Blog
/
Network
/
February 8, 2024

How CoinLoader Hijacks Networks

Discover how Darktrace decrypted the CoinLoader malware hijacking networks for cryptomining. Learn about the tactics and protection strategies employed.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Signe Zaharka
Principal Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
08
Feb 2024

About Loader Malware

Loader malware was a frequent topic of conversation and investigation within the Darktrace Threat Research team throughout 2023, with a wide range of existing and novel variants affecting a significant number of Darktrace customers, as detailed in Darktrace’s inaugural End of Year Threat Report. The multi-phase nature of such compromises poses a significant threat to organizations due to the need to defend against multiple threats at the same time.

CoinLoader, a variant of loader malware first observed in the wild in 2018 [1], is an example of one of the more prominent variant of loaders observed by Darktrace in 2023, with over 65 customers affected by the malware. Darktrace’s Threat Research team conducted a deep dive investigation into the patterns of behavior exhibited by devices infected with CoinLoader in the latter part of 2023, with compromises observed in Europe, the Middle East and Africa (EMEA), Asia-Pacific (APAC) and the Americas.

The autonomous threat detection capabilities of Darktrace DETECT™ allowed for the effective identification of these CoinLoader infections whilst Darktrace RESPOND™, if active, was able to quickly curtail attacker’s efforts and prevent more disruptive, and potentially costly, secondary compromises from occurring.

What is CoinLoader?

Much like other strains of loader, CoinLoader typically serves as a first stage malware that allows threat actors to gain initial access to a network and establish a foothold in the environment before delivering subsequent malicious payloads, including adware, botnets, trojans or pay-per-install campaigns.

CoinLoader is generally propagated through trojanized popular software or game installation archive files, usually in the rar or zip formats. These files tend can be easily obtained via top results displayed in search engines when searching for such keywords as "crack" or "keygen" in conjunction with the name of the software the user wishes to pirate [1,2,3,4]. By disguising the payload as a legitimate programme, CoinLoader is more likely to be unknowingly downloaded by endpoint users, whilst also bypassing traditional security measures that trust the download.

It also has several additional counter-detection methods including using junk code, variable obfuscation, and encryption for shellcode and URL schemes. It relies on dynamic-link library (DLL) search order hijacking to load malicious DLLs to legitimate executable files. The malware is also capable of performing a variety of checks for anti-virus processes and disabling endpoint protection solutions.

In addition to these counter-detection tactics, CoinLoader is also able to prevent the execution of its malicious DLL files in sandboxed environments without the presence of specific DNS cache records, making it extremely difficult for security teams and researchers to analyze.

In 2020 it was reported that CoinLoader compromises were regularly seen alongside cryptomining activity and even used the alias “CoinMiner” in some cases [2]. Darktrace’s investigations into CoinLoader in 2023 largely confirmed this theory, with around 15% of observed CoinLoader connections being related to cryptomining activity.

Cryptomining malware consumes large amounts of a hijacked (or cryptojacked) device's resources to perform complex mathematical calculations and generate income for the attacker all while quietly working in the background. Cryptojacking can lead to high electricity costs, device slow down, loss of functionality, and in the worst case scenario can be a potential fire hazard.

Darktrace Coverage of CoinLoader

In September 2023, Darktrace observed several cases of CoinLoader that served to exemplify the command-and-control (C2) communication and subsequent cryptocurrency mining activities typically observed during CoinLoader compromises. While the initial infection method in these cases was outside of Darktrace’s purview, it likely occurred via socially engineered phishing emails or, as discussed earlier, trojanized software downloads.

Command-and-Control Activity

CoinLoader compromises observed across the Darktrace customer base were typically identified by encrypted C2 connections over port 433 to rare external endpoints using self-signed certificates containing "OU=IT,O=MyCompany LLC,L=San Francisco,ST=California,C=US" in their issue fields.

All observed CoinLoader C2 servers were associated with the ASN of MivoCloud, a Virtual Private Server (VPS) hosting service (AS39798 MivoCloud SRL). It had been reported that Russian-state sponsored threat actors had previously abused MivoCloud’s infrastructure in order to bypass geo-blocking measures during phishing attacks against western nations [5].

Darktrace observed that the majority of CoinLoader infrastructure utilized IP addresses in the 185.225.0.0/19 range and were associated with servers hosted in Romania, with just one instance of an IP address based in Moldova. The domain names of these servers typically followed the naming pattern ‘*[a-d]{1}[.]info’, with 'ams-updatea[.]info’, ‘ams-updateb[.]info’, ‘ams-updatec[.]info’, and ‘ams-updated[.]info’ routinely identified on affected networks.

Researchers found that CoinLoader typically uses DNS tunnelling in order to covertly exchange information with attacker-controlled infrastructure, including the domains ‘candatamsnsdn[.]info’, ‘mapdatamsnsdn[.]info’, ‘rqmetrixsdn[.]info’ [4].

While Darktrace did not observe these particular domains, it did observer similar DNS lookups to a similar suspicous domain, namely ‘ucmetrixsdn[.]info’, in addition to the aforementioned HTTPS C2 connections.

Cryptomining Activity and Possible Additional Tooling

After establishing communication channels with CoinLoader servers, affected devices were observed carrying out a range of cryptocurrency mining activities. Darktrace detected devices connecting to multiple MivoCloud associated IP addresses using the MinerGate protocol alongside the credential “x”, a MinerGate credential observed by Darktrace in previous cryptojacking compromises, including the Sysrv-hello botnet.

Figure 1: Darktrace DETECT breach log showing an alerted mining activity model breach on an infected device.
Figure 2: Darktrace's Cyber AI Analyst providing details about unusual repeated connections to multiple endpoints related to CoinLoader cryptomining.

In a number of customer environments, Darktrace observed affected devices connected to endpoints associated with other malware such as the Andromeda botnet and the ViperSoftX information stealer. It was, however, not possible to confirm whether CoinLoader had dropped these additional malware variants onto infected devices.

On customer networks where Darktrace RESPOND was enabled in autonomous response mode, Darktrace was able to take swift targeted steps to shut down suspicious connections and contain CoinLoader compromises. In one example, following DETECT’s initial identification of an affected device connecting to multiple MivoCloud endpoints, RESPOND autonomously blocked the device from carrying out such connections, effectively shutting down C2 communication and preventing threat actors carrying out any cryptomining activity, or downloading subsequent malicious payloads. The autonomous response capability of RESPOND provides customer security teams with precious time to remove infected devices from their network and action their remediation strategies.

Figure 3: Darktrace RESPOND autonomously blocking CoinLoader connections on an affected device.

Additionally, customers subscribed to Darktrace’s Proactive Threat Notification (PTN) service would be alerted about potential CoinLoader activity observed on their network, prompting Darktrace’s Security Operations Center (SOC) to triage and investigate the activity, allowing customers to prioritize incidents that require immediate attention.

Conclusion

By masquerading as free or ‘cracked’ versions of legitimate popular software, loader malware like CoinLoader is able to indiscriminately target a large number of endpoint users without arousing suspicion. What’s more, once a network has been compromised by the loader, it is then left open to a secondary compromise in the form of potentially costly information stealers, ransomware or, in this case, cryptocurrency miners.

While urging employees to think twice before installing seemingly legitimate software unknown or untrusted locations is an essential first step in protecting an organization against threats like CoinLoader, its stealthy tactics mean this may not be enough.

In order to fully safeguard against such increasingly widespread yet evasive threats, organizations must adopt security solutions that are able to identify anomalies and subtle deviations in device behavior that could indicate an emerging compromise. The Darktrace suite of products, including DETECT and RESPOND, are well-placed to identify and contain these threats in the first instance and ensure they cannot escalate to more damaging network compromises.

Credit to: Signe Zaharka, Senior Cyber Security Analyst, Paul Jennings, Principal Analyst Consultant

Appendix

Darktrace DETECT Model Detections

  • Anomalous Connection/Multiple Connections to New External TCP Port
  • Anomalous Connection/Multiple Failed Connections to Rare Endpoint
  • Anomalous Connection/Rare External SSL Self-Signed
  • Anomalous Connection/Repeated Rare External SSL Self-Signed
  • Anomalous Connection/Suspicious Self-Signed SSL
  • Anomalous Connection/Young or Invalid Certificate SSL Connections to Rare
  • Anomalous Server Activity/Rare External from Server
  • Compromise/Agent Beacon (Long Period)
  • Compromise/Beacon for 4 Days
  • Compromise/Beacon to Young Endpoint
  • Compromise/Beaconing Activity To External Rare
  • Compromise/High Priority Crypto Currency Mining
  • Compromise/High Volume of Connections with Beacon Score
  • Compromise/Large Number of Suspicious Failed Connections
  • Compromise/New or Repeated to Unusual SSL Port
  • Compromise/Rare Domain Pointing to Internal IP
  • Compromise/Repeating Connections Over 4 Days
  • Compromise/Slow Beaconing Activity To External Rare
  • Compromise/SSL Beaconing to Rare Destination
  • Compromise/Suspicious File and C2
  • Compromise/Suspicious TLS Beaconing To Rare External
  • Device/ Anomalous Github Download
  • Device/ Suspicious Domain
  • Device/Internet Facing Device with High Priority Alert
  • Device/New Failed External Connections

Indicators of Compromise (IoCs)

IoC - Hostname C2 Server

ams-updatea[.]info

ams-updateb[.]info

ams-updatec[.]info

ams-updated[.]info

candatamsna[.]info

candatamsnb[.]info

candatamsnc[.]info

candatamsnd[.]info

mapdatamsna[.]info

mapdatamsnb[.]info

mapdatamsnc[.]info

mapdatamsnd[.]info

res-smarta[.]info

res-smartb[.]info

res-smartc[.]info

res-smartd[.]info

rqmetrixa[.]info

rqmetrixb[.]info

rqmetrixc[.]info

rqmetrixd[.]info

ucmetrixa[.]info

ucmetrixb[.]info

ucmetrixc[.]info

ucmetrixd[.]info

any-updatea[.]icu

IoC - IP Address - C2 Server

185.225[.]16.192

185.225[.]16.61

185.225[.]16.62

185.225[.]16.63

185.225[.]16.88

185.225[.]17.108

185.225[.]17.109

185.225[.]17.12

185.225[.]17.13

185.225[.]17.135

185.225[.]17.14

185.225[.]17.145

185.225[.]17.157

185.225[.]17.159

185.225[.]18.141

185.225[.]18.142

185.225[.]18.143

185.225[.]19.218

185.225[.]19.51

194.180[.]157.179

194.180[.]157.185

194.180[.]158.55

194.180[.]158.56

194.180[.]158.62

194.180[.]158.63

5.252.178[.]74

94.158.246[.]124

IoC - IP Address - Cryptocurrency mining related endpoint

185.225.17[.]114

185.225.17[.]118

185.225.17[.]130

185.225.17[.]131

185.225.17[.]132

185.225.17[.]142

IoC - SSL/TLS certificate issuer information - C2 server certificate example

emailAddress=admin@example[.]ltd,CN=example[.]ltd,OU=IT,O=MyCompany LLC,L=San Francisco,ST=California,C=US

emailAddress=admin@'res-smartd[.]info,CN=res-smartd[.]info,OU=IT,O=MyCompany LLC,L=San Francisco,ST=California,C=US

CN=ucmetrixd[.]info,OU=IT,O=MyCompany LLC,L=San Francisco,ST=California,C=US

MITRE ATT&CK Mapping

INITIAL ACCESS

Exploit Public-Facing Application - T1190

Spearphishing Link - T1566.002

Drive-by Compromise - T1189

COMMAND AND CONTROL

Non-Application Layer Protocol - T1095

Non-Standard Port - T1571

External Proxy - T1090.002

Encrypted Channel - T1573

Web Protocols - T1071.001

Application Layer Protocol - T1071

DNS - T1071.004

Fallback Channels - T1008

Multi-Stage Channels - T1104

PERSISTENCE

Browser Extensions

T1176

RESOURCE DEVELOPMENT

Web Services - T1583.006

Malware - T1588.001

COLLECTION

Man in the Browser - T1185

IMPACT

Resource Hijacking - T1496

References

1. https://www.avira.com/en/blog/coinloader-a-sophisticated-malware-loader-campaign

2. https://asec.ahnlab.com/en/17909/

3. https://www.cybereason.co.jp/blog/cyberattack/5687/

4. https://research.checkpoint.com/2023/tunnel-warfare-exposing-dns-tunneling-campaigns-using-generative-models-coinloader-case-study/

5. https://securityboulevard.com/2023/02/three-cases-of-cyber-attacks-on-the-security-service-of-ukraine-and-nato-allies-likely-by-russian-state-sponsored-gamaredon/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Signe Zaharka
Principal Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

September 3, 2025

From PowerShell to Payload: Darktrace’s Detection of a Novel Cryptomining Malware

novel cryptomining detectionDefault blog imageDefault blog image

What is Cryptojacking?

Cryptojacking remains one of the most persistent cyber threats in the digital age, showing no signs of slowing down. It involves the unauthorized use of a computer or device’s processing power to mine cryptocurrencies, often without the owner’s consent or knowledge, using cryptojacking scripts or cryptocurrency mining (cryptomining) malware [1].

Unlike other widespread attacks such as ransomware, which disrupt operations and block access to data, cryptomining malware steals and drains computing and energy resources for mining to reduce attacker’s personal costs and increase “profits” earned from mining [1]. The impact on targeted organizations can be significant, ranging from data privacy concerns and reduced productivity to higher energy bills.

As cryptocurrency continues to grow in popularity, as seen with the ongoing high valuation of the global cryptocurrency market capitalization (almost USD 4 trillion at time of writing), threat actors will continue to view cryptomining as a profitable venture [2]. As a result, illicit cryptominers are being used to steal processing power via supply chain attacks or browser injections, as seen in a recent cryptojacking campaign using JavaScript [3][4].

Therefore, security teams should maintain awareness of this ongoing threat, as what is often dismissed as a "compliance issue" can escalate into more severe compromises and lead to prolonged exposure of critical resources.

While having a security team capable of detecting and analyzing hijacking attempts is essential, emerging threats in today’s landscape often demand more than manual intervention.

This blog will discuss Darktrace’s successful detection of the malicious activity, the role of Autonomous Response in halting the cryptojacking attack, include novel insights from Darktrace’s threat researchers on the cryptominer payload, showing how the attack chain was initiated through the execution of a PowerShell-based payload.

Darktrace’s Coverage of Cryptojacking via PowerShell

In July 2025, Darktrace detected and contained an attempted cryptojacking incident on the network of a customer in the retail and e-commerce industry.

The threat was detected when a threat actor attempted to use a PowerShell script to download and run NBMiner directly in memory.

The initial compromise was detected on July 22, when Darktrace / NETWORK observed the use of a new PowerShell user agent during a connection to an external endpoint, indicating an attempt at remote code execution.

Specifically, the targeted desktop device established a connection to the rare endpoint, 45.141.87[.]195, over destination port 8000 using HTTP as the application-layer protocol. Within this connection, Darktrace observed the presence of a PowerShell script in the URI, specifically ‘/infect.ps1’.

Darktrace’s analysis of this endpoint (45.141.87[.]195[:]8000/infect.ps1) and the payload it downloaded indicated it was a dropper used to deliver an obfuscated AutoIt loader. This attribution was further supported by open-source intelligence (OSINT) reporting [5]. The loader likely then injected NBMiner into a legitimate process on the customer’s environment – the first documented case of NBMiner being dropped in this way.

Darktrace’s detection of a device making an HTTP connection with new PowerShell user agent, indicating PowerShell abuse for command-and-control (C2) communications.
Figure 1: Darktrace’s detection of a device making an HTTP connection with new PowerShell user agent, indicating PowerShell abuse for command-and-control (C2) communications.

Script files are often used by malicious actors for malware distribution. In cryptojacking attacks specifically, scripts are used to download and install cryptomining software, which then attempts to connect to cryptomining pools to begin mining operations [6].

Inside the payload: Technical analysis of the malicious script and cryptomining loader

To confidently establish that the malicious script file dropped an AutoIt loader used to deliver the NBMiner cryptominer, Darktrace’s threat researchers reverse engineered the payload. Analysis of the file ‘infect.ps1’ revealed further insights, ultimately linking it to the execution of a cryptominer loader.

Screenshot of the ‘infect.ps1’ PowerShell script observed in the attack.
Figure 2: Screenshot of the ‘infect.ps1’ PowerShell script observed in the attack.

The ‘infect.ps1’ script is a heavily obfuscated PowerShell script that contains multiple variables of Base64 and XOR encoded data. The first data blob is XOR’d with a value of 97, after decoding, the data is a binary and stored in APPDATA/local/knzbsrgw.exe. The binary is AutoIT.exe, the legitimate executable of the AutoIt programming language. The script also performs a check for the existence of the registry key HKCU:\\Software\LordNet.

The second data blob ($cylcejlrqbgejqryxpck) is written to APPDATA\rauuq, where it will later be read and XOR decoded. The third data blob ($tlswqbblxmmr)decodes to an obfuscated AutoIt script, which is written to %LOCALAPPDATA%\qmsxehehhnnwioojlyegmdssiswak. To ensure persistence, a shortcut file named xxyntxsmitwgruxuwqzypomkhxhml.lnk is created to run at startup.

 Screenshot of second stage AutoIt script.
Figure 3: Screenshot of second stage AutoIt script.

The observed AutoIt script is a process injection loader. It reads an encrypted binary from /rauuq in APPDATA, then XOR-decodes every byte with the key 47 to reconstruct the payload in memory. Next, it silently launches the legitimate Windows app ‘charmap.exe’ (Character Map) and obtains a handle with full access. It allocates executable and writable memory inside that process, writes the decrypted payload into the allocated region, and starts a new thread at that address. Finally, it closes the thread and process handles.

The binary that is injected into charmap.exe is 64-bit Windows binary. On launch, it takes a snapshot of running processes and specifically checks whether Task Manager is open. If Task Manager is detected, the binary kills sigverif.exe; otherwise, it proceeds. Once the condition is met, NBMiner is retrieved from a Chimera URL (https://api[.]chimera-hosting[.]zip/frfnhis/zdpaGgLMav/nbminer[.]exe) and establishes persistence, ensuring that the process automatically restarts if terminated. When mining begins, it spawns a process with the arguments ‘-a kawpow -o asia.ravenminer.com:3838 -u R9KVhfjiqSuSVcpYw5G8VDayPkjSipbiMb.worker -i 60’ and hides the process window to evade detection.

Observed NBMiner arguments.
Figure 4: Observed NBMiner arguments.

The program includes several evasion measures. It performs anti-sandboxing by sleeping to delay analysis and terminates sigverif.exe (File Signature Verification). It checks for installed antivirus products and continues only when Windows Defender is the sole protection. It also verifies whether the current user has administrative rights. If not, it attempts a User Account Control (UAC) bypass via Fodhelper to silently elevate and execute its payload without prompting the user. The binary creates a folder under %APPDATA%, drops rtworkq.dll extracted from its own embedded data, and copies ‘mfpmp.exe’ from System32 into that directory to side-load ‘rtworkq.dll’. It also looks for the registry key HKCU\Software\kap, creating it if it does not exist, and reads or sets a registry value it expects there.

Zooming Out: Darktrace Coverage of NBMiner

Darktrace’s analysis of the malicious PowerShell script provides clear evidence that the payload downloaded and executed the NBMiner cryptominer. Once executed, the infected device is expected to attempt connections to cryptomining endpoints (mining pools). Darktrace initially observed this on the targeted device once it started making DNS requests for a cryptominer endpoint, “gulf[.]moneroocean[.]stream” [7], one minute after the connection involving the malicious script.

Darktrace Advanced Search logs showcasing the affected device making a DNS request for a Monero mining endpoint.
Figure 5: Darktrace Advanced Search logs showcasing the affected device making a DNS request for a Monero mining endpoint.

Though DNS requests do not necessarily mean the device connected to a cryptominer-associated endpoint, Darktrace detected connections to the endpoint specified in the DNS Answer field: monerooceans[.]stream, 152.53.121[.]6. The attempted connections to this endpoint over port 10001 triggered several high-fidelity model alerts in Darktrace related to possible cryptomining mining activity. The IP address and destination port combination (152.53.121[.]6:10001) has also been linked to cryptomining activity by several OSINT security vendors [8][9].

Darktrace’s detection of a device establishing connections with the Monero Mining-associated endpoint, monerooceans[.]stream over port 10001.
Figure 6: Darktrace’s detection of a device establishing connections with the Monero Mining-associated endpoint, monerooceans[.]stream over port 10001.

Darktrace / NETWORK grouped together the observed indicators of compromise (IoCs) on the targeted device and triggered an additional Enhanced Monitoring model designed to identify activity indicative of the early stages of an attack. These high-fidelity models are continuously monitored and triaged by Darktrace’s SOC team as part of the Managed Threat Detection service, ensuring that subscribed customers are promptly notified of malicious activity as soon as it emerges.

Figure 7: Darktrace’s correlation of the initial PowerShell-related activity with the cryptomining endpoint, showcasing a pattern indicative of an initial attack chain.

Darktrace’s Cyber AI Analyst launched an autonomous investigation into the ongoing activity and was able to link the individual events of the attack, encompassing the initial connections involving the PowerShell script to the ultimate connections to the cryptomining endpoint, likely representing cryptomining activity. Rather than viewing these seemingly separate events in isolation, Cyber AI Analyst was able to see the bigger picture, providing comprehensive visibility over the attack.

Darktrace’s Cyber AI Analyst view illustrating the extent of the cryptojacking attack mapped against the Cyber Kill Chain.
Figure 8: Darktrace’s Cyber AI Analyst view illustrating the extent of the cryptojacking attack mapped against the Cyber Kill Chain.

Darktrace’s Autonomous Response

Fortunately, as this customer had Darktrace configured in Autonomous Response mode, Darktrace was able to take immediate action by preventing  the device from making outbound connections and blocking specific connections to suspicious endpoints, thereby containing the attack.

Darktrace’s Autonomous Response actions automatically triggered based on the anomalous connections observed to suspicious endpoints.
Figure 9: Darktrace’s Autonomous Response actions automatically triggered based on the anomalous connections observed to suspicious endpoints.

Specifically, these Autonomous Response actions prevented the outgoing communication within seconds of the device attempting to connect to the rare endpoints.

Figure 10: Darktrace’s Autonomous Response blocked connections to the mining-related endpoint within a second of the initial connection.

Additionally, the Darktrace SOC team was able to validate the effectiveness of the Autonomous Response actions by analyzing connections to 152.53.121[.]6 using the Advanced Search feature. Across more than 130 connection attempts, Darktrace’s SOC confirmed that all were aborted, meaning no connections were successfully established.

Figure 11: Advanced Search logs showing all attempted connections that were successfully prevented by Darktrace’s Autonomous Response capability.

Conclusion

Cryptojacking attacks will remain prevalent, as threat actors can scale their attacks to infect multiple devices and networks. What’s more, cryptomining incidents can often be difficult to detect and are even overlooked as low-severity compliance events, potentially leading to data privacy issues and significant energy bills caused by misused processing power.

Darktrace’s anomaly-based approach to threat detection identifies early indicators of targeted attacks without relying on prior knowledge or IoCs. By continuously learning each device’s unique pattern of life, Darktrace can detect subtle deviations that may signal a compromise.

In this case, the cryptojacking attack was quickly identified and mitigated during the early stages of malware and cryptomining activity. Darktrace's Autonomous Response was able to swiftly contain the threat before it could advance further along the attack lifecycle, minimizing disruption and preventing the attack from potentially escalating into a more severe compromise.

Credit to Keanna Grelicha (Cyber Analyst) and Tara Gould (Threat Research Lead)

Appendices

Darktrace Model Detections

NETWORK Models:

·      Compromise / High Priority Crypto Currency Mining (Enhanced Monitoring Model)

·      Device / Initial Attack Chain Activity (Enhanced Monitoring Model)

·      Compromise / Suspicious HTTP and Anomalous Activity (Enhanced Monitoring Model)

·      Compromise / Monero Mining

·      Anomalous File / Script from Rare External Location

·      Device / New PowerShell User Agent

·      Anomalous Connection / New User Agent to IP Without Hostname

·      Anomalous Connection / Powershell to Rare External

·      Device / Suspicious Domain

Cyber AI Analyst Incident Events:

·      Detect \ Event \ Possible HTTP Command and Control

·      Detect \ Event \ Cryptocurrency Mining Activity

Autonomous Response Models:

·      Antigena / Network::Significant Anomaly::Antigena Alerts Over Time Block

·      Antigena / Network::External Threat::Antigena Suspicious Activity Block

·      Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block

·      Antigena / Network::External Threat::Antigena Crypto Currency Mining Block

·      Antigena / Network::External Threat::Antigena File then New Outbound Block

·      Antigena / Network::External Threat::Antigena Suspicious File Block

·      Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block

List of Indicators of Compromise (IoCs)

(IoC - Type - Description + Confidence)

·      45.141.87[.]195:8000/infect.ps1 - IP Address, Destination Port, Script - Malicious PowerShell script

·      gulf.moneroocean[.]stream - Hostname - Monero Endpoint

·      monerooceans[.]stream - Hostname - Monero Endpoint

·      152.53.121[.]6:10001 - IP Address, Destination Port - Monero Endpoint

·      152.53.121[.]6 - IP Address – Monero Endpoint

·      https://api[.]chimera-hosting[.]zip/frfnhis/zdpaGgLMav/nbminer[.]exe – Hostname, Executable File – NBMiner

·      Db3534826b4f4dfd9f4a0de78e225ebb – Hash – NBMiner loader

MITRE ATT&CK Mapping

(Tactic – Technique – Sub-Technique)

·      Vulnerabilities – RESOURCE DEVELOPMENT – T1588.006 - T1588

·      Exploits – RESOURCE DEVELOPMENT – T1588.005 - T1588

·      Malware – RESOURCE DEVELOPMENT – T1588.001 - T1588

·      Drive-by Compromise – INITIAL ACCESS – T1189

·      PowerShell – EXECUTION – T1059.001 - T1059

·      Exploitation of Remote Services – LATERAL MOVEMENT – T1210

·      Web Protocols – COMMAND AND CONTROL – T1071.001 - T1071

·      Application Layer Protocol – COMMAND AND CONTROL – T1071

·      Resource Hijacking – IMPACT – T1496

·      Obfuscated Files - DEFENSE EVASION - T1027                

·      Bypass UAC - PRIVILEGE ESCALATION – T1548.002

·      Process Injection – PRIVILEGE ESCALATION – T055

·      Debugger Evasion – DISCOVERY – T1622

·      Logon Autostart Execution – PERSISTENCE – T1547.009

References

[1] https://www.darktrace.com/cyber-ai-glossary/cryptojacking#:~:text=Battery%20drain%20and%20overheating,fee%20to%20%E2%80%9Cmine%20cryptocurrency%E2%80%9D.

[2] https://coinmarketcap.com/

[3] https://www.ibm.com/think/topics/cryptojacking

[4] https://thehackernews.com/2025/07/3500-websites-hijacked-to-secretly-mine.html

[5] https://urlhaus.abuse.ch/url/3589032/

[6] https://www.logpoint.com/en/blog/uncovering-illegitimate-crypto-mining-activity/

[7] https://www.virustotal.com/gui/domain/gulf.moneroocean.stream/detection

[8] https://www.virustotal.com/gui/domain/monerooceans.stream/detection

[9] https://any.run/report/5aa8cd5f8e099bbb15bc63be52a3983b7dd57bb92566feb1a266a65ab5da34dd/351eca83-ef32-4037-a02f-ac85a165d74e

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content without notice.

Continue reading
About the author
Keanna Grelicha
Cyber Analyst

Blog

/

Identity

/

August 29, 2025

From VPS to Phishing: How Darktrace Uncovered SaaS Hijacks through Virtual Infrastructure Abuse

VPS phishingDefault blog imageDefault blog image

What is a VPS and how are they abused?

A Virtual Private Server (VPS) is a virtualized server that provides dedicated resources and control to users on a shared physical device.  VPS providers, long used by developers and businesses, are increasingly misused by threat actors to launch stealthy, scalable attacks. While not a novel tactic, VPS abuse is has seen an increase in Software-as-a-Service (SaaS)-targeted campaigns as it enables attackers to bypass geolocation-based defenses by mimicking local traffic, evade IP reputation checks with clean, newly provisioned infrastructure, and blend into legitimate behavior [3].

VPS providers like Hyonix and Host Universal offer rapid setup and minimal open-source intelligence (OSINT) footprint, making detection difficult [1][2]. These services are not only fast to deploy but also affordable, making them attractive to attackers seeking anonymous, low-cost infrastructure for scalable campaigns. Such attacks tend to be targeted and persistent, often timed to coincide with legitimate user activity, a tactic that renders traditional security tools largely ineffective.

Darktrace’s investigation into Hyonix VPS abuse

In May 2025, Darktrace’s Threat Research team investigated a series of incidents across its customer base involving VPS-associated infrastructure. The investigation began with a fleet-wide review of alerts linked to Hyonix (ASN AS931), revealing a noticeable spike in anomalous behavior from this ASN in March 2025. The alerts included brute-force attempts, anomalous logins, and phishing campaign-related inbox rule creation.

Darktrace identified suspicious activity across multiple customer environments around this time, but two networks stood out. In one instance, two internal devices exhibited mirrored patterns of compromise, including logins from rare endpoints, manipulation of inbox rules, and the deletion of emails likely used in phishing attacks. Darktrace traced the activity back to IP addresses associated with Hyonix, suggesting a deliberate use of VPS infrastructure to facilitate the attack.

On the second customer network, the attack was marked by coordinated logins from rare IPs linked to multiple VPS providers, including Hyonix. This was followed by the creation of inbox rules with obfuscated names and attempts to modify account recovery settings, indicating a broader campaign that leveraged shared infrastructure and techniques.

Darktrace’s Autonomous Response capability was not enabled in either customer environment during these attacks. As a result, no automated containment actions were triggered, allowing the attack to escalate without interruption. Had Autonomous Response been active, Darktrace would have automatically blocked connections from the unusual VPS endpoints upon detection, effectively halting the compromise in its early stages.

Case 1

Timeline of activity for Case 1 - Unusual VPS logins and deletion of phishing emails.
Figure 1: Timeline of activity for Case 1 - Unusual VPS logins and deletion of phishing emails.

Initial Intrusion

On May 19, 2025, Darktrace observed two internal devices on one customer environment initiating logins from rare external IPs associated with VPS providers, namely Hyonix and Host Universal (via Proton VPN). Darktrace recognized that these logins had occurred within minutes of legitimate user activity from distant geolocations, indicating improbable travel and reinforcing the likelihood of session hijacking. This triggered Darktrace / IDENTITY model “Login From Rare Endpoint While User Is Active”, which highlights potential credential misuse when simultaneous logins occur from both familiar and rare sources.  

Shortly after these logins, Darktrace observed the threat actor deleting emails referring to invoice documents from the user’s “Sent Items” folder, suggesting an attempt to hide phishing emails that had been sent from the now-compromised account. Though not directly observed, initial access in this case was likely achieved through a similar phishing or account hijacking method.

 Darktrace / IDENTITY model "Login From Rare Endpoint While User Is Active", which detects simultaneous logins from both a common and a rare source to highlight potential credential misuse.
Figure 2: Darktrace / IDENTITY model "Login From Rare Endpoint While User Is Active", which detects simultaneous logins from both a common and a rare source to highlight potential credential misuse.

Case 2

Timeline of activity for Case 2 – Coordinated inbox rule creation and outbound phishing campaign.
Figure 3: Timeline of activity for Case 2 – Coordinated inbox rule creation and outbound phishing campaign.

In the second customer environment, Darktrace observed similar login activity originating from Hyonix, as well as other VPS providers like Mevspace and Hivelocity. Multiple users logged in from rare endpoints, with Multi-Factor Authentication (MFA) satisfied via token claims, further indicating session hijacking.

Establishing control and maintaining persistence

Following the initial access, Darktrace observed a series of suspicious SaaS activities, including the creation of new email rules. These rules were given minimal or obfuscated names, a tactic often used by attackers to avoid drawing attention during casual mailbox reviews by the SaaS account owner or automated audits. By keeping rule names vague or generic, attackers reduce the likelihood of detection while quietly redirecting or deleting incoming emails to maintain access and conceal their activity.

One of the newly created inbox rules targeted emails with subject lines referencing a document shared by a VIP at the customer’s organization. These emails would be automatically deleted, suggesting an attempt to conceal malicious mailbox activity from legitimate users.

Mirrored activity across environments

While no direct lateral movement was observed, mirrored activity across multiple user devices suggested a coordinated campaign. Notably, three users had near identical similar inbox rules created, while another user had a different rule related to fake invoices, reinforcing the likelihood of a shared infrastructure and technique set.

Privilege escalation and broader impact

On one account, Darktrace observed “User registered security info” activity was shortly after anomalous logins, indicating attempts to modify account recovery settings. On another, the user reset passwords or updated security information from rare external IPs. In both cases, the attacker’s actions—including creating inbox rules, deleting emails, and maintaining login persistence—suggested an intent to remain undetected while potentially setting the stage for data exfiltration or spam distribution.

On a separate account, outbound spam was observed, featuring generic finance-related subject lines such as 'INV#. EMITTANCE-1'. At the network level, Darktrace / NETWORK detected DNS requests from a device to a suspicious domain, which began prior the observed email compromise. The domain showed signs of domain fluxing, a tactic involving frequent changes in IP resolution, commonly used by threat actors to maintain resilient infrastructure and evade static blocklists. Around the same time, Darktrace detected another device writing a file named 'SplashtopStreamer.exe', associated with the remote access tool Splashtop, to a domain controller. While typically used in IT support scenarios, its presence here may suggest that the attacker leveraged it to establish persistent remote access or facilitate lateral movement within the customer’s network.

Conclusion

This investigation highlights the growing abuse of VPS infrastructure in SaaS compromise campaigns. Threat actors are increasingly leveraging these affordable and anonymous hosting services to hijack accounts, launch phishing attacks, and manipulate mailbox configurations, often bypassing traditional security controls.

Despite the stealthy nature of this campaign, Darktrace detected the malicious activity early in the kill chain through its Self-Learning AI. By continuously learning what is normal for each user and device, Darktrace surfaced subtle anomalies, such as rare login sources, inbox rule manipulation, and concurrent session activity, that likely evade traditional static, rule-based systems.

As attackers continue to exploit trusted infrastructure and mimic legitimate user behavior, organizations should adopt behavioral-based detection and response strategies. Proactively monitoring for indicators such as improbable travel, unusual login sources, and mailbox rule changes, and responding swiftly with autonomous actions, is critical to staying ahead of evolving threats.

Credit to Rajendra Rushanth (Cyber Analyst), Jen Beckett (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

References

·      1: https://cybersecuritynews.com/threat-actors-leveraging-vps-hosting-providers/

·      2: https://threatfox.abuse.ch/asn/931/

·      3: https://www.cyfirma.com/research/vps-exploitation-by-threat-actors/

Appendices

Darktrace Model Detections

•   SaaS / Compromise / Unusual Login, Sent Mail, Deleted Sent

•   SaaS / Compromise / Suspicious Login and Mass Email Deletes

•   SaaS / Resource / Mass Email Deletes from Rare Location

•   SaaS / Compromise / Unusual Login and New Email Rule

•   SaaS / Compliance / Anomalous New Email Rule

•   SaaS / Resource / Possible Email Spam Activity

•   SaaS / Unusual Activity / Multiple Unusual SaaS Activities

•   SaaS / Unusual Activity / Multiple Unusual External Sources For SaaS Credential

•   SaaS / Access / Unusual External Source for SaaS Credential Use

•   SaaS / Compromise / High Priority Login From Rare Endpoint

•   SaaS / Compromise / Login From Rare Endpoint While User Is Active

List of Indicators of Compromise (IoCs)

Format: IoC – Type – Description

•   38.240.42[.]160 – IP – Associated with Hyonix ASN (AS931)

•   103.75.11[.]134 – IP – Associated with Host Universal / Proton VPN

•   162.241.121[.]156 – IP – Rare IP associated with phishing

•   194.49.68[.]244 – IP – Associated with Hyonix ASN

•   193.32.248[.]242 – IP – Used in suspicious login activity / Mullvad VPN

•   50.229.155[.]2 – IP – Rare login IP / AS 7922 ( COMCAST-7922 )

•   104.168.194[.]248 – IP – Rare login IP / AS 54290 ( HOSTWINDS )

•   38.255.57[.]212 – IP – Hyonix IP used during MFA activity

•   103.131.131[.]44 – IP – Hyonix IP used in login and MFA activity

•   178.173.244[.]27 – IP – Hyonix IP

•   91.223.3[.]147 – IP – Mevspace Poland, used in multiple logins

•   2a02:748:4000:18:0:1:170b[:]2524 – IPv6 – Hivelocity VPS, used in multiple logins and MFA activity

•   51.36.233[.]224 – IP – Saudi ASN, used in suspicious login

•   103.211.53[.]84 – IP – Excitel Broadband India, used in security info update

MITRE ATT&CK Mapping

Tactic – Technique – Sub-Technique

•   Initial Access – T1566 – Phishing

                       T1566.001 – Spearphishing Attachment

•   Execution – T1078 – Valid Accounts

•   Persistence – T1098 – Account Manipulation

                       T1098.002 – Exchange Email Rules

•   Command and Control – T1071 – Application Layer Protocol

                       T1071.001 – Web Protocols

•   Defense Evasion – T1036 – Masquerading

•   Defense Evasion – T1562 – Impair Defenses

                       T1562.001 – Disable or Modify Tools

•   Credential Access – T1556 – Modify Authentication Process

                       T1556.004 – MFA Bypass

•   Discovery – T1087 – Account Discovery

•      Impact – T1531 – Account Access Removal

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content without notice.

Continue reading
About the author
Rajendra Rushanth
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI