Blog
/
Network
/
January 4, 2023

BlackMatter's Smash-and-Grab Ransom Attack Incident Analysis

Stay informed on cybersecurity trends! Read about a BlackMatters ransom attack incident and Darktrace's analysis on how RESPOND could have stopped the attack.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Analyst Team
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Jan 2023

Only a few years ago, popular reporting announced that the days of smash-and-grab attacks were over and that a new breed of hackers were taking over with subtler, ‘low-and-slow’ tactics [1]. Although these have undoubtedly appeared, smash-and-grab have quickly become overlooked – perhaps with worrying consequences. Last year, Google saw repeated phishing campaigns using cookie theft malware and most recently, reports of hacktivists using similar techniques have been identified during the 2022 Ukraine Conflict [2 & 3]. Where did their inspiration come from? For larger APT groups such as BlackMatter, which first appeared in the summer of 2021, smash-and-grabs never went out of fashion.

This blog dissects a BlackMatter ransomware attack that hit an organization trialing Darktrace back in 2021. The case reveals what can happen when a security team does not react to high-priority alerts. 

When entire ransomware attacks can be carried out over the course of just 48 hours, there is a high risk to relying on security teams to react to detection notifications and prevent damage before the threat escalates. Although there has been hesitancy in its uptake [4], this blog also demonstrates the need for automated response solutions like Darktrace RESPOND.

The Name Game: Untangling BlackMatter, REvil, and DarkSide

Despite being a short-lived criminal organization on the surface [5], a number of parallels have now been drawn between the TTPs (Tactics, Techniques and Procedures) of the newer BlackMatter group and those of the retired REvil and DarkSide organizations [6]. 

Prior to their retirement, DarkSide and REvil were perhaps the biggest names in cyber-crime, responsible for two of last year’s most devastating ransomware attacks. Less than two weeks after the Colonial Pipeline attack, DarkSide announced it was shutting down its operation [7]. Meanwhile the FBI shutdown REvil in January 2022 after its devastating Fourth of July Kaseya attacks and a failed return in September [8]. It is now suspected that members from one or both went on to form BlackMatter.

This rebranding strategy parallels the smash-and-grab attacks these groups now increasingly employ: they make their money, and a lot of noise, and when they’re found out, they disappear before organizations or governments can pull together their threat intelligence and organize an effective response. When they return days, weeks or months later, they do so having implemented enough small changes to render themselves and their attacks unrecognizable. That is how DarkSide can become BlackMatter, and how its attacks can slip through security systems trained on previously encountered threats. 

Attack Details

In September 2021 Darktrace was monitoring a US marketing agency which became the victim of a double extortion ransomware attack that bore hallmarks of a BlackMatter operation. This began when a single domain-authenticated device joined the company’s network. This was likely a pre-infected company device being reconnected after some time offline. 

Only 15 minutes after joining, the device began SMB and ICMP scanning activities towards over 1000 different internal IPs. There was also a large spike of requests for Epmapper, which suggested an intent for RPC-based lateral movement. Although one credential was particularly prominent, multiple were used including labelled admin credentials. Given it’s unexpected nature, this recon quickly triggered a chain of DETECT/Network model breaches which ensured that Darktrace’s SOC were alerted via the Proactive Threat Notification service. Whilst SOC analysts began to triage the activity, the organization failed to act on any of the alerts they received, leaving the detected threat to take root within their digital environment. 

Shortly after, a series of C2 beaconing occurred towards an endpoint associated with Cobalt Strike [9]. This was accompanied by a range of anomalous WMI bind requests to svcctl, SecAddr and further RPC connections. These allowed the initial compromised device to quickly infect 11 other devices. With continued scanning over the next day, valuable data was soon identified. Across several transfers, 230GB of internal data was then exfiltrated from four file servers via SSH port 22. This data was then made unusable to the organization through encryption occurring via SMB Writes and Moves/Renames with the randomly generated extension ‘.qHefKSmfd’. Finally a ransom note titled ‘qHefKSmfd.README.txt’ was dropped.

This ransom note was appended with the BlackMatter ASCII logo:

Figure 1- The ASCII logo which accompanied BlackMatter’s ransom note

Although Darktrace DETECT and Cyber AI Analyst continued to provide live alerting, the actor successfully accomplished their mission.  

There are numerous reasons that an organization may fail to organize a response to a threat, (including resource shortages, out of hours attacks, and groups that simply move too fast). Without Darktrace’s RESPOND capabilities enabled, the threat actors could proceed this attack without obstacles. 

Figure 2- Cyber AI Analyst breaks down the stages of the attack [Note: this screenshot is from V5 of DETECT/Network] 

How would the attack have unfolded with RESPOND?

Armed with Darktrace’s evolving knowledge of ‘self’ for the customer’s unique digital environment, RESPOND would have activated within seconds of the first network scan, which was recognized as highly anomalous. The standard action taken here would usually involve enforcing the standard ‘pattern of life’ for the compromised device over a set time period in order to halt the anomaly while allowing the business to continue operating as normal.

RESPOND constantly re-evaluates threats as attacks unfold. Had the first stage still been successful, it would have continued to take targeted action at each corresponding stage of this attack. RESPOND models would have alerted to block the external connections to C2 servers over port 443, the outbound exfil attempts and crucially the SMB write activity over port 445 related to encryption.

As DETECT and RESPOND feed into one another, Darktrace would have continued to assess its actions as BlackMatter pivoted tactics. These actions buy back critical time for security teams that may not be in operation over the weekend, and stun the attacker into place without applying overly aggressive responses that create more problems than they solve.

Ultimately although this incident did not resolve autonomously, in response to the ransom event, Darktrace offered to enable RESPOND and set it in active mode for ransomware indicators across all client and server devices. This ensured an event like this would not occur again. 

Why does RESPOND work?

Response solutions must be accurate enough to fire only when there is a genuine threat, configurable enough to let the user stay in the driver’s seat, and intelligent enough to know the right action to take to contain only the malicious activity- without disrupting normal business operations. 

This is only possible if you can establish what ‘normal’ is for any one organization. And this is how Darktrace’s RESPOND product family ensures its actions are targeted and proportionate. By feeding off DETECT alerting which highlights subtle or large deviations across the network, cloud and SaaS, RESPOND can provide a measured response to the potential threat. This includes actions such as:

  • Enforcing the device’s ‘pattern of life’ for a given length of time 
  • Enforcing the ‘group pattern of life’ (stopping a device from doing anything its peers haven’t done in the past)
  • Blocking connections of a certain type to a certain destination
  • Logging out of a cloud account 
  • ‘Smart quarantining’ an endpoint device- maintaining access to VPNs and company’s AV solution

Conclusion 

In its report on BlackMatter [10], CISA recommended that organizations invest in network monitoring tools with the capacity to investigate anomalous activity. Picking up on unusual behavior rather than predetermined rules and signatures is an important step in fighting back against new threats. As this particular story shows, however, detection alone is not always enough. Turning on RESPOND, which takes immediate and precise action to contain threats, regardless of when and where they come in, is the best way to counter smash-and-grab attacks and protect organizations’ digital assets. There is little doubt that the threat actors behind BlackMatter will or have already returned with new names and strategies- but organizations with RESPOND will be ready for them.

Appendices

Darktrace Model Detections (in order of breach)

Those with the ‘PTN’ prefix were alerted directly to Darktrace’s 24/7 SOC team.

  • Device / ICMP Address Scan
  • Device / Suspicious SMB Scanning Activity
  • (PTN) Device / Suspicious Network Scan Activity
  • Anomalous Connection / SMB Enumeration
  • Device / Possible RPC Lateral Movement
  • Device / Active Directory Reconnaissance
  • Unusual Activity / Possible RPC Recon Activity
  • Device / Possible SMB/NTLM Reconnaissance
  • Compliance / Default Credential Usage
  • Device / New or Unusual Remote Command Execution
  • Anomalous Connection / New or Uncommon Service Control
  • Device / New or Uncommon SMB Named Pipe
  • Device / SMB Session Bruteforce
  • Device / New or Uncommon WMI Activity
  • (PTN) Device / Multiple Lateral Movement Model Breaches
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / SSL or HTTP Beacon
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Device / Anomalous SMB Followed By Multiple Model Breaches
  • Device / Anomalous RDP Followed By Multiple Model Breaches
  • Anomalous Server Activity / Rare External from Server
  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Anomalous Connection / Rare External SSL Self-Signed
  • Device / Long Agent Connection to New Endpoint
  • Compliance / SMB Drive Write
  • Anomalous Connection / Unusual Admin SMB Session
  • Anomalous Connection / High Volume of New or Uncommon Service Control
  • Anomalous Connection / Unusual Admin RDP Session
  • Device / Suspicious File Writes to Multiple Hidden SMB Shares
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Compliance / SSH to Rare External Destination
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Anomalous Connection / Data Sent to Rare Domain
  • Anomalous Connection / Download and Upload
  • (PTN) Unusual Activity / Enhanced Unusual External Data Transfer
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • (PTN) Compromise / Ransomware / Suspicious SMB Activity

List of IOCs 

Reference List 

[1] https://www.designnews.com/industrial-machinery/new-age-hackers-are-ditching-smash-and-grab-techniques 

[2] https://cybernews.com/cyber-war/how-do-smash-and-grab-cyberattacks-help-ukraine-in-waging-war/

[3] https://blog.google/threat-analysis-group/phishing-campaign-targets-youtube-creators-cookie-theft-malware/

[4] https://www.ukcybersecuritycouncil.org.uk/news-insights/articles/the-benefits-of-automation-to-cyber-security/

[5] https://techcrunch.com/2021/11/03/blackmatter-ransomware-shut-down/ 

[6] https://www.trellix.com/en-us/about/newsroom/stories/research/blackmatter-ransomware-analysis-the-dark-side-returns.html

[7] https://www.nytimes.com/2021/05/14/business/darkside-pipeline-hack.html

[8] https://techcrunch.com/2022/01/14/fsb-revil-ransomware/ 

[9] https://www.virustotal.com/gui/domain/georgiaonsale.com/community

[10] https://www.cisa.gov/uscert/ncas/alerts/aa21-291a

Credit to: Andras Balogh, SOC Analyst and Gabriel Few-Wiegratz, Threat Intelligence Content Production Lead

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Analyst Team

More in this series

No items found.

Blog

/

Network

/

August 8, 2025

Ivanti Under Siege: Investigating the Ivanti Endpoint Manager Mobile Vulnerabilities (CVE-2025-4427 & CVE-2025-4428)

ivanti cve exploitation edge infrastructure Default blog imageDefault blog image

Ivanti & Edge infrastructure exploitation

Edge infrastructure exploitations continue to prevail in today’s cyber threat landscape; therefore, it was no surprise that recent Ivanti Endpoint Manager Mobile (EPMM) vulnerabilities CVE-2025-4427 and CVE-2025-4428 were exploited targeting organizations in critical sectors such as healthcare, telecommunications, and finance across the globe, including across the Darktrace customer base in May 2025.

Exploiting these types of vulnerabilities remains a popular choice for threat actors seeking to enter an organization’s network to perform malicious activity such as cyber espionage, data exfiltration and ransomware detonation.

Vulnerabilities in Ivanti EPMM

Ivanti EPMM allows organizations to manage and configure enterprise mobile devices. On May 13, 2025, Ivanti published a security advisory [1] for their Ivanti Endpoint Manager Mobile (EPMM) devices addressing a medium and high severity vulnerability:

  • CVE-2025-4427, CVSS: 5.6: An authentication bypass vulnerability
  • CVE-2025-4428, CVSS: 7.2: Remote code execution vulnerability

Successfully exploiting both vulnerabilities at the same time could lead to unauthenticated remote code execution from an unauthenticated threat actor, which could allow them to control, manipulate, and compromise managed devices on a network [2].

Shortly after the disclosure of these vulnerabilities, external researchers uncovered evidence that they were being actively exploited in the wild and identified multiple indicators of compromise (IoCs) related to post-exploitation activities for these vulnerabilities [2] [3]. Research drew particular attention to the infrastructure utilized in ongoing exploitation activity, such as leveraging the two vulnerabilities to eventually deliver malware contained within ELF files from Amazon Web Services (AWS) S3 bucket endpoints and to deliver KrustyLoader malware for persistence. KrustyLoader is a Rust based malware that was discovered being downloaded in compromised Ivanti Connect Secure systems back in January 2024 when the zero-day critical vulnerabilities; CVE-2024-21887 and CVE-2023-46805 [10].

This suggests the involvement of the threat actor UNC5221, a suspected China-nexus espionage actor [3].

In addition to exploring the post-exploit tactics, techniques, and procedures (TTPs) observed for these vulnerabilities across Darktrace’s customer base, this blog will also examine the subtle changes and similarities in the exploitation of earlier Ivanti vulnerabilities—specifically Ivanti Connect Secure (CS) and Policy Secure (PS) vulnerabilities CVE-2023-46805 and CVE-2024-21887 in early 2024, as well as CVE-2025-0282 and CVE-2025-0283, which affected CS, PS, and Zero Trust Access (ZTA) in January 2025.

Darktrace Coverage

In May 2025, shortly after Ivanti disclosed vulnerabilities in their EPMM product, Darktrace’s Threat Research team identified attack patterns potentially linked to the exploitation of these vulnerabilities across multiple customer environments. The most noteworthy attack chain activity observed included exploit validation, payload delivery via AWS S3 bucket endpoints, subsequent delivery of script-based payloads, and connections to dpaste[.]com, possibly for dynamic payload retrieval. In a limited number of cases, connections were also made to an IP address associated with infrastructure linked to SAP NetWeaver vulnerability CVE-2025-31324, which has been investigated by Darktrace in an earlier case.

Exploit Validation

Darktrace observed devices within multiple customer environments making connections related to Out-of-Band Application Security Testing (OAST). These included a range of DNS requests and connections, most of which featured a user agent associated with the command-line tool cURL, directed toward associated endpoints. The hostnames of these endpoints consisted of a string of randomly generated characters followed by an OAST domain, such as 'oast[.]live', 'oast[.]pro', 'oast[.]fun', 'oast[.]site', 'oast[.]online', or 'oast[.]me'. OAST endpoints can be leveraged by malicious actors to trigger callbacks from targeted systems, such as for exploit validation. This activity, likely representing the initial phase of the attack chain observed across multiple environments, was also seen in the early stages of previous investigations into the exploitation of Ivanti vulnerabilities [4]. Darktrace also observed similar exploit validation activity during investigations conducted in January 2024 into the Ivanti CS vulnerabilities CVE-2023-46805 and CVE-2024-21887.

Payload Delivery via AWS

Devices across multiple customer environments were subsequently observed downloading malicious ELF files—often with randomly generated filenames such as 'NVGAoZDmEe'—from AWS S3 bucket endpoints like 's3[.]amazonaws[.]com'. These downloads occurred over HTTP connections, typically using wget or cURL user agents. Some of the ELF files were later identified to be KrustyLoader payloads using open-source intelligence (OSINT). External researchers have reported that the KrustyLoader malware is executed in cases of Ivanti EPMM exploitation to gain and maintain a foothold in target networks [2].

In one customer environment, after connections were made to the endpoint fconnect[.]s3[.]amazonaws[.]com, Darktrace observed the target system downloading the ELF file mnQDqysNrlg via the user agent Wget/1.14 (linux-gnu). Further investigation of the file’s SHA1 hash (1dec9191606f8fc86e4ae4fdf07f09822f8a94f2) linked it to the KrustyLoader malware [5]. In another customer environment, connections were instead made to tnegadge[.]s3[.]amazonaws[.]com using the same user agent, from which the ELF file “/dfuJ8t1uhG” was downloaded. This file was also linked to KrustyLoader through its SHA1 hash (c47abdb1651f9f6d96d34313872e68fb132f39f5) [6].

The pattern of activity observed so far closely mirrors previous exploits associated with the Ivanti vulnerabilities CVE-2023-46805 and CVE-2024-21887 [4]. As in those cases, Darktrace observed exploit validation using OAST domains and services, along with the use of AWS endpoints to deliver ELF file payloads. However, in this instance, the delivered payload was identified as KrustyLoader malware.

Later-stage script file payload delivery

In addition to the ELF file downloads, Darktrace also detected other file downloads across several customer environments, potentially representing the delivery of later-stage payloads.

The downloaded files included script files with the .sh extension, featuring randomly generated alphanumeric filenames. One such example is “4l4md4r.sh”, which was retrieved during a connection to the IP address 15.188.246[.]198 using a cURL-associated user agent. This IP address was also linked to infrastructure associated with the SAP NetWeaver remote code execution vulnerability CVE-2025-31324, which enables remote code execution on NetWeaver Visual Composer. External reporting has attributed this infrastructure to a China-nexus state actor [7][8][9].

In addition to the script file downloads, devices on some customer networks were also observed making connections to pastebin[.]com and dpaste[.]com, two sites commonly used to host or share malicious payloads or exploitation instructions [2]. Exploits, including those targeting Ivanti EPMM vulnerabilities, can dynamically fetch malicious commands from sites like dpaste[.]com, enabling threat actors to update payloads. Unlike the previously detailed activity, this behavior was not identified in any prior Darktrace investigations into Ivanti-related vulnerabilities, suggesting a potential shift in the tactics used in post-exploitation stages of Ivanti attacks.

Conclusion

Edge infrastructure vulnerabilities, such as those found in Ivanti EPMM and investigated across customer environments with Darktrace / NETWORK, have become a key tool in the arsenal of attackers in today’s threat landscape. As highlighted in this investigation, while many of the tactics employed by threat actors following successful exploitation of vulnerabilities remain the same, subtle shifts in their methods can also be seen.

These subtle and often overlooked changes enable threat actors to remain undetected within networks, highlighting the critical need for organizations to maintain continuous extended visibility, leverage anomaly based behavioral analysis, and deploy machine speed intervention across their environments.

Credit to Nahisha Nobregas (Senior Cyber Analyst) and Anna Gilbertson (Senior Cyber Analyst)

Appendices

Mid-High Confidence IoCs

(IoC – Type - Description)

-       trkbucket.s3.amazonaws[.]com – Hostname – C2 endpoint

-       trkbucket.s3.amazonaws[.]com/NVGAoZDmEe – URL – Payload

-       tnegadge.s3.amazonaws[.]com – Hostname – C2 endpoint

-       tnegadge.s3.amazonaws[.]com/dfuJ8t1uhG – URL – Payload

-       c47abdb1651f9f6d96d34313872e68fb132f39f5 - SHA1 File Hash – Payload

-       4abfaeadcd5ab5f2c3acfac6454d1176 - MD5 File Hash - Payload

-       fconnect.s3.amazonaws[.]com – Hostname – C2 endpoint

-       fconnect.s3.amazonaws[.]com/mnQDqysNrlg – URL - Payload

-       15.188.246[.]198 – IP address – C2 endpoint

-       15.188.246[.]198/4l4md4r.sh?grep – URL – Payload

-       185.193.125[.]65 – IP address – C2 endpoint

-       185.193.125[.]65/c4qDsztEW6/TIGHT_UNIVERSITY – URL – C2 endpoint

-       d8d6fe1a268374088fb6a5dc7e5cbb54 – MD5 File Hash – Payload

-       64.52.80[.]21 – IP address – C2 endpoint

-       0d8da2d1.digimg[.]store – Hostname – C2 endpoint

-       134.209.107[.]209 – IP address – C2 endpoint

Darktrace Model Detections

-       Compromise / High Priority Tunnelling to Bin Services (Enhanced Monitoring Model)

-       Compromise / Possible Tunnelling to Bin Services

-       Anomalous Server Activity / New User Agent from Internet Facing System

-       Compliance / Pastebin

-       Device / Internet Facing Device with High Priority Alert

-       Anomalous Connection / Callback on Web Facing Device

-       Anomalous File / Script from Rare External Location

-       Anomalous File / Incoming ELF File

-       Device / Suspicious Domain

-       Device / New User Agent

-       Anomalous Connection / Multiple Connections to New External TCP Port

-       Anomalous Connection / New User Agent to IP Without Hostname

-       Anomalous File / EXE from Rare External Location

-       Anomalous File / Internet Facing System File Download

-       Anomalous File / Multiple EXE from Rare External Locations

-       Compromise / Suspicious HTTP and Anomalous Activity

-       Device / Attack and Recon Tools

-       Device / Initial Attack Chain Activity

-       Device / Large Number of Model Alerts

-       Device / Large Number of Model Alerts from Critical Network Device

References

1.     https://forums.ivanti.com/s/article/Security-Advisory-Ivanti-Endpoint-Manager-Mobile-EPMM?language=en_US

2.     https://blog.eclecticiq.com/china-nexus-threat-actor-actively-exploiting-ivanti-endpoint-manager-mobile-cve-2025-4428-vulnerability

3.     https://www.wiz.io/blog/ivanti-epmm-rce-vulnerability-chain-cve-2025-4427-cve-2025-4428

4.     https://www.darktrace.com/blog/the-unknown-unknowns-post-exploitation-activities-of-ivanti-cs-ps-appliances

5.     https://www.virustotal.com/gui/file/ac91c2c777c9e8638ec1628a199e396907fbb7dcf9c430ca712ec64a6f1fcbc9/community

6.     https://www.virustotal.com/gui/file/f3e0147d359f217e2aa0a3060d166f12e68314da84a4ecb5cb205bd711c71998/community

7.     https://www.virustotal.com/gui/ip-address/15.188.246.198

8.     https://blog.eclecticiq.com/china-nexus-nation-state-actors-exploit-sap-netweaver-cve-2025-31324-to-target-critical-infrastructures

9.     https://www.darktrace.com/blog/tracking-cve-2025-31324-darktraces-detection-of-sap-netweaver-exploitation-before-and-after-disclosure

10.  https://www.synacktiv.com/en/publications/krustyloader-rust-malware-linked-to-ivanti-connectsecure-compromises

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein.

Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content without notice.

Continue reading
About the author
Nahisha Nobregas
SOC Analyst

Blog

/

Cloud

/

August 7, 2025

How CDR & Automated Forensics Transform Cloud Incident Response

cloud security investigation guy on computer doing workDefault blog imageDefault blog image

Introduction: Cloud investigations

In cloud security, speed, automation and clarity are everything. However, for many SOC teams, responding to incidents in the cloud is often very difficult especially when attackers move fast, infrastructure is ephemeral, and forensic skills are scarce.

In this blog we will walk through an example that shows exactly how Darktrace Cloud Detection and Response (CDR) and automated cloud forensics together, solve these challenges, automating cloud detection, and deep forensic investigation in a way that’s fast, scalable, and deeply insightful.

The Problem: Cloud incidents are hard to investigate

Security teams often face three major hurdles when investigating cloud detections:

Lack of forensic expertise: Most SOCs and security teams aren’t natively staffed with forensics specialists.

Ephemeral infrastructure: Cloud assets spin up and down quickly, leaving little time to capture evidence.

Lack of existing automation: Gathering forensic-level data often requires manual effort and leaves teams scrambling around during incidents — accessing logs, snapshots, and system states before they disappear. This process is slow and often blocked by permissions, tooling gaps, or lack of visibility.

How Darktrace augments cloud investigations

1. Darktrace’s CDR finds anomalous activity in the cloud

An alert is generated for a large outbound data transfer from an externally facing EC2 instance to a rare external endpoint. It’s anomalous, unexpected, and potentially serious.

2. AI-led investigation stitches together the incident for a SOC analyst to look into

When a security incident unfolds, Darktrace’s Cyber AI Analyst TM is the first to surface it, automatically correlating behaviors, surfacing anomalies, and presenting a cohesive incident summary. It’s fast, detailed, and invaluable.

Once the incident is created, more questions are raised.

  • How were the impacted resources compromised?
  • How did the attack unfold over time – what tools and malware were used?
  • What data was accessed and exfiltrated?

What you’ll see as a SOC analyst: The incident begins in Darktrace’s Threat Visualizer, where a Cyber AI Analyst incident has been generated automatically highlighting large anomalous data transfer to a suspicious external IP. This isn’t just another alert, it’s a high-fidelity signal backed by Darktrace’s Self-Learning AI.

Cyber AI Analyst incident created for anomalous outbound data transfer
Figure 1: Cyber AI Analyst incident created for anomalous outbound data transfer

The analyst can then immediately pivot to Darktrace / CLOUD’s architecture view (see below), gaining context on the asset’s environment, ingress/egress points, connected systems, potential attack paths and whether there are any current misconfigurations detected on the asset.

Darktrace / CLOUD architecture view providing critical cloud context
Figure 2: Darktrace / CLOUD architecture view providing critical cloud context

3. Automated forensic capture — No expertise required

Then comes the game-changer, Darktrace’s recent acquisition of Cado enhances its cloud forensics capabilities. From the first alert triggered, Darktrace has already kicked in and automatically processed and analyzed a full volume capture of the EC2. Everything, past and present, is preserved. No need for manual snapshots, CLI commands, or specialist intervention.

Darktrace then provides a clear timeline highlighting the evidence and preserving it. In our example we identify:

  • A brute-force attempt on a file management app, followed by a successful login
  • A reverse shell used to gain unauthorized remote access to the EC2
  • A reverse TCP connection to the same suspicious IP flagged by Darktrace
  • Attacker commands showing how the data was split and prepared for exfiltration
  • A file (a.tar) created from two sensitive archives: product_plans.zip and research_data.zip

All of this is surfaced through the timeline view, ranked by significance using machine learning. The analyst can pivot through time, correlate events, and build a complete picture of the attack — without needing cloud forensics expertise.

Darktrace even gives the ability to:

  • Download and inspect gathered files in full detail, enabling teams to verify exactly what data was accessed or exfiltrated.
  • Interact with the file system as if it were live, allowing investigators to explore directories, uncover hidden artifacts, and understand attacker movement with precision.
Figure 3 Cado critical forensic investigation automated insights
Figure 3: Cado critical forensic investigation automated insights
Figure 4: Cado forensic file analysis of reverse shell and download option
Figure 5: a.tar created from two sensitive archives: product_plans.zip and research_data.zip
Figure 6: Traverse the full file system of the asset

Why this matters?

This workflow solves the hardest parts of cloud investigation:

  1. Capturing evidence before it disappears
  2. Understanding attacker behavior in detail - automatically
  3. Linking detections to impact with full incident visibility

This kind of insight is invaluable for organizations especially regulated industries, where knowing exactly what data was affected is critical for compliance and reporting. It’s also a powerful tool for detecting insider threats, not just external attackers.

Darktrace / CLOUD and Cado together acts as a force multiplier helping with:

  • Reducing investigation time from hours to minutes
  • Preserving ephemeral evidence automatically
  • Empowering analysts with forensic-level visibility

Cloud threats aren’t slowing down. Your response shouldn’t either. Darktrace / CLOUD + Cado gives your SOC the tools to detect, contain, and investigate cloud incidents — automatically, accurately, and at scale.

[related-resource]

Continue reading
About the author
Adam Stevens
Director of Product, Cloud Security
Your data. Our AI.
Elevate your network security with Darktrace AI