

  • Compromise / Beaconing Activity To External Rare
  • Compromise / HTTP Beaconing to New IP
  • Compromise / HTTP Beaconing to Rare Destination
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Device / New User Agent
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compromise / Slow Beaconing Activity To External Rare
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Compromise / Quick and Regular Windows HTTP Beaconing

Autonomous Response

  • Antigena / Network / Significant Anomaly::Antigena Alerts Over Time Block
  • Antigena / Network / Significant Anomaly::Antigena Significant Anomaly from Client Block
  • Antigena / Network / External Threat::Antigena Suspicious Activity Block

List of IoCs

  • 45.94.47[.]149 – IP – Atomic C2 Endpoint
  • 45.94.47[.]144 – IP – Atomic C2 Endpoint
  • 45.94.47[.]158 – IP – Atomic C2 Endpoint
  • 45.94.47[.]211 – IP – Atomic C2 Endpoint
  • out.zip - File Output – Possible ZIP file for Data Exfiltration

MITRE ATT&CK Mapping:

Tactic –Technique – Sub-Technique

Execution - T1204.002 - User Execution: Malicious File

Credential Access - T1555.001 - Credentials from Password Stores: Keychain

Credential Access - T1555.003 - Credentials from Web Browsers

Command & Control - T1071 - Application Layer Protocol

Exfiltration - T1041 - Exfiltration Over C2 Channel

Continue reading
About the author
Dylan Hinz
Cyber Analyst

Blog

/

Email

/

December 3, 2025

Darktrace Named as a Leader in 2025 Gartner® Magic Quadrant™ for Email Security Platforms

Default blog imageDefault blog image

Darktrace is proud to be named as a Leader in the Gartner® Magic Quadrant™ for Email Security Platforms (ESP). We believe this recognition reflects what our customers already know: our product is exceptional – and so is the way we deliver it.

In July 2025, Darktrace was named a Customers’ Choice in the Gartner® Peer Insights™ Voice of the Customer for Email Security, a distinction given to vendors who have scores that meet or exceed the market average for both axes (User Interest and Adoption, and Overall Experience). To us, both achievements are testament to the customer-first approach that has fueled our rapid growth. We feel this new distinction from Gartner validates the innovation, efficacy, and customer-centric delivery that set Darktrace apart.

A Gartner Magic Quadrant is a culmination of research in a specific market, giving you a wide-angle view of the relative positions of the market’s competitors. CIOs and CISOs can use this research to make informed decisions about which email security platform can best accomplish their goals. We encourage our customers to read the full report to get the complete picture.

This acknowledgement follows the recent recognition of Darktrace / NETWORK, also designated a Leader in the Gartner Magic Quadrant for Network Detection & Response and named the only Customers’ Choice in its category.

Leaders are recognized for strong market adoption, financial stability, and established integrations with major collaboration platforms.

Why do we believe Darktrace is leading in the email security market?

Our relentless innovation which drives proven results  

At Darktrace we continue to push the frontier of email security, with industry-first AI-native detection and response capabilities that go beyond traditional SEG approaches. How do we do it?

  • With a proven approach that gets results. Darktrace’s unique business-centric anomaly detection catches advanced phishing, supply chain compromises, and BEC attacks – detecting them on average 13 days earlier than attack-centric solutions. That’s why 75% of our customers have removed their SEG and now rely on their native email security provider combined with Darktrace.
  • By offering comprehensive protection beyond the inbox. Darktrace / EMAIL goes further than traditional inbound filtering, delivering account and messaging protection, DLP, and DMARC capabilities, ensuring best-in-class security across inbound, outbound, and domain protection scenarios.  
  • Continuous innovation. We are ranked second highest in the Gartner Critical Capabilities research for core email security function, likely thanks to our product strategy and rapid pace of innovation. We’ve release major capabilities twice a year for nearly five years, including advanced AI models and expanded coverage for collaboration platforms.

We deliver exceptional customer experiences worldwide

Darktrace’s leadership isn’t just about excelling in technology, it’s about delivering an outstanding experience that customers value. Let’s dig into what makes our customers tick.

  • Proven loyalty from our base. Recognition from Gartner Peer Insights as a Customers’ Choice, combined with a 4.8-star rating (based on 340 reviews as of November 2025), demonstrates for us the trust of thousands of organizations worldwide, not just the analysts.  
  • Customer-first support. Darktrace goes beyond ticket-only models with dedicated account teams and award-winning service, backed by significant headcount growth in technical support and analytics roles over the past year.
  • Local expertise. With offices spanning continents, Darktrace is able to provide regional language support and tailored engagement from teams on the ground, ensuring personalized service and a human-first experience.

Darktrace enhances security stacks with a partner-first architecture

There are plenty of tools out there than encourage a siloed approach. Darktrace / EMAIL plays well with others, enhancing your native security provider and allowing you to slim down your stack. It’s designed to set you up for future growth, with:

  • A best-in-breed platform approach. Natively built on Self-Learning AI, Darktrace / EMAIL delivers deep integration with our / NETWORK, / IDENTITY, and / CLOUD products as part of a unified platforms – that enables and enhances comprehensive enterprise-wise security.
  • Optimized workflows. Darktrace integrates tightly with an extended ecosystem of security tools – including a strategic partnership with Microsoft enabling unified threat response and quarantine capabilities – bringing constant innovation to all of your SOC workflows.  
  • A channel-first strategy. Darktrace is making significant investments in partner-driven architectures, enabling integrated ecosystems that deliver maximum value and future-ready security for our customers.

Analyst recognized. Customer approved.  

Darktrace / EMAIL is not just another inbound email security tool; it’s an advanced email security platform trusted by thousands of users to protect them against advanced phishing, messaging, and account-level attacks.  

As a Leader, we believe we owe our positioning to our customers and partners for supporting our growth. In the upcoming years we will continue to innovate to serve the organizations who depend on Darktrace for threat protection.  

To learn more about Darktrace’s position as a Leader, view a complimentary copy of the Magic Quadrant report, register for the Darktrace Innovation Webinar on 9 December, 2025, or simply request a demo.

Gartner, Gartner® Magic Quadrant™ for Email Security Platforms, Max Taggett, Nikul Patel, 3 December 2025

GARTNER is a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S. and internationally and is used herein with permission. All rights reserved. Magic Quadrant is a registered trademark of Gartner, Inc. and/or its affiliates and is used herein with permission. All rights reserved.

Gartner does not endorse any vendor, product or service depicted in its research publications, and does not advise technology users to select only those vendors with the highest ratings or other designation. Gartner research publications consist of the opinions of Gartner’s research organization and should not be construed as statements of fact. Gartner disclaims all warranties, expressed or implied, with respect to this research, including any warranties of merchantability or fitness for a particular purpose.

This graphic was published by Gartner, Inc. as part of a larger research document and should be evaluated in the context of the entire document. The Gartner document is available upon request from Darktrace.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI