Understand the latest developments in Ryuk ransomware and how its return affects organizations facing increased cyber threats.
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.
Share
20
Oct 2021
In the era of international-scale cyber-warfare, focus has started to move away from small-time cyber thieves toward well-known, well-funded and sometimes government-backed cyber-crime organizations. Cyber-attacks sometimes work on discordant scales, however, and it doesn’t always take big budgets or key players for considerable damage to be dealt.
Numerous stories detail how the criminal and the curious alike have single-handedly breached some of the most secure systems in the world. At the more amusing end, there’s the story of Kristoffer von Hassel who discovered a novel exploit in Microsoft’s Xbox Live system at just five years old. And then of course there are those who hack their way right into promising security careers by breaching systems at major organizations. However, genuine damage has been done by individual threat actors as well.
These might be criminals using second-hand offensive tools, buying botnet armies for as little as $10 on the Dark Web, or using ransomware files downloaded for free. But ultimately, even a single cyber-criminal can inflict crippling damage upon large organizations if they are given the opportunity.
This is especially the case when the tools in their possession have been developed by some of the most notorious names in cyber-crime.
Copycat criminals
In early 2021, Darktrace detected a new instance of the once notorious Ryuk ransomware being launched against a business in the APAC region. The detection was intriguing.
The developers of Ryuk, a prolific cyber-criminal organization given the name ‘Wizard Spider’, had long since abandoned it in favor of a successor called ‘Conti’. Wizard Spider have launched some of the largest cyber-attacks in recent history, allegedly with the support of the Russian government, and are under investigation by Interpol and the FBI. They are not known for using outdated tools.
It soon became clear that this attack was not being launched by Wizard Spider at all, but by small-scale threat actors picking up the tools Wizard Spider left behind. And as the new attackers proved, these tools are still far from defunct.
Ryuk ransomware: A city-stopper for sale
Ryuk ransomware is commonly used to target large enterprise environments, even taking down entire city councils in some instances. Lake City, Florida and the City of Onkaparinga in South Australia are two of its known victims, along with numerous schools and hospitals across the US.
Once active in a system, Ryuk uses a combination of symmetric (AES) and asymmetric (RSA) encryption to encrypt files, disabling Windows’ system restore feature as it does so, and generally demands payment via Bitcoin in return for a private decryption key.
Though Ryuk was not initially sold in the same manner as its predecessor, Hermes, on the Dark Web site ‘exploit[.]in’, it is now believed by some publications that the toolkit must be available somewhere for various threat actors to buy and tailor to their requirements. This explains its recurrence beyond Wizard Spider activities.
New dog, old tricks
Darktrace spotted the new instance of Ryuk during a trial with a real estate business in the APAC region. The first warning sign came when some basic .dat files were downloaded onto one of the business’ devices from an unknown Russian IP address. Darktrace immediately detected that this download was a likely breach and, had Antigena been set up in active mode, would have initiated a targeted response at this early stage.
The .dat files on the infected device allowed the attackers to use RDP (Remote Desktop Protocol) to spread further into the business’ network. Two days after the initial compromise, the threat actor had gained administrative credentials through a bruteforce attack and could begin scanning the network further.
Figure 1: Timeline of the attack
The witching hour
Just an hour after the attacker gained administrative credentials, at approximately 3:30am local time, ransomware files appeared in the business’ network. This timing was not accidental. The attackers knew that the security teams at the target business were home and asleep when the ransomware landed in the small hours of the morning, giving them plenty of time to conduct their attack.
This is precisely the kind of simple tactic which can multiply the scale of an attack without using large budgets or complex toolsets. The Ryuk ransomware rapidly began encrypting corporate files during the night, and by the time the security team returned in the morning, all they could do was shut down the entire network and hope to limit the spread of Ryuk, if only to save a few final devices.
The total attack time, from initial compromise to widespread data encryption, was just two and a half days. Whether due to understaffing or preoccupation, the security team did not find the time in that small window to respond to alerts, and, with Darktrace Antigena in passive mode, the attack was able to go ahead. This business’ need for Autonomous Response, which can protect against old and new attacks around the clock without the need for manual intervention, was painfully apparent.
Autonomous Response: Stop Ryuk before Ryuk stops you
Understanding Ryuk’s history and functionality does little good for organizations when it is still capable of eluding their defenses and catching security teams unawares. Darktrace’s Self-Learning AI is uniquely positioned to address these sophisticated threats, even as they evolve in the hands of different attackers and become unrecognizable to traditional rule-based security approaches.
Utilizing 24/7 Autonomous Response to stop both new and old threats at machine speed gives security teams the best chance of leveling the playing field against attackers. With Darktrace Antigena, the size or status of the attacking organization and their toolset is irrelevant – any anomalous and threatening behavior will be neutralized quickly and accurately, before damage can be done.
Thanks to Darktrace analyst Thomas Nommensen for his insights on the above threat find.
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Patch and Persist: Darktrace’s Detection of Blind Eagle (APT-C-36)
Since 2018, Blind Eagle has targeted Latin American organizations using phishing and RATs. Darktrace detected Blind Eagle activity on a customer network involving C2 connectivity, malicious payload downloads and data exfiltration. Without Autonomous Response, the attack escalated, highlighting the need for proactive detection and response defense to counter fast-evolving threats.
Customer Case Study: Leading Petrochemical Manufacturer
An industry leading petrochemical manufacturer uses the Darktrace ActiveAI Security Platform to improve visibility, protect against supply chain attacks, and save the security team hundreds of hours of incident investigation.
Tracking CVE-2025-31324: Darktrace’s detection of SAP Netweaver exploitation before and after disclosure
A critical SAP vulnerability, CVE-2025-31324, allows unauthenticated remote code execution via NetWeaver Visual Composer. Despite early mitigation guidance, many systems remain exposed. Darktrace detected exploitation attempts six days before public disclosure, highlighting the importance of proactive, threat-agnostic detection.
Defending the Cloud: Stopping Cyber Threats in Azure and AWS with Darktrace
Real-world intrusions across Azure and AWS
As organizations pursue greater scalability and flexibility, cloud platforms like Microsoft Azure and Amazon Web Services (AWS) have become essential for enabling remote operations and digitalizing corporate environments. However, this shift introduces a new set of security risks, including expanding attack surfaces, misconfigurations, and compromised credentials frequently exploited by threat actors.
This blog dives into three instances of compromise within a Darktrace customer’s Azure and AWS environment which Darktrace.
The first incident took place in early 2024 and involved an attacker compromising a legitimate user account to gain unauthorized access to a customer’s Azure environment.
The other two incidents, taking place in February and March 2025, targeted AWS environments. In these cases, threat actors exfiltrated corporate data, and in one instance, was able to detonate ransomware in a customer’s environment.
Case 1 - Microsoft Azure
Figure 1: Simplified timeline of the attack on a customer’s Azure environment.
In early 2024, Darktrace identified a cloud compromise on the Azure cloud environment of a customer in the Europe, the Middle East and Africa (EMEA) region.
Initial access
In this case, a threat actor gained access to the customer’s cloud environment after stealing access tokens and creating a rogue virtual machine (VM). The malicious actor was found to have stolen access tokens belonging to a third-party external consultant’s account after downloading cracked software.
With these stolen tokens, the attacker was able to authenticate to the customer’s Azure environment and successfully modified a security rule to allow inbound SSH traffic from a specific IP range (i.e., securityRules/AllowCidrBlockSSHInbound). This was likely performed to ensure persistent access to internal cloud resources.
Detection and investigation of the threat
Darktrace / IDENTITY recognized that this activity was highly unusual, triggering the “Repeated Unusual SaaS Resource Creation” alert.
Cyber AI Analyst launched an autonomous investigation into additional suspicious cloud activities occurring around the same time from the same unusual location, correlating the individual events into a broader account hijack incident.
Figure 2: Cyber AI Analyst’s investigation into unusual cloud activity performed by the compromised account.
Figure 3: Surrounding resource creation events highlighted by Cyber AI Analyst.
Figure 4: Surrounding resource creation events highlighted by Cyber AI Analyst.
“Create resource service limit” events typically indicate the creation or modification of service limits (i.e., quotas) for a specific Azure resource type within a region. Meanwhile, “Registers the Capacity Resource Provider” events refer to the registration of the Microsoft Capacity resource provider within an Azure subscription, responsible for managing capacity-related resources, particularly those related to reservations and service limits. These events suggest that the threat actor was looking to create new cloud resources within the environment.
Around ten minutes later, Darktrace detected the threat actor creating or modifying an Azure disk associated with a virtual machine (VM), suggesting an attempt to create a rogue VM within the environment.
Threat actors can leverage such rogue VMs to hijack computing resources (e.g., by running cryptomining malware), maintain persistent access, move laterally within the cloud environment, communicate with command-and-control (C2) infrastructure, and stealthily deliver and deploy malware.
Persistence
Several weeks later, the compromised account was observed sending an invitation to collaborate to an external free mail (Google Mail) address.
Darktrace deemed this activity as highly anomalous, triggering a compliance alert for the customer to review and investigate further.
The next day, the threat actor further registered new multi-factor authentication (MFA) information. These actions were likely intended to maintain access to the compromised user account. The customer later confirmed this activity by reviewing the corresponding event logs within Darktrace.
Case 2 – Amazon Web Services
Figure 5: Simplified timeline of the attack on a customer’s AWS environment
In February 2025, another cloud-based compromised was observed on a UK-based customer subscribed to Darktrace’s Managed Detection and Response (MDR) service.
How the attacker gained access
The threat actor was observed leveraging likely previously compromised credential to access several AWS instances within customer’s Private Cloud environment and collecting and exfiltrating data, likely with the intention of deploying ransomware and holding the data for ransom.
Darktrace alerting to malicious activity
This observed activity triggered a number of alerts in Darktrace, including several high-priority Enhanced Monitoring alerts, which were promptly investigated by Darktrace’s Security Operations Centre (SOC) and raised to the customer’s security team.
The earliest signs of attack observed by Darktrace involved the use of two likely compromised credentials to connect to the customer’s Virtual Private Network (VPN) environment.
Internal reconnaissance
Once inside, the threat actor performed internal reconnaissance activities and staged the Rclone tool “ProgramData\rclone-v1.69.0-windows-amd64.zip”, a command-line program to sync files and directories to and from different cloud storage providers, to an AWS instance whose hostname is associated with a public key infrastructure (PKI) service.
The threat actor was further observed accessing and downloading multiple files hosted on an AWS file server instance, notably finance and investment-related files. This likely represented data gathering prior to exfiltration.
Shortly after, the PKI-related EC2 instance started making SSH connections with the Rclone SSH client “SSH-2.0-rclone/v1.69.0” to a RockHoster Virtual Private Server (VPS) endpoint (193.242.184[.]178), suggesting the threat actor was exfiltrating the gathered data using the Rclone utility they had previously installed. The PKI instance continued to make repeated SSH connections attempts to transfer data to this external destination.
Darktrace’s Autonomous Response
In response to this activity, Darktrace’s Autonomous Response capability intervened, blocking unusual external connectivity to the C2 server via SSH, effectively stopping the exfiltration of data.
This activity was further investigated by Darktrace’s SOC analysts as part of the MDR service. The team elected to extend the autonomously applied actions to ensure the compromise remained contained until the customer could fully remediate the incident.
Continued reconissance
Around the same time, the threat actor continued to conduct network scans using the Nmap tool, operating from both a separate AWS domain controller instance and a newly joined device on the network. These actions were accompanied by further internal data gathering activities, with around 5 GB of data downloaded from an AWS file server.
The two devices involved in reconnaissance activities were investigated and actioned by Darktrace SOC analysts after additional Enhanced Monitoring alerts had triggered.
Lateral movement attempts via RDP connections
Unusual internal RDP connections to a likely AWS printer instance indicated that the threat actor was looking to strengthen their foothold within the environment and/or attempting to pivot to other devices, likely in response to being hindered by Autonomous Response actions.
This triggered multiple scanning, internal data transfer and unusual RDP alerts in Darktrace, as well as additional Autonomous Response actions to block the suspicious activity.
Suspicious outbound SSH communication to known threat infrastructure
Darktrace subsequently observed the AWS printer instance initiating SSH communication with a rare external endpoint associated with the web hosting and VPS provider Host Department (67.217.57[.]252), suggesting that the threat actor was attempting to exfiltrate data to an alternative endpoint after connections to the original destination had been blocked.
Further investigation using open-source intelligence (OSINT) revealed that this IP address had previously been observed in connection with SSH-based data exfiltration activity during an Akira ransomware intrusion [1].
Once again, connections to this IP were blocked by Darktrace’s Autonomous Response and subsequently these blocks were extended by Darktrace’s SOC team.
The above behavior generated multiple Enhanced Monitoring alerts that were investigated by Darktrace SOC analysts as part of the Managed Threat Detection service.
Figure 5: Enhanced Monitoring alerts investigated by SOC analysts as part of the Managed Detection and Response service.
Final containment and collaborative response
Upon investigating the unusual scanning activity, outbound SSH connections, and internal data transfers, Darktrace analysts extended the Autonomous Response actions previously triggered on the compromised devices.
As the threat actor was leveraging these systems for data exfiltration, all outgoing traffic from the affected devices was blocked for an additional 24 hours to provide the customer’s security team with time to investigate and remediate the compromise.
Additional investigative support was provided by Darktrace analysts through the Security Operations Service, after the customer's opened of a ticket related to the unfolding incident.
Figure 8: Simplified timeline of the attack
Around the same time of the compromise in Case 2, Darktrace observed a similar incident on the cloud environment of a different customer.
Initial access
On this occasion, the threat actor appeared to have gained entry into the AWS-based Virtual Private Cloud (VPC) networkvia a SonicWall SMA 500v EC2 instance allowing inbound traffic on any port.
The instance received HTTPS connections from three rare Vultr VPS endpoints (i.e., 45.32.205[.]52, 207.246.74[.]166, 45.32.90[.]176).
Lateral movement and exfiltration
Around the same time, the EC2 instance started scanning the environment and attempted to pivot to other internal systems via RDP, notably a DC EC2 instance, which also started scanning the network, and another EC2 instance.
The latter then proceeded to transfer more than 230 GB of data to the rare external GTHost VPS endpoint 23.150.248[.]189, while downloading hundreds of GBs of data over SMB from another EC2 instance.
Figure 7: Cyber AI Analyst incident generated following the unusual scanning and RDP connections from the initial compromised device.
The same behavior was replicated across multiple EC2 instances, whereby compromised instances uploaded data over internal RDP connections to other instances, which then started transferring data to the same GTHost VPS endpoint over port 5000, which is typically used for Universal Plug and Play (UPnP).
What Darktrace detected
Darktrace observed the threat actor uploading a total of 718 GB to the external endpoint, after which they detonated ransomware within the compromised VPC networks.
This activity generated nine Enhanced Monitoring alerts in Darktrace, focusing on the scanning and external data activity, with the earliest of those alerts triggering around one hour after the initial intrusion.
Darktrace’s Autonomous Response capability was not configured to act on these devices. Therefore, the malicious activity was not autonomously blocked and escalated to the point of ransomware detonation.
Conclusion
This blog examined three real-world compromises in customer cloud environments each illustrating different stages in the attack lifecycle.
The first case showcased a notable progression from a SaaS compromise to a full cloud intrusion, emphasizing the critical role of anomaly detection when legitimate credentials are abused.
The latter two incidents demonstrated that while early detection is vital, the ability to autonomously block malicious activity at machine speed is often the most effective way to contain threats before they escalate.
Together, these incidents underscore the need for continuous visibility, behavioral analysis, and machine-speed intervention across hybrid environments. Darktrace's AI-driven detection and Autonomous Response capabilities, combined with expert oversight from its Security Operations Center, give defenders the speed and clarity they need to contain threats and reduce operational disruption, before the situation spirals.
Credit to Alexandra Sentenac (Senior Cyber Analyst) and Dylan Evans (Security Research Lead)
Top Eight Threats to SaaS Security and How to Combat Them
The latest on the identity security landscape
Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.
As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.
What is SaaS security?
SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.
Below are the top eight threats that target SaaS security and user identities.
1. Account Takeover (ATO)
Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.
2. Privilege escalation
Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.
3. Lateral movement
Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.
4. Multi-Factor Authentication (MFA) bypass and session hijacking
Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.
5. OAuth token abuse
Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.
6. Insider threats
Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.
SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.
8. Business Email Compromise (BEC) via SaaS
Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.
BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.
Protecting against these SaaS threats
Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.
However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.
AI-powered SaaS security stays ahead of the threat landscape
New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.