Blog
/
Network
/
June 20, 2024

Post-Exploitation Activities on PAN-OS Devices: A Network-Based Analysis

This blog investigates the network-based activity detected by Darktrace in compromises stemming from the exploitation of a vulnerability in Palo Alto Networks firewall devices, namely CVE-2024-3400.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Jun 2024

Update:
Following the initial publication of this blog detailing exploitation campaigns utilizing the recently disclosed vulnerability, Darktrace analysts expanded the scope of the threat research investigation to identify potential earlier, pre-CVE disclosure, exploitation of CVE 2024-3400. While the majority of PAN-OS exploitation activity seen in the Darktrace customer base occurred after the public release of the CVE, Darktrace did also see tooling activity likely related to CVE-2024-3400 exploitation prior to the vulnerability's disclosure. Unlike the post-CVE-release exploitation activity, which largely reflected indiscriminate, opportunistic targeting of unpatched systems, these pre-CVE release activities likely represented selective targeting by more calculated actors.

Between March 26 and 28, Darktrace identified two Palo Alto firewall devices within the network of a public sector customer making HTTP GET requests utilizing both cURL and wget user agents, versions of which were seen in later compromise activity in April. The devices requested multiple shell script files (.sh) from rare external IP addresses. These IPs are likely associated with an operational relay box (ORB) network[1]. The connections also occurred without a specified hostname lookup, suggesting the IPs were hardcoded into process code or already cached through unexpected running processes. One of the destination IPs was later confirmed by Palo Alto Network’s Unit 42 as associated with exploitation of the PAN-OS vulnerability[2]. This observed activity closely resembles post-exploitation activity seen on affected firewall devices in mid-April. However, unlike the more disruptive and noisier follow-on exploitation activity seen in post-CVE-release incidents, the pre-CVE-release case observed by Darktrace appears to have been much more discreet, likely due to the relevant threat actor's desire to remain undetected.

--

Introduction

Perimeter devices such as firewalls, virtual private networks (VPNs), and intrusion prevention systems (IPS), have long been the target of adversarial actors attempting to gain access to internal networks. However, recent publications and public service announcements by leading public institutions underscore the increased emphasis threat actors are putting on leveraging such products to initiate compromises.

A blog post by the UK National Cyber Security Center (NCSC) released in early 2024 notes that as improvements are made in the detection of phishing email payloads, threat actors have again begun re-focusing efforts to exploiting network edge devices, many of which are not secure by design, as a means of breach initiation.[i] As such, it comes as no surprise that new Common Vulnerabilities and Exposures (CVEs) are constantly discovered that exploit such internet-exposed systems.

Darktrace analysts frequently observe the impacts of such CVEs first through their investigations via Darktrace’s Security Operations Center (SOC). Beginning in April 2024, Darktrace’s SOC began handling alerts and customer requests for potential incidents involving Palo Alto Networks firewall devices.  Just days prior, external researchers publicly disclosed what would later be classified as PAN-OS CVE-2024-3400, a form of remote command execution vulnerability that affects several versions of Palo Alto Networks’ firewall operating system (PAN-OS), namely PAN-OS 11.1, 11.0 and 10.2. At the time, multiple Darktrace customers were unaware of the recently announced vulnerability.

The increase in observed SOC activity for Palo Alto firewall devices, coupled with the public announcement of the new CVE prompted Darktrace researchers to look for evidence of PAN-OS exploitation on customer networks. Researchers also focused on documenting post-exploitation activity from threat actors leveraging the recently disclosed vulnerability.

As such, this blog highlights the network-based behaviors involved in the CVE-2024-3400 attack chains investigated by Darktrace’s SOC and Threat Research teams. Moreover, this investigation also provides a deeper insight into the post-compromise activities of threat actors leveraging the novel CVE.  Such insights will not only prove relevant for cybersecurity teams looking to inhibit compromises in this specific instance, but also highlights general patterns of behavior by threat actors utilizing such CVEs to target internet-facing systems.

CVE-2024-3400

In mid-April 2024, the Darktrace SOC observed an uptick in activity involving recurring patterns of malicious activity from Palo Alto firewall appliances. In response to this trend, Darktrace initiated a Threat Research investigation into such activity to try and identify common factors and indicators across seemingly parallel events. Shortly before the Threat Research team opened their investigation, external researchers provided public details of CVE-2024-3400, a form of remote command execution vulnerability in the GlobalProtect feature on Palo Alto Network firewall devices running PAN-OS versions: 10.2, 11.0, and 11.1.[ii]

In their proof of concept, security researchers at watchTowr demonstrated how an attacker can pass session ID (SESSID) values to these PAN-OS devices to request files that do not exist. In response, the system creates a zero-byte file with root privileges with the same name.[iii] Log data is passed on devices running telemetry services to external servers through command line functionality.[iv] Given this functionality, external actors could then request non-existent files in the SESSID containing command parameters which then be interpreted by the command line functionality.[v] Although researchers first believed the exploit could only be used against devices running telemetry services, this was later discovered to be untrue.[vi]

As details of CVE-2024-3400 began to surface, Darktrace’s Threat Research analysts quickly identified distinct overlaps in the observed activity on specific customer deployments and the post-exploitation behavior reported by external researchers. Given the parallels, Darktrace correlated the patterns of activity observed by the SOC team to exploitation of the newly discovered vulnerability in PAN-OS firewall appliances.

Campaign Analysis

Between the April and May 2024, Darktrace identified four main themes of post-exploitation activity involving Palo Alto Network firewall devices likely targeted via CVE-2024-3400: exploitation validation, shell command and tool retrieval, configuration data exfiltration, and ongoing command and control through encrypted channels and application protocols.

1. Exploit Validation and Further Vulnerability Enumeration

Many of the investigated attack chains began with malicious actors using out-of-band application security testing (OAST) services such as Interactsh to validate exploits against Palo Alto firewall appliances. This exploit validation activity typically resulted in devices attempting to contact unusual external endpoints (namely, subdomains of ‘oast[.]pro’, ‘oast[.]live’, ‘oast[.]site’, ‘oast[.]online’, ‘oast[.]fun’, ‘oast[.]me’, and ‘g3n[.]in’) associated with OAST services such as Interactsh. These services can be used by developers to inspect and debug internet traffic, but also have been easily abused by threat actors.

While attempted connections to OAST services do not alone indicate CVE-2024-3400 exploitation, the prevalence of such activities in observed Palo Alto firewall attack chains suggests widespread usage of these OAST services to validate initial access methods and possibly further enumerate systems for additional vulnerabilities.

Figure 1: Model alert log details showcasing a PAN-OS device making DNS queries for Interactsh domain names in what could be exploit validation, and/or further host enumeration.

2. Command and Payload Transmission

The most common feature across analyzed incidents was HTTP GET requests for shell scripts and Linux executable files (ELF) from external IPs associated with exploitation of the CVE. These HTTP requests were frequently initiated using the utilities, cURL and wget. On nearly every device likely targeted by threat actors leveraging the CVE, Darktrace analysts highlighted the retrieval of shell scripts that either featured enumeration commands, the removal of evidence of compromise activity, or commands to retrieve and start binaries on the destination device.

a) Shell Script Retrieval

Investigated devices commonly performed HTTP GET requests to retrieve shell command scripts. Despite this commonality, there was some degree of variety amongst the retrieved payloads and their affiliation with certain command tools. Several distinct types of shell commands and files were identified during the analyzed breaches. For example, some firewall devices were seen requesting .txt files associated with both Sliver C2, whose malicious use has previously been investigated by Darktrace, and Cobalt Strike. The target URIs of devices’ HTTP requests for these files included, “36shr.txt”, “2.txt”, “bin.txt”, and “data.txt”.

More interestingly, though, was the frequency with which analyzed systems requested bash scripts from rare external IP addresses, sometimes over non-standard ports for the HTTP protocol. These bash scripts would feature commands usually for the recipient system to check for certain existing files and or running processes. If the file did not exist, the system would then use cURL or wget to obtain content from external sites, change the permissions of the file, and then execute, sending output to dev/null as a means of likely defense evasion. In some scripts, the system would first make a new folder, and change directories prior to acquiring external content. Additionally, some samples highlighted multiple attempts at enumeration of the host system.

Figure 2: Packet capture (PCAP) data highlighting the incoming shell scripts providing instructions to use cURL to obtain external content, change the permissions of the file to execute, and then run the binary using the credentials and details provided.
Figure 3: PCAP data highlighting a variation of a shell script seen in an HTTP response processed by compromised devices. The script provides instructions to make a directory, retrieve and execute external content, and to hide the output.

Not every retrieved file that was not explicitly a binary featured bash scripts. Model alerts on some deployments also included file masquerading attempts by threat actors, whereby the Palo Alto firewall device would request content with a misleading extension in the URI. In one such instance, the requested URI, and HTTP response header suggests the returned content is an image/png, but the actual body response featured configuration parameters for a new daemon service to be run on the system.

Figure 4: PCAP data indicating configuration details likely for a new daemon on an investigated host. Such HTTP body content differs from the image/png extension within the request URI and declared content type in the HTTP response header.

Bash scripts analyzed across customer deployments also mirrored those identified by external security teams. External researchers previously reported on a series of identifiable shell commands in some cases of CVE-2024-3400 exploitation analyzed by their teams. Commands frequently involved a persistence mechanism they later labeled as the “UPSTYLE” backdoor.[vii]  This python-based program operates by reading commands hidden in error logs generated by 404 requests to the compromised server. The backdoor interprets the requests and writes the output to CSS files on the device. In many cases, Darktrace’s Threat Research team noted clear parallels between shell commands retrieved via HTTP GET request with those directly involving UPSTYLE. There were also matches with some URI patterns identified with the backdoor and requests observed on Darktrace deployments.

Figure 5: HTTP response data containing shell commands potentially relating to the UPSTYLE backdoor.

The presence of these UPSTYLE-related shell commands in response to Palo Alto firewall devices’ HTTP requests provides further evidence for initial exploitation of the CVE. Many bash scripts in examined cases interacted with folders and files likely related to CVE-2024-3400 exploitation. These scripts frequently sought to delete contents of certain folders, such as “/opt/panlogs/tmp/device_telemetry/minute/*” where evidence of exploitation would likely reside. Moreover, recursive removal and copy commands were frequently seen targeting CSS files within the GlobalProtect folder, already noted as the vulnerable element within PAN-OS versions. This evidence is further corroborated by host-based forensic analysis conducted by external researchers.[viii]

Figure 6: PCAP data from investigated system indicating likely defense evasion by removing content on folders where CVE exploitation occurred.

b) Executable File Retrieval

Typically, following command processing, compromised Palo Alto firewall devices proceeded to make web requests for several unusual and potentially malicious files. Many such executables would be retrieved via processed scripts. While there a fair amount of variety in specific executables and binaries obtained, overall, these executables involved either further command tooling such as Sliver C2 or Cobalt Strike payloads, or unknown executables. Affected systems would also employ uncommon ports for HTTP connections, in a likely attempt to evade detection. Extensions featured within the URI, when visible, frequently noted ‘.elf’ (Linux executable) or ‘.exe’ payloads. While most derived hashes did not feature identifiable open-source intelligence (OSINT) details, some samples did have external information tying the sample to specific malware. For example, one such investigation featured a compromised system requesting a file with a hash identified as the Spark malware (backdoor) while another investigated case included a host requesting a known crypto-miner.

Figure 7: PCAP data highlighting compromised system retrieving ELF content from a rare external server running a simple Python HTTP server.
Figure 8: Darktrace model alert logs highlighting a device labeled “Palo Alto” making a HTTP request on an uncommon port for an executable file following likely CVE exploitation.

3. Configuration Data Exfiltration and Unusual HTTP POST Activity

During Darktrace’s investigations, there were also several instances of sensitive data exfiltration from PAN-OS firewall devices. Specifically, targeted systems were observed making HTTP POST requests via destination port 80 to rare external endpoints that OSINT sources associate with CVE-2024-3400 exploitation and activity. PCAP analysis of such HTTP requests revealed that they often contained sensitive configuration details of the targeted Palo Alto firewall devices, including the IP address, default gateway, domain, users, superusers, and password hashes, to name only a few. Threat actors frequently utilized Target URIs such as “/upload” in their HTTP POST requests of this multi-part boundary form data. Again, the User-Agent headers of these HTTP requests largely involved versions of cURL, typically 7.6.1, and wget.

Figure 9: PCAP datahighlighting Palo Alto Firewall device running vulnerable version of PAN-OSposting configuration details to rare external services via HTTP.
Figure 10: Model alert logs highlighting a Palo Alto firewall device performing HTTP POSTs to a rare external IP, without a prior hostname lookup, on an uncommon port using a URI associated with configuration data exfiltration across analyzed incidents
Figure 11: Examples of TargetURIs of HTTP POST requests involving base64 encoded IPs and potential dataegress.

4. Ongoing C2 and Miscellaneous Activity

Lastly, a smaller number of affected Palo Alto firewall devices were seen engaging in repeated beaconing and/or C2 communication via both encrypted and unencrypted protocols during and following the initial series of kill chain events. Such encrypted channels typically involved protocols such as TLS/SSL and SSH. This activity likely represented ongoing communication of targeted systems with attacker infrastructure. Model alerts typically highlighted unusual levels of repeated external connectivity to rare external IP addresses over varying lengths of time. In some investigated incidents, beaconing activity consisted of hundreds of thousands of connections over several days.

Figure 12:  Advanced search details highlighting high levels of ongoing external communication to endpoints associated with C2 infrastructure exploiting CVE-2024-3400.

Some beaconing activity appears to have involved the use of the WebSocket protocol, as indicated by the appearance of “/ws” URIs and validated within packet captures. Such connections were then upgraded to an encrypted connection.

Figure 13:  PCAP highlighting use of WebSocket protocol to engage in ongoing external connectivity to likely C2 infrastructure following CVE-2024-3400 compromise.

While not directly visible in all the deployments, some investigations also yielded evidence of attempts at further post-exploitation activity. For example, a handful of the analyzed binaries that were downloaded by examined devices had OSINT information suggesting a relation to crypto-mining malware strains. However, crypto-mining activity was not directly observed at this time. Furthermore, several devices also triggered model alerts relating to brute-forcing activity via several authentication protocols (namely, Keberos and RADIUS) during the time of compromise. This brute-force activity likely represented attempts to move laterally from the affected firewall system to deeper parts of the network.

Figure 14: Model alert logs noting repeated SSL connectivity to a Sliver C2-affiliated endpoint in what likely constitutes C2 connectivity.
Figure 15: Model alert logs featuring repeated RADIUS login failures from a compromised PAN-OS device using generic usernames, suggesting brute-force activity.

Conclusion

Between April and late May 2024, Darktrace’s SOC and Threat Research teams identified several instances of likely PAN-OS CVE-2024-3400 exploitation across the Darktrace customer base. The subsequent investigation yielded four major themes that categorize the observed network-based post-exploitation activity. These major themes were exploit validation activity, retrieval of binaries and shell scripts, data exfiltration via HTTP POST activity, and ongoing C2 communication with rare external endpoints. The insights shared in this article will hopefully contribute to the ongoing discussion within the cybersecurity community about how to handle the likely continued exploitation of this vulnerability. Moreover, this article may also help cybersecurity professionals better respond to future exploitation of not only Palo Alto PAN-OS firewall devices, but also of edge devices more broadly.

Threat actors will continue to discover and leverage new CVEs impacting edge infrastructure. Since it is not yet known which CVEs threat actors will exploit next, relying on rules and signatures for the detection of exploitation of such CVEs is not a viable approach. Darktrace’s anomaly-based approach to threat detection, however, is well positioned to robustly adapt to threat actors’ changing methods, since although threat actors can change the CVEs they exploit, they cannot change the fact that their exploitation of CVEs results in highly unusual patterns of activity.

Credit to Adam Potter, Cyber Analyst, Sam Lister, Senior Cyber Analyst

Appendices

Pre-CVE-Release IoCs

38.54[.]104[.]14/3.sh
154.223[.]16[.]34/1.sh
154.223[.]16[.]34/co.sh
38.54[.]104[.]14/

Indicators of Compromise

Indicator – Type – Description

94.131.120[.]80              IP             C2 Endpoint

94.131.120[.]80:53/?src=[REDACTED]=hour=root                  URL        C2/Exfiltration Endpoint

134.213.29[.]14/?src=[REDACTED]min=root             URL        C2/Exfiltration Endpoint

134.213.29[.]14/grep[.]mips64            URL        Payload

134.213.29[.]14/grep[.]x86_64             URL        Payload

134.213.29[.]14/?deer               URL        Payload

134.213.29[.]14/?host=IDS   URL        Payload

134.213.29[.]14/ldr[.]sh           URL        Payload

91ebcea4e6d34fd6e22f99713eaf67571b51ab01  SHA1 File Hash               Payload

185.243.115[.]250/snmpd2[.]elf        URL        Payload

23.163.0[.]111/com   URL        Payload

80.92.205[.]239/upload            URL        C2/Exfiltration Endpoint

194.36.171[.]43/upload            URL        C2/Exfiltration Endpoint

update.gl-protect[.]com          Hostname         C2 Endpoint

update.gl-protect[.]com:63869/snmpgp      URL        Payload

146.70.87[.]237              IP address         C2 Endpoint

146.70.87[.]237:63867/snmpdd         URL        Payload

393c41b3ceab4beecf365285e8bdf0546f41efad   SHA1 File Hash               Payload

138.68.44[.]59/app/r URL        Payload

138.68.44[.]59/app/clientr     URL        Payload

138.68.44[.]59/manage            URL        Payload

72.5.43[.]90/patch      URL        Payload

217.69.3[.]218                 IP             C2 Endpoint

5e8387c24b75c778c920f8aa38e4d3882cc6d306                  SHA1 File Hash               Payload

217.69.3[.]218/snmpd[.]elf   URL        Payload

958f13da6ccf98fcaa270a6e24f83b1a4832938a    SHA1 File Hash               Payload

6708dc41b15b892279af2947f143af95fb9efe6e     SHA1 File Hash               Payload

dc50c0de7f24baf03d4f4c6fdf6c366d2fcfbe6c       SHA1 File Hash               Payload

109.120.178[.]253:10000/data[.]txt                  URL        Payload

109.120.178[.]253:10000/bin[.]txt   URL        Payload

bc9dc2e42654e2179210d98f77822723740a5ba6                 SHA1 File Hash               Payload

109.120.178[.]253:10000/123              URL        Payload

65283921da4e8b5eabb926e60ca9ad3d087e67fa                 SHA1 File Hash               Payload

img.dxyjg[.]com/6hiryXjZN0Mx[.]sh                  URL        Payload

149.56.18[.]189/IC4nzNvf7w/2[.]txt                 URL        Payload

228d05fd92ec4d19659d71693198564ae6f6b117 SHA1 File Hash               Payload

54b892b8fdab7c07e1e123340d800e7ed0386600                 SHA1 File Hash               Payload

165.232.121[.]217/rules          URL        Payload

165.232.121[.]217/app/request          URL        Payload

938faec77ebdac758587bba999e470785253edaf SHA1 File Hash               Payload

165.232.121[.]217/app/request63   URL        Payload

165.232.121[.]217:4443/termite/165.232.121[.]217             URL        Payload

92.118.112[.]60/snmpd2[.]elf               URL        Payload

2a90d481a7134d66e8b7886cdfe98d9c1264a386                 SHA1 File Hash               Payload

92.118.112[.]60/36shr[.]txt   URL        Payload

d6a33673cedb12811dde03a705e1302464d8227f                 SHA1 File Hash               Payload

c712712a563fe09fa525dfc01ce13564e3d98d67  SHA1 File Hash               Payload

091b3b33e0d1b55852167c3069afcdb0af5e5e79 SHA1 File Hash               Payload

5eebf7518325e6d3a0fd7da2c53e7d229d7b74b6                  SHA1 File Hash               Payload

183be7a0c958f5ed4816c781a2d7d5aa8a0bca9f SHA1 File Hash               Payload

e7d2f1224546b17d805617d02ade91a9a20e783e                 SHA1 File Hash               Payload

e6137a15df66054e4c97e1f4b8181798985b480d SHA1 File Hash               Payload

95.164.7[.]33:53/sea[.]png    URL        Payload

95.164.7[.]33/rules     URL        Payload

95.164.7[.]33:53/lb64                URL        Payload

c2bc9a7657bea17792048902ccf2d77a2f50d2d7 SHA1 File Hash               Payload

923369bbb86b9a9ccf42ba6f0d022b1cd4f33e9d SHA1 File Hash               Payload

52972a971a05b842c6b90c581b5c697f740cb5b9                 SHA1 File Hash               Payload

95d45b455cf62186c272c03d6253fef65227f63a    SHA1 File Hash               Payload

322ec0942cef33b4c55e5e939407cd02e295973e                  SHA1 File Hash               Payload

6335e08873b4ca3d0eac1ea265f89a9ef29023f2  SHA1 File Hash               Payload

134.213.29[.]14              IP             C2 Endpoint

185.243.115[.]250       IP             C2 Endpoint

80.92.205[.]239              IP             C2 Endpoint

194.36.171[.]43              IP             C2 Endpoint

92.118.112[.]60              IP             C2 Endpoint

109.120.178[.]253       IP             C2 Endpoint

23.163.0[.]111                 IP             C2 Endpoint

72.5.43[.]90     IP             C2 Endpoint

165.232.121[.]217       IP             C2 Endpoint

8.210.242[.]112              IP             C2 Endpoint

149.56.18[.]189              IP             C2 Endpoint

95.164.7[.]33  IP             C2 Endpoint

138.68.44[.]59                 IP             C2 Endpoint

Img[.]dxyjg[.]com         Hostname         C2 Endpoint

Darktrace Model Alert Coverage

·      Anomalous Connection / New User Agent to IP Without Hostname

·      Device / New User Agent (triggered by pre-CVE-release activity)

·      Anomalous File / Script from Rare External Location (triggered by pre-CVE-release activity)

·      Anomalous File / Masqueraded File Transfer

·      Anomalous File / EXE from Rare External Location

·      Anomalous File / Multiple EXE from Rare External Locations

·      Anomalous File / Script and EXE from Rare External

·      Anomalous File / Suspicious Octet Stream Download

·      Anomalous File / Numeric File Download

·      Anomalous Connection / Application Protocol on Uncommon Port

·      Anomalous Connection / Posting HTTP to IP Without Hostname

·      Anomalous Connection / Multiple Failed Connections to Rare Endpoint

·      Anomalous Connection / Suspicious Self-Signed SSL

·      Anomalous Connection / Anomalous SSL without SNI to New External

·      Anomalous Connection / Multiple Connections to New External TCP Port

·      Anomalous Connection / Rare External SSL Self-Signed

·      Anomalous Server Activity / Outgoing from Server

·      Anomalous Server Activity / Rare External from Server

·      Compromise / SSH Beacon

·      Compromise / Beacon for 4 Days

·      Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

·      Compromise / High Priority Tunnelling to Bin Services

·      Compromise / Sustained SSL or HTTP Increase

·      Compromise / Connection to Suspicious SSL Server

·      Compromise / Suspicious File and C2

·      Compromise / Large Number of Suspicious Successful Connections

·      Compromise / Slow Beaconing Activity To External Rare

·      Compromise / HTTP Beaconing to New Endpoint

·      Compromise / SSL or HTTP Beacon

·      Compromise / Suspicious HTTP and Anomalous Activity

·      Compromise / Beacon to Young Endpoint

·      Compromise / High Volume of Connections with Beacon Score

·      Compromise / Suspicious Beaconing Behaviour

·      Compliance / SSH to Rare External Destination

·      Compromise / HTTP Beaconing to Rare Destination

·      Compromise / Beaconing Activity To External Rare

·      Device / Initial Breach Chain Compromise

·      Device / Multiple C2 Model Breaches

MITRE ATTACK Mapping

Tactic – Technique

Initial Access  T1190 – Exploiting Public-Facing Application

Execution           T1059.004 – Command and Scripting Interpreter: Unix Shell

Persistence      T1543.002 – Create or Modify System Processes: Systemd Service

Defense Evasion           T1070.004 – Indicator Removal: File Deletion

Credential Access       T1110.001 – Brute Force: Password Guessing

Discovery           T1083 – File and System Discovery

T1057 – Process Discovery

Collection         T1005 – Data From Local System

Command and Control            

T1071.001 – Application Layer Protocol:  Web Protocols

T1573.002 – Encrypted Channel: Asymmetric Cryptography

T1571 – Non-Standard Port

T1105 – Ingress Tool Transfer

Exfiltration        

T1041 – Exfiltration over C2 Protocol

T1048.002 - Exfiltration Over Alternative Protocol: Exfiltration Over Asymmetric Encrypted Non-C2 Protocol

References

[1] https://cloud.google.com/blog/topics/threat-intelligence/china-nexus-espionage-orb-networks

[2] https://unit42.paloaltonetworks.com/cve-2024-3400/

[i]  https://www.ncsc.gov.uk/blog-post/products-on-your-perimeter

[ii] https://security.paloaltonetworks.com/CVE-2024-3400

[iii] https://labs.watchtowr.com/palo-alto-putting-the-protecc-in-globalprotect-cve-2024-3400/

[iv] https://labs.watchtowr.com/palo-alto-putting-the-protecc-in-globalprotect-cve-2024-3400/

[v] https://labs.watchtowr.com/palo-alto-putting-the-protecc-in-globalprotect-cve-2024-3400/

[vi] https://security.paloaltonetworks.com/CVE-2024-3400

[vii] https://www.volexity.com/blog/2024/04/12/zero-day-exploitation-of-unauthenticated-remote-code-execution-vulnerability-in-globalprotect-cve-2024-3400/

[viii] https://www.volexity.com/blog/2024/05/15/detecting-compromise-of-cve-2024-3400-on-palo-alto-networks-globalprotect-devices/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Potter
Senior Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

September 9, 2025

The benefits of bringing together network and email security

Default blog imageDefault blog image

In many organizations, network and email security operate in isolation. Each solution is tasked with defending its respective environment, even though both are facing the same advanced, multi-domain threats.  

This siloed approach overlooks a critical reality: email remains the most common vector for initiating cyber-attacks, while the network is the primary stage on which those attacks progress. Without direct integration between these two domains, organizations risk leaving blind spots that adversaries can exploit.  

A modern security strategy needs to unify email and network defenses, not just in name, but in how they share intelligence, conduct investigations, and coordinate response actions. Let’s take a look at how this joined-up approach delivers measurable technical, operational, and commercial benefits.

Technical advantages

Pre-alert intelligence: Gathering data before the threat strikes

Most security tools start working when something goes wrong – an unusual login, a flagged attachment, a confirmed compromise. But by then, attackers may already be a step ahead.

By unifying network and email security under a single AI platform (like the Darktrace Active AI Security Platform), you can analyze patterns across both environments in real time, even when there are no alerts. This ongoing monitoring builds a behavioral understanding of every user, device, and domain in your ecosystem.

That means when an email arrives from a suspicious domain, the system already knows whether that domain has appeared on your network before – and whether its behavior has been unusual. Likewise, when new network activity involves a domain first spotted in an email, it’s instantly placed in the right context.

This intelligence isn’t built on signatures or after-the-fact compromise indicators – it’s built on live behavioral baselines, giving your defenses the ability to flag threats before damage is done.

Alert-related intelligence: Connecting the dots in real time

Once an alert does fire, speed and context matter. The Darktrace Cyber AI Analyst can automatically investigate across both environments, piecing together network and email evidence into a single, cohesive incident.

Instead of leaving analysts to sift through fragmented logs, the AI links events like a phishing email to suspicious lateral movement on the recipient’s device, keeping the full attack chain intact. Investigations that might take hours – or even days – can be completed in minutes, with far fewer false positives to wade through.

This is more than a time-saver. It ensures defenders maintain visibility after the first sign of compromise, following the attacker as they pivot into network infrastructure, cloud services, or other targets. That cross-environment continuity is impossible to achieve with disconnected point solutions or siloed workflows.

Operational advantages

Streamlining SecOps across teams

In many organizations, email security is managed by IT, while network defense belongs to the SOC. The result? Critical information is scattered between tools and teams, creating blind spots just when you need clarity.

When email and network data flow into a single platform, everyone is working from the same source of truth. SOC analysts gain immediate visibility into email threats without opening another console or sending a request to another department. The IT team benefits from the SOC’s deeper investigative context.

The outcome is more than convenience: it’s faster, more informed decision-making across the board.

Reducing time-to-meaning and enabling faster response

A unified platform removes the need to manually correlate alerts between tools, reducing time-to-meaning for every incident. Built-in AI correlation instantly ties together related events, guiding analysts toward coordinated responses with higher confidence.

Instead of relying on manual SIEM rules or pre-built SOAR playbooks, the platform connects the dots in real time, and can even trigger autonomous response actions across both environments simultaneously. This ensures attacks are stopped before they can escalate, regardless of where they begin.

Commercial advantages

While purchasing “best-of-breed" for all your different tools might sound appealing, it often leads to a patchwork of solutions with overlapping costs and gaps in coverage. However good a “best-in-breed" email security solution might be in the email realm, it won't be truly effective without visibility across domains and an AI analyst piecing intelligence together. That’s why we think “best-in-suite" is the only “best-in-breed" approach that works – choosing a high-quality platform ensures that every new capability strengthens the whole system.  

On top of that, security budgets are under constant pressure. Managing separate vendors for email and network defense means juggling multiple contracts, negotiating different SLAs, and stitching together different support models.

With a single provider for both, procurement and vendor management become far simpler. You deal with one account team, one support channel, and one unified strategy for both environments. If you choose to layer on managed services, you get consistent expertise across your whole security footprint.

Even more importantly, an integrated AI platform sets the stage for growth. Once email and network are under the same roof, adding coverage for other attack surfaces – like cloud or identity – is straightforward. You’re building on the same architecture, not bolting on new point solutions that create more complexity.

Check out the white paper, The Modern Security Stack: Why Your NDR and Email Security Solutions Need to Work Together, to explore these benefits in more depth, with real-world examples and practical steps for unifying your defenses.

[related-resource]

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response

Blog

/

/

September 9, 2025

Unpacking the Salesloft Incident: Insights from Darktrace Observations

solesloft incident Default blog imageDefault blog image

Introduction

On August 26, 2025, Google Threat intelligence Group released a report detailing a widespread data theft campaign targeting the sales automation platform Salesloft, via compromised OAuth tokens used by the third-party Drift AI chat agent [1][2].  The attack has been attributed to the threat actor UNC6395 by Google Threat Intelligence and Mandiant [1].

The attack is believed to have begun in early August 2025 and continued through until mid-August 2025 [1], with the threat actor exporting significant volumes of data from multiple Salesforce instances [1]. Then sifting through this data for anything that could be used to compromise the victim’s environments such as access keys, tokens or passwords. This had led to Google Threat Intelligence Group assessing that the primary intent of the threat actor is credential harvesting, and later reporting that it was aware of in excess of 700 potentially impacted organizations [3].

Salesloft previously stated that, based on currently available data, customers that do not integrate with Salesforce are unaffected by this campaign [2]. However, on August 28, Google Threat Intelligence Group announced that “Based on new information identified by GTIG, the scope of this compromise is not exclusive to the Salesforce integration with Salesloft Drift and impacts other integrations” [2]. Google Threat Intelligence has since advised that any and all authentication tokens stored in or connected to the Drift platform be treated as potentially compromised [1].

This campaign demonstrates how attackers are increasingly exploiting trusted Software-as-a-Service (SaaS) integrations as a pathway into enterprise environment.

By abusing these integrations, threat actors were able to exfiltrate sensitive business data at scale, bypassing traditional security controls. Rather than relying on malware or obvious intrusion techniques, the adversaries leveraged legitimate credentials and API traffic that resembled legitimate Salesforce activity to achieve their goals. This type of activity is far harder to detect with conventional security tools, since it blends in with the daily noise of business operations.

The incident underscores the escalating significance of autonomous coverage within SaaS and third-party ecosystems. As businesses increasingly depend on interconnected platforms, visibility gaps become evident that cannot be managed by conventional perimeter and endpoint defenses.

By developing a behavioral comprehension of each organization's distinct use of cloud services, anomalies can be detected, such as logins from unexpected locations, unusually high volumes of API requests, or unusual document activity. These indications serve as an early alert system, even when intruders use legitimate tokens or accounts, enabling security teams to step in before extensive data exfiltration takes place

What happened?

The campaign is believed to have started on August 8, 2025, with malicious activity continuing until at least August 18. The threat actor, tracked as UNC6395, gained access via compromised OAuth tokens associated with Salesloft Drift integrations into Salesforce [1]. Once tokens were obtained, the attackers were able to issue large volumes of Salesforce API requests, exfiltrating sensitive customer and business data.

Initial Intrusion

The attackers first established access by abusing OAuth and refresh tokens from the Drift integration. These tokens gave them persistent access into Salesforce environments without requiring further authentication [1]. To expand their foothold, the threat actor also made use of TruffleHog [4], an open-source secrets scanner, to hunt for additional exposed credentials. Logs later revealed anomalous IAM updates, including unusual UpdateAccessKey activity, which suggested attempts to ensure long-term persistence and control within compromised accounts.

Internal Reconnaissance & Data Exfiltration

Once inside, the adversaries began exploring the Salesforce environments. They ran queries designed to pull sensitive data fields, focusing on objects such as Cases, Accounts, Users, and Opportunities [1]. At the same time, the attackers sifted through this information to identify secrets that could enable access to other systems, including AWS keys and Snowflake credentials [4]. This phase demonstrated the opportunistic nature of the campaign, with the actors looking for any data that could be repurposed for further compromise.

Lateral Movement

Salesloft and Mandiant investigations revealed that the threat actor also created at least one new user account in early September. Although follow-up activity linked to this account was limited, the creation itself suggested a persistence mechanism designed to survive remediation efforts. By maintaining a separate identity, the attackers ensured they could regain access even if their stolen OAuth tokens were revoked.

Accomplishing the mission

The data taken from Salesforce environments included valuable business records, which attackers used to harvest credentials and identify high-value targets. According to Mandiant, once the data was exfiltrated, the actors actively sifted through it to locate sensitive information that could be leveraged in future intrusions [1]. In response, Salesforce and Salesloft revoked OAuth tokens associated with Drift integrations on August 20 [1], a containment measure aimed at cutting off the attackers’ primary access channel and preventing further abuse.

How did the attack bypass the rest of the security stack?

The campaign effectively bypassed security measures by using legitimate credentials and OAuth tokens through the Salesloft Drift integration. This rendered traditional security defenses like endpoint protection and firewalls ineffective, as the activity appeared non-malicious [1]. The attackers blended into normal operations by using common user agents and making queries through the Salesforce API, which made their activity resemble legitimate integrations and scripts. This allowed them to operate undetected in the SaaS environment, exploiting the trust in third-party connections and highlighting the limitations of traditional detection controls.

Darktrace Coverage

Anomalous activities have been identified across multiple Darktrace deployments that appear associated with this campaign. This included two cases on customers based within the United States who had a Salesforce integration, where the pattern of activities was notably similar.

On August 17, Darktrace observed an account belonging to one of these customers logging in from the rare endpoint 208.68.36[.]90, while the user was seen active from another location. This IP is a known indicator of compromise (IoC) reported by open-source intelligence (OSINT) for the campaign [2].

Cyber AI Analyst Incident summarizing the suspicious login seen for the account.
Figure 1: Cyber AI Analyst Incident summarizing the suspicious login seen for the account.

The login event was associated with the application Drift, further connecting the events to this campaign.

Advanced Search logs showing the Application used to login.
Figure 2: Advanced Search logs showing the Application used to login.

Following the login, the actor initiated a high volume of Salesforce API requests using methods such as GET, POST, and DELETE. The GET requests targeted endpoints like /services/data/v57.0/query and /services/data/v57.0/sobjects/Case/describe, where the former is used to retrieve records based on a specific criterion, while the latter provides metadata for the Case object, including field names and data types [5,6].

Subsequently, a POST request to /services/data/v57.0/jobs/query was observed, likely to initiate a Bulk API query job for extracting large volumes of data from the Ingest Job endpoint [7,8].

Finally, a DELETE request to remove an ingestion job batch, possibly an attempt to obscure traces of prior data access or manipulation.

A case on another US-based customer took place a day later, on August 18. This again began with an account logging in from the rare IP 208.68.36[.]90 involving the application Drift. This was followed by Salesforce GET requests targeting the same endpoints as seen in the previous case, and then a POST to the Ingest Job endpoint and finally a DELETE request, all occurring within one minute of the initial suspicious login.

The chain of anomalous behaviors, including a suspicious login and delete request, resulted in Darktrace’s Autonomous Response capability suggesting a ‘Disable user’ action. However, the customer’s deployment configuration required manual confirmation for the action to take effect.

An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 3: An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 4: Model Alert Event Log showing various model alerts for the account that ultimately led to an Autonomous Response model being triggered.

Conclusion

In conclusion, this incident underscores the escalating risks of SaaS supply chain attacks, where third-party integrations can become avenues for attacks. It demonstrates how adversaries can exploit legitimate OAuth tokens and API traffic to circumvent traditional defenses. This emphasizes the necessity for constant monitoring of SaaS and cloud activity, beyond just endpoints and networks, while also reinforcing the significance of applying least privilege access and routinely reviewing OAuth permissions in cloud environments. Furthermore, it provides a wider perspective into the evolution of the threat landscape, shifting towards credential and token abuse as opposed to malware-driven compromise.

Credit to Emma Foulger (Global Threat Research Operations Lead), Calum Hall (Technical Content Researcher), Signe Zaharka (Principal Cyber Analyst), Min Kim (Senior Cyber Analyst), Nahisha Nobregas (Senior Cyber Analyst), Priya Thapa (Cyber Analyst)

Appendices

Darktrace Model Detections

·      SaaS / Access / Unusual External Source for SaaS Credential Use

·      SaaS / Compromise / Login From Rare Endpoint While User Is Active

·      SaaS / Compliance / Anomalous Salesforce API Event

·      SaaS / Unusual Activity / Multiple Unusual SaaS Activities

·      Antigena / SaaS / Antigena Unusual Activity Block

·      Antigena / SaaS / Antigena Suspicious Source Activity Block

Customers should consider integrating Salesforce with Darktrace where possible. These integrations allow better visibility and correlation to spot unusual behavior and possible threats.

IoC List

(IoC – Type)

·      208.68.36[.]90 – IP Address

References

1.     https://cloud.google.com/blog/topics/threat-intelligence/data-theft-salesforce-instances-via-salesloft-drift

2.     https://trust.salesloft.com/?uid=Drift+Security+Update%3ASalesforce+Integrations+%283%3A30PM+ET%29

3.     https://thehackernews.com/2025/08/salesloft-oauth-breach-via-drift-ai.html

4.     https://unit42.paloaltonetworks.com/threat-brief-compromised-salesforce-instances/

5.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_query.htm

6.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_sobject_describe.htm

7.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/get_job_info.htm

8.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/query_create_job.htm

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead
Your data. Our AI.
Elevate your network security with Darktrace AI