ブログ
/
Email
/
April 10, 2023

Employee-Conscious Email Security Solutions in the Workforce

Email threats commonly affect organizations. Read Darktrace's expert insights on how to safeguard your business by educating employees about email security.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Written by
Carlos Gray
Senior Product Marketing Manager, Email
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
10
Apr 2023

When considering email security, IT teams have historically had to choose between excluding employees entirely, or including them but giving them too much power and implementing unenforceable, trust-based policies that try to make up for it. 

However, just because email security should not rely on employees, this does not mean they should be excluded entirely. Employees are the ones interacting with emails daily, and their experiences and behaviors can provide valuable security insights and even influence productivity. 

AI technology supports employee engagement in this non-intrusive, nuanced way to not only maintain email security, but also enhance it. 

Finding a Balance of Employee Involvement in Security Strategies

Historically, security solutions offered ‘all or nothing’ approaches to employee engagement. On one hand, when employees are involved, they are unreliable. Employees cannot all be experts in security on top of their actual job responsibilities, and mistakes are bound to happen in fast-paced environments.  

Although there have been attempts to raise security awareness, they often have shortcomings, as training emails lack context and realism, leaving employees with poor understandings that often lead to reporting emails that are actually safe. Having users constantly triaging their inboxes and reporting safe emails wastes time that takes away from their own productivity as well as the productivity of the security team.

Other historic forms of employee involvement also put security at risk. For example, users could create blanket rules through feedback, which could lead to common problems like safe-listing every email that comes from the gmail.com domain. Other times, employees could choose for themselves to release emails without context or limitations, introducing major risks to the organization. While these types of actions include employees to participate in security, they do so at the cost of security. 

Even lower stakes employee involvement can prove ineffective. For example, excessive warnings when sending emails to external contacts can lead to banner fatigue. When employees see the same warning message or alert at the top of every message, it’s human nature that they soon become accustomed and ultimately immune to it.

On the other hand, when employees are fully excluded from security, an opportunity is missed to fine-tune security according to the actual users and to gain feedback on how well the email security solution is working. 

So, both options of historically conventional email security, to include or exclude employees, prove incapable of leveraging employees effectively. The best email security practice strikes a balance between these two extremes, allowing more nuanced interactions that maintain security without interrupting daily business operations. This can be achieved with AI that tailors the interactions specifically to each employee to add to security instead of detracting from it. 

Reducing False Reports While Improving Security Awareness Training 

Humans and AI-powered email security can simultaneously level up by working together. AI can inform employees and employees can inform AI in an employee-AI feedback loop.  

By understanding ‘normal’ behavior for every email user, AI can identify unusual, risky components of an email and take precise action based on the nature of the email to neutralize them, such as rewriting links, flattening attachments, and moving emails to junk. AI can go one step further and explain in non-technical language why it has taken a specific action, which educates users. In contrast to point-in-time simulated phishing email campaigns, this means AI can share its analysis in context and in real time at the moment a user is questioning an email. 

The employee-AI feedback loop educates employees so that they can serve as additional enrichment data. It determines the appropriate levels to inform and teach users, while not relying on them for threat detection

In the other direction, the AI learns from users’ activity in the inbox and gradually factors this into its decision-making. This is not a ‘one size fits all’ mechanism – one employee marking an email as safe will never result in blanket approval across the business – but over time, patterns can be observed and autonomous decision-making enhanced.  

Figure 1: The employee-AI feedback loop increases employee understanding without putting security at risk.

The employee-AI feedback loop draws out the maximum potential benefits of employee involvement in email security. Other email security solutions only consider the security team, enhancing its workflow but never considering the employees that report suspicious emails. Employees who try to do the right thing but blindly report emails never learn or improve and end up wasting their own time. By considering employees and improving security awareness training, the employee-AI feedback loop can level up users. They learn from the AI explanations how to identify malicious components, and so then report fewer emails but with greater accuracy. 

While AI programs have classically acted like black boxes, Darktrace trains its AI on the best data, the organization’s actual employees, and invites both the security team and employees to see the reasoning behind its conclusions. Over time, employees will trust themselves more as they better learn how to discern unsafe emails. 

Leveraging AI to Generate Productivity Gains

Uniquely, AI-powered email security can have effects outside of security-related areas. It can save time by managing non-productive email. As the AI constantly learns employee behavior in the inbox, it becomes extremely effective at detecting spam and graymail – emails that aren't necessarily malicious, but clutter inboxes and hamper productivity. It does this on a per-user basis, specific to how each employee treats spam, graymail, and newsletters. The AI learns to detect this clutter and eventually learns which to pull from the inbox, saving time for the employees. This highlights how security solutions can go even further than merely protecting the email environment with a light touch, to the point where AI can promote productivity gains by automating tasks like inbox sorting.

Preventing Email Mishaps: How to Deal with Human Error

Improved user understanding and decision making cannot stop natural human error. Employees are bound to make mistakes and can easily send emails to the wrong people, especially when Outlook auto-fills the wrong recipient. This can have effects ranging anywhere from embarrassing to critical, with major implications on compliance, customer trust, confidential intellectual property, and data loss. 

However, AI can help reduce instances of accidentally sending emails to the wrong people. When a user goes to send an email in Outlook, the AI will analyze the recipients. It considers the contextual relationship between the sender and recipients, the relationships the recipients have with each other, how similar each recipient’s name and history is to other known contacts, and the names of attached files.  

If the AI determines that the email is outside of a user’s typical behavior, it may alert the user. Security teams can customize what the AI does next: it can block the email, block the email but allow the user to override it, or do nothing but invite the user to think twice. Since the AI analyzes each email, these alerts are more effective than consistent, blanket alerts warning about external recipients, which often go ignored. With this targeted approach, the AI prevents data leakage and reduces cyber risk. 

Since the AI is always on and continuously learning, it can adapt autonomously to employee changes. If the role of an employee evolves, the AI will learn the new normal, including common behaviors, recipients, attached file names, and more. This allows the AI to continue effectively flagging potential instances of human error, without needing manual rule changes or disrupting the employee’s workflow. 

Email Security Informed by Employee Experience

As the practical users of email, employees should be considered when designing email security. This employee-conscious lens to security can strengthen defenses, improve productivity, and prevent data loss.  

In these ways, email security can benefit both employees and security teams. Employees can become another layer of defense with improved security awareness training that cuts down on false reports of safe emails. This insight into employee email behavior can also enhance employee productivity by learning and sorting graymail. Finally, viewing security in relation to employees can help security teams deploy tools that reduce data loss by flagging misdirected emails. With these capabilities, Darktrace/Email™ enables security teams to optimize the balance of employee involvement in email security.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Written by
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Default blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Default blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ