Blog
/
Email
/
April 10, 2023

Employee-Conscious Email Security Solutions in the Workforce

Email threats commonly affect organizations. Read Darktrace's expert insights on how to safeguard your business by educating employees about email security.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Written by
Carlos Gray
Senior Product Marketing Manager, Email
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
10
Apr 2023

When considering email security, IT teams have historically had to choose between excluding employees entirely, or including them but giving them too much power and implementing unenforceable, trust-based policies that try to make up for it. 

However, just because email security should not rely on employees, this does not mean they should be excluded entirely. Employees are the ones interacting with emails daily, and their experiences and behaviors can provide valuable security insights and even influence productivity. 

AI technology supports employee engagement in this non-intrusive, nuanced way to not only maintain email security, but also enhance it. 

Finding a Balance of Employee Involvement in Security Strategies

Historically, security solutions offered ‘all or nothing’ approaches to employee engagement. On one hand, when employees are involved, they are unreliable. Employees cannot all be experts in security on top of their actual job responsibilities, and mistakes are bound to happen in fast-paced environments.  

Although there have been attempts to raise security awareness, they often have shortcomings, as training emails lack context and realism, leaving employees with poor understandings that often lead to reporting emails that are actually safe. Having users constantly triaging their inboxes and reporting safe emails wastes time that takes away from their own productivity as well as the productivity of the security team.

Other historic forms of employee involvement also put security at risk. For example, users could create blanket rules through feedback, which could lead to common problems like safe-listing every email that comes from the gmail.com domain. Other times, employees could choose for themselves to release emails without context or limitations, introducing major risks to the organization. While these types of actions include employees to participate in security, they do so at the cost of security. 

Even lower stakes employee involvement can prove ineffective. For example, excessive warnings when sending emails to external contacts can lead to banner fatigue. When employees see the same warning message or alert at the top of every message, it’s human nature that they soon become accustomed and ultimately immune to it.

On the other hand, when employees are fully excluded from security, an opportunity is missed to fine-tune security according to the actual users and to gain feedback on how well the email security solution is working. 

So, both options of historically conventional email security, to include or exclude employees, prove incapable of leveraging employees effectively. The best email security practice strikes a balance between these two extremes, allowing more nuanced interactions that maintain security without interrupting daily business operations. This can be achieved with AI that tailors the interactions specifically to each employee to add to security instead of detracting from it. 

Reducing False Reports While Improving Security Awareness Training 

Humans and AI-powered email security can simultaneously level up by working together. AI can inform employees and employees can inform AI in an employee-AI feedback loop.  

By understanding ‘normal’ behavior for every email user, AI can identify unusual, risky components of an email and take precise action based on the nature of the email to neutralize them, such as rewriting links, flattening attachments, and moving emails to junk. AI can go one step further and explain in non-technical language why it has taken a specific action, which educates users. In contrast to point-in-time simulated phishing email campaigns, this means AI can share its analysis in context and in real time at the moment a user is questioning an email. 

The employee-AI feedback loop educates employees so that they can serve as additional enrichment data. It determines the appropriate levels to inform and teach users, while not relying on them for threat detection

In the other direction, the AI learns from users’ activity in the inbox and gradually factors this into its decision-making. This is not a ‘one size fits all’ mechanism – one employee marking an email as safe will never result in blanket approval across the business – but over time, patterns can be observed and autonomous decision-making enhanced.  

Figure 1: The employee-AI feedback loop increases employee understanding without putting security at risk.

The employee-AI feedback loop draws out the maximum potential benefits of employee involvement in email security. Other email security solutions only consider the security team, enhancing its workflow but never considering the employees that report suspicious emails. Employees who try to do the right thing but blindly report emails never learn or improve and end up wasting their own time. By considering employees and improving security awareness training, the employee-AI feedback loop can level up users. They learn from the AI explanations how to identify malicious components, and so then report fewer emails but with greater accuracy. 

While AI programs have classically acted like black boxes, Darktrace trains its AI on the best data, the organization’s actual employees, and invites both the security team and employees to see the reasoning behind its conclusions. Over time, employees will trust themselves more as they better learn how to discern unsafe emails. 

Leveraging AI to Generate Productivity Gains

Uniquely, AI-powered email security can have effects outside of security-related areas. It can save time by managing non-productive email. As the AI constantly learns employee behavior in the inbox, it becomes extremely effective at detecting spam and graymail – emails that aren't necessarily malicious, but clutter inboxes and hamper productivity. It does this on a per-user basis, specific to how each employee treats spam, graymail, and newsletters. The AI learns to detect this clutter and eventually learns which to pull from the inbox, saving time for the employees. This highlights how security solutions can go even further than merely protecting the email environment with a light touch, to the point where AI can promote productivity gains by automating tasks like inbox sorting.

Preventing Email Mishaps: How to Deal with Human Error

Improved user understanding and decision making cannot stop natural human error. Employees are bound to make mistakes and can easily send emails to the wrong people, especially when Outlook auto-fills the wrong recipient. This can have effects ranging anywhere from embarrassing to critical, with major implications on compliance, customer trust, confidential intellectual property, and data loss. 

However, AI can help reduce instances of accidentally sending emails to the wrong people. When a user goes to send an email in Outlook, the AI will analyze the recipients. It considers the contextual relationship between the sender and recipients, the relationships the recipients have with each other, how similar each recipient’s name and history is to other known contacts, and the names of attached files.  

If the AI determines that the email is outside of a user’s typical behavior, it may alert the user. Security teams can customize what the AI does next: it can block the email, block the email but allow the user to override it, or do nothing but invite the user to think twice. Since the AI analyzes each email, these alerts are more effective than consistent, blanket alerts warning about external recipients, which often go ignored. With this targeted approach, the AI prevents data leakage and reduces cyber risk. 

Since the AI is always on and continuously learning, it can adapt autonomously to employee changes. If the role of an employee evolves, the AI will learn the new normal, including common behaviors, recipients, attached file names, and more. This allows the AI to continue effectively flagging potential instances of human error, without needing manual rule changes or disrupting the employee’s workflow. 

Email Security Informed by Employee Experience

As the practical users of email, employees should be considered when designing email security. This employee-conscious lens to security can strengthen defenses, improve productivity, and prevent data loss.  

In these ways, email security can benefit both employees and security teams. Employees can become another layer of defense with improved security awareness training that cuts down on false reports of safe emails. This insight into employee email behavior can also enhance employee productivity by learning and sorting graymail. Finally, viewing security in relation to employees can help security teams deploy tools that reduce data loss by flagging misdirected emails. With these capabilities, Darktrace/Email™ enables security teams to optimize the balance of employee involvement in email security.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Written by
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

/

April 24, 2025

The Importance of NDR in Resilient XDR

picture of hands typing on laptop Default blog imageDefault blog image

As threat actors become more adept at targeting and disabling EDR agents, relying solely on endpoint detection leaves critical blind spots.

Network detection and response (NDR) offers the visibility and resilience needed to catch what EDR can’t especially in environments with unmanaged devices or advanced threats that evade local controls.

This blog explores how threat actors can disable or bypass EDR-based XDR solutions and demonstrates how Darktrace’s approach to NDR closes the resulting security gaps with Self-Learning AI that enables autonomous, real-time detection and response.

Threat actors see local security agents as targets

Recent research by security firms has highlighted ‘EDR killers’: tools that deliberately target EDR agents to disable or damage them. These include the known malicious tool EDRKillShifter, the open source EDRSilencer, EDRSandblast and variants of Terminator, and even the legitimate business application HRSword.

The attack surface of any endpoint agent is inevitably large, whether the software is challenged directly, by contesting its local visibility and access mechanisms, or by targeting the Operating System it relies upon. Additionally, threat actors can readily access and analyze EDR tools, and due to their uniformity across environments an exploit proven in a lab setting will likely succeed elsewhere.

Sophos have performed deep research into the EDRShiftKiller tool, which ESET have separately shown became accessible to multiple threat actor groups. Cisco Talos have reported via TheRegister observing significant success rates when an EDR kill was attempted by ransomware actors.

With the local EDR agent silently disabled or evaded, how will the threat be discovered?

What are the limitations of relying solely on EDR?

Cyber attackers will inevitably break through boundary defences, through innovation or trickery or exploiting zero-days. Preventive measures can reduce but not completely stop this. The attackers will always then want to expand beyond their initial access point to achieve persistence and discover and reach high value targets within the business. This is the primary domain of network activity monitoring and NDR, which includes responsibility for securing the many devices that cannot run endpoint agents.

In the insights from a CISA Red Team assessment of a US CNI organization, the Red Team was able to maintain access over the course of months and achieve their target outcomes. The top lesson learned in the report was:

“The assessed organization had insufficient technical controls to prevent and detect malicious activity. The organization relied too heavily on host-based endpoint detection and response (EDR) solutions and did not implement sufficient network layer protections.”

This proves that partial, isolated viewpoints are not sufficient to track and analyze what is fundamentally a connected problem – and without the added visibility and detection capabilities of NDR, any downstream SIEM or MDR services also still have nothing to work with.

Why is network detection & response (NDR) critical?

An effective NDR finds threats that disable or can’t be seen by local security agents and generally operates out-of-band, acquiring data from infrastructure such as traffic mirroring from physical or virtual switches. This means that the security system is extremely inaccessible to a threat actor at any stage.

An advanced NDR such as Darktrace / NETWORK is fully capable of detecting even high-end novel and unknown threats.

Detecting exploitation of Ivanti CS/PS with Darktrace / NETWORK

On January 9th 2025, two new vulnerabilities were disclosed in Ivanti Connect Secure and Policy Secure appliances that were under malicious exploitation. Perimeter devices, like Ivanti VPNs, are designed to keep threat actors out of a network, so it's quite serious when these devices are vulnerable.

An NDR solution is critical because it provides network-wide visibility for detecting lateral movement and threats that an EDR might miss, such as identifying command and control sessions (C2) and data exfiltration, even when hidden within encrypted traffic and which an EDR alone may not detect.

Darktrace initially detected suspicious activity connected with the exploitation of CVE-2025-0282 on December 29, 2024 – 11 days before the public disclosure of the vulnerability, this early detection highlights the benefits of an anomaly-based network detection method.

Throughout the campaign and based on the network telemetry available to Darktrace, a wide range of malicious activities were identified, including the malicious use of administrative credentials, the download of suspicious files, and network scanning in the cases investigated.

Darktrace / NETWORK’s autonomous response capabilities played a critical role in containment by autonomously blocking suspicious connections and enforcing normal behavior patterns. At the same time, Darktrace Cyber AI Analyst™ automatically investigated and correlated the anomalous activity into cohesive incidents, revealing the full scope of the compromise.

This case highlights the importance of real-time, AI-driven network monitoring to detect and disrupt stealthy post-exploitation techniques targeting unmanaged or unprotected systems.

Unlocking adaptive protection for evolving cyber risks

Darktrace / NETWORK uses unique AI engines that learn what is normal behavior for an organization’s entire network, continuously analyzing, mapping and modeling every connection to create a full picture of your devices, identities, connections, and potential attack paths.

With its ability to uncover previously unknown threats as well as detect known threats using signatures and threat intelligence, Darktrace is an essential layer of the security stack. Darktrace has helped secure customers against attacks including 2024 threat actor campaigns against Fortinet’s FortiManager , Palo Alto firewall devices, and more.  

Stay tuned for part II of this series which dives deeper into the differences between NDR types.

Credit to Nathaniel Jones VP, Security & AI Strategy, FCISO & Ashanka Iddya, Senior Director of Product Marketing for their contribution to this blog.

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

April 22, 2025

Obfuscation Overdrive: Next-Gen Cryptojacking with Layers

man looking at multiple computer screensDefault blog imageDefault blog image

Out of all the services honeypotted by Darktrace, Docker is the most commonly attacked, with new strains of malware emerging daily. This blog will analyze a novel malware campaign with a unique obfuscation technique and a new cryptojacking technique.

What is obfuscation?

Obfuscation is a common technique employed by threat actors to prevent signature-based detection of their code, and to make analysis more difficult. This novel campaign uses an interesting technique of obfuscating its payload.

Docker image analysis

The attack begins with a request to launch a container from Docker Hub, specifically the kazutod/tene:ten image. Using Docker Hub’s layer viewer, an analyst can quickly identify what the container is designed to do. In this case, the container is designed to run the ten.py script which is built into itself.

 Docker Hub Image Layers, referencing the script ten.py.
Figure 1: Docker Hub Image Layers, referencing the script ten.py.

To gain more information on the Python file, Docker’s built in tooling can be used to download the image (docker pull kazutod/tene:ten) and then save it into a format that is easier to work with (docker image save kazutod/tene:ten -o tene.tar). It can then be extracted as a regular tar file for further investigation.

Extraction of the resulting tar file.
Figure 2: Extraction of the resulting tar file.

The Docker image uses the OCI format, which is a little different to a regular file system. Instead of having a static folder of files, the image consists of layers. Indeed, when running the file command over the sha256 directory, each layer is shown as a tar file, along with a JSON metadata file.

Output of the file command over the sha256 directory.
Figure 3: Output of the file command over the sha256 directory.

As the detailed layers are not necessary for analysis, a single command can be used to extract all of them into a single directory, recreating what the container file system would look like:

find blobs/sha256 -type f -exec sh -c 'file "{}" | grep -q "tar archive" && tar -xf "{}" -C root_dir' \;

Result of running the command above.
Figure 4: Result of running the command above.

The find command can then be used to quickly locate where the ten.py script is.

find root_dir -name ten.py

root_dir/app/ten.py

Details of the above ten.py script.
Figure 5: Details of the above ten.py script.

This may look complicated at first glance, however after breaking it down, it is fairly simple. The script defines a lambda function (effectively a variable that contains executable code) and runs zlib decompress on the output of base64 decode, which is run on the reversed input. The script then runs the lambda function with an input of the base64 string, and then passes it to exec, which runs the decoded string as Python code.

To help illustrate this, the code can be cleaned up to this simplified function:

def decode(input):
   reversed = input[::-1]

   decoded = base64.decode(reversed)
   decompressed = zlib.decompress(decoded)
   return decompressed

decoded_string = decode(the_big_text_blob)
exec(decoded_string) # run the decoded string

This can then be set up as a recipe in Cyberchef, an online tool for data manipulation, to decode it.

Use of Cyberchef to decode the ten.py script.
Figure 6: Use of Cyberchef to decode the ten.py script.

The decoded payload calls the decode function again and puts the output into exec. Copy and pasting the new payload into the input shows that it does this another time. Instead of copy-pasting the output into the input all day, a quick script can be used to decode this.

The script below uses the decode function from earlier in order to decode the base64 data and then uses some simple string manipulation to get to the next payload. The script will run this over and over until something interesting happens.

# Decode the initial base64

decoded = decode(initial)
# Remove the first 11 characters and last 3

# so we just have the next base64 string

clamped = decoded[11:-3]

for i in range(1, 100):
   # Decode the new payload

   decoded = decode(clamped)
   # Print it with the current step so we

   # can see what’s going on

   print(f"Step {i}")

   print(decoded)
   # Fetch the next base64 string from the

   # output, so the next loop iteration will

   # decode it

   clamped = decoded[11:-3]

Result of the 63rd iteration of this script.
Figure 7: Result of the 63rd iteration of this script.

After 63 iterations, the script returns actual code, accompanied by an error from the decode function as a stopping condition was never defined. It not clear what the attacker’s motive to perform so many layers of obfuscation was, as one round of obfuscation versus several likely would not make any meaningful difference to bypassing signature analysis. It’s possible this is an attempt to stop analysts or other hackers from reverse engineering the code. However,  it took a matter of minutes to thwart their efforts.

Cryptojacking 2.0?

Cleaned up version of the de-obfuscated code.
Figure 8: Cleaned up version of the de-obfuscated code.

The cleaned up code indicates that the malware attempts to set up a connection to teneo[.]pro, which appears to belong to a Web3 startup company.

Teneo appears to be a legitimate company, with Crunchbase reporting that they have raised USD 3 million as part of their seed round [1]. Their service allows users to join a decentralized network, to “make sure their data benefits you” [2]. Practically, their node functions as a distributed social media scraper. In exchange for doing so, users are rewarded with “Teneo Points”, which are a private crypto token.

The malware script simply connects to the websocket and sends keep-alive pings in order to gain more points from Teneo and does not do any actual scraping. Based on the website, most of the rewards are gated behind the number of heartbeats performed, which is likely why this works [2].

Checking out the attacker’s dockerhub profile, this sort of attack seems to be their modus operandi. The most recent container runs an instance of the nexus network client, which is a project to perform distributed zero-knowledge compute tasks in exchange for cryptocurrency.

Typically, traditional cryptojacking attacks rely on using XMRig to directly mine cryptocurrency, however as XMRig is highly detected, attackers are shifting to alternative methods of generating crypto. Whether this is more profitable remains to be seen. There is not currently an easy way to determine the earnings of the attackers due to the more “closed” nature of the private tokens. Translating a user ID to a wallet address does not appear to be possible, and there is limited public information about the tokens themselves. For example, the Teneo token is listed as “preview only” on CoinGecko, with no price information available.

Conclusion

This blog explores an example of Python obfuscation and how to unravel it. Obfuscation remains a ubiquitous technique employed by the majority of malware to aid in detection/defense evasion and being able to de-obfuscate code is an important skill for analysts to possess.

We have also seen this new avenue of cryptominers being deployed, demonstrating that attackers’ techniques are still evolving - even tried and tested fields. The illegitimate use of legitimate tools to obtain rewards is an increasingly common vector. For example,  as has been previously documented, 9hits has been used maliciously to earn rewards for the attack in a similar fashion.

Docker remains a highly targeted service, and system administrators need to take steps to ensure it is secure. In general, Docker should never be exposed to the wider internet unless absolutely necessary, and if it is necessary both authentication and firewalling should be employed to ensure only authorized users are able to access the service. Attacks happen every minute, and even leaving the service open for a short period of time may result in a serious compromise.

References

1. https://www.crunchbase.com/funding_round/teneo-protocol-seed--a8ff2ad4

2. https://teneo.pro/

Continue reading
About the author
Nate Bill
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI