Blog
/
/
August 18, 2020

Evil Corp's WastedLocker Ransomware Attacks Observation

Darktrace detects Evil Corp intrusions with WastedLocker ransomware. Learn how AI spotted malicious activity, from initial intrusion to data exfiltration.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
18
Aug 2020

Darktrace has recently observed several targeted intrusions associated with Evil Corp, an advanced cyber-criminal group recently in the headlines after a surge in WastedLocker ransomware cases. The group is believed to have targeted hundreds of organizations in over 40 countries, demanding ransoms of $500,000 to $1m to unlock computer files it seizes. US authorities are now offering a $5m reward for information leading to the arrest of the group’s leaders — understood to be the largest sum of money ever offered for a cyber-criminal.

Thanks to its self-learning nature, Darktrace's AI detected these intrusions without the use of any threat intelligence or static Indicators of Compromise (IoCs). This blog describes the techniques, tools and procedures used in multiple intrusions by Evil Corp – also known as TA505 or SectorJ04.

Key takeaways

  • The threat actor was reusing TTPs as well as infrastructure across multiple intrusions
  • Some infrastructure was only observed in individual intrusions
  • While most WastedLocker reports focus on the ransomware, Darktrace has observed Evil Corp conducting data exfiltration
  • The attacker used various ‘Living off the Land’ techniques for lateral movement
  • Data exfiltration and ransomware activity took place on weekends, likely to reduce response capabilities of IT teams
  • Although clearly an advanced actor, Evil Corp can be detected and stopped before encryption ensues

Evil Corp ransomware attack

Figure 1: The standard attack lifecycle observed in Evil Corp campaigns

Initial intrusion

While Evil Corp is technically sophisticated enough to choose from an array of initial intrusion methods, fake browser updates were the weapon of choice in the observed campaign. These were delivered from legitimate websites and used social engineering to convince users to download these malicious ‘updates’. Evil Corp has actually built a framework around this capability, referred to as SocGholish.

Establishing foothold / Command & Control Traffic

Darktrace detected different C2 domains being contacted after the initial infection. These domains overlap across various victims, showing that the attacker is reusing infrastructure within the same campaign. The C2 communication – comprised of thousands of connections over several days – took place over encrypted channels with valid SSL certificates. No single infected device ever beaconed to more than one C2 domain at a time.

Two example C2 domains are listed below with more details:

techgreeninc[.]com

SSL beacon details:

  • Median beacon period: 3 seconds
  • Range of periods: 1 seconds - 2.58 minutes
  • Data volume sent per connection on average: 921 Bytes

investimentosefinancas[.]com

SSL beacon details:

  • Median beacon period: 1.7 minutes
  • Range of periods: 1 seconds - 6.68 minutes
  • Data volume sent per connection on average: 935 Bytes

Certificate information:

  • Subject: CN=investimentosefinancas.com
  • Issuer: CN=Thawte RSA CA 2018,OU=www.digicert.com,O=DigiCert Inc,C=US
  • Validation status: OK

Note in particular the median beacon period, which indicates that some C2 channels were much more hands-on, whilst others possibly acted as backup channels in case the main C2 was burned or detected. It’s also interesting to see the low amount of data being transferred to the hands-on C2 domains. The actual data exfiltration took place to yet another C2 destination, intentionally separated from the hands-on intrusion C2s. All observed C2 websites were recently registered with Russian providers and are not responsive (see below).

Figure 2: The unresponsive C2 domain

Registrar: reg.ru

Created: 2020-06-29 (6 weeks ago) | Updated: 2020-07-07 (5 weeks ago)

Figure 3: Some key information relating to the C2 domain

Darktrace’s Cyber AI Platform detected this Command & Control activity via various behavioral indicators, including unusual beaconing and unusual usage of TLS (JA3).

Internal reconnaissance

In some cases, Darktrace witnessed several days of inactivity between establishing C2 and internal reconnaissance. The attackers used Advanced Port Scanner, a common IT tool, in a clear attempt to blend in with regular network activity. Several hundred IPs and dozens of popular ports were scanned at once, with tens of thousands of connections made in a short period of time.

Some key ports scanned were: 21, 22, 23, 80, 135, 139, 389, 443, 445, 1433, 3128, 3306, 3389, 4444, 4899, 5985, 5986, 8080. Darktrace detected this anomalous behavior easily as the infected devices don’t usually scan the network.

Lateral movement

Different methods of lateral movement were observed across intrusions, but also within the same intrusion, with WMI used to move between devices. Darktrace detected this by identifying when WMI usage was unusual or new for a device. An example of the lateral movement is shown below, with Darktrace detecting this as ‘New Activity’.

Figure 4: The model breach event log

PsExec was used where it already existed in the environment and Darktrace also witnessed SMB drive writes to hidden shares to copy malware, e.g.

C$ file=Programdata\[REDACTED]4rgsfdbf[REDACTED]

A malicious Powershell file was downloaded – partly shown in the screenshot below.

Figure 5: The malicious Powershell file

Accomplish mission – Data exfiltration or ransomware deployment

Evil Corp is currently best known for its WastedLocker ransomware. Whilst some of its recent intrusions have seen ransomware deployments, others have been classic cases of data exfiltration. Darktrace has not yet observed a double-threat – a case of exfiltration followed by ransomware.

The data exfiltration took place over HTTP to generic .php endpoints under the attacker’s control.

How Cyber AI Analyst reported on WastedLocker

When the first signs of anomalous activity were picked up by Darktrace’s Enterprise Immune System, Cyber AI Analyst automatically launched a full investigation and quickly provided a full overview of the overall incident. The AI Analyst continued to add more details to the ongoing incident as it evolved. There were a total of six AI Analyst incidents for the week spanning an example Evil Corp intrusion – and two of them directly covered the Evil Corp attack. In stitching together disparate security events and presenting a single narrative, Cyber AI Analyst did all the heavy lifting for human security staff, who could look at just a handful of fully-investigated incidents, instead of having to triage countless individual model breaches.

Figure 6: Cyber AI Analyst’s overview of the incident

Note how AI Analyst covers five phases of the attack lifecycle in a single incident report:

  1. Unusual Repeated Connections – Initial C2
  2. Possible HTTP Command & Control Traffic – Further C2
  3. Possible SSL Command & Control Traffic – Further C2
  4. Scanning of Multiple Devices – Internal reconnaissance with Advanced IP Scanner
  5. SMB Writes of Suspicious Files – Lateral Movement

Evil Corp rising

Every indicator suggests that this was not a case of indiscriminate ransomware, but rather highly sophisticated and targeted attacks by an advanced threat actor. With the ultimate goal of ransoming operations, the attacker moved towards the crown jewels of the organization: file servers and databases.

The organizations involved in the above analysis did not have Darktrace Antigena – Darktrace’s Autonomous Response technology – in active mode, and the threat was therefore allowed to escalate beyond its initial stages. With Antigena in full operation, the activity would have been contained at its early stages with a precise and surgical response which would have stopped the malicious behavior whilst allowing the business to operate as normal.

Despite the targeted and advanced nature of the threat, security teams are perfectly capable of detecting, investigating, and stopping the threat with Cyber AI. Darktrace was able to not only detect WastedLocker ransomware based on a series of anomalies in network traffic, but also stitch together those anomalies and investigate the incident in real time, presenting an actionable summary of the different attack stages without flooding the security team with meaningless alerts.

Learn more about Autonomous Response

Network IoCs:

IoCCommenttechgreeninc[.]comC2 domaininvestimentosefinancas[.]comC2 domain

Selected associated Darktrace model breaches:

  • Compromise / Beaconing Activity To External Rare
  • Compromise / Agent Beacon (Medium Period)
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / Suspicious Beaconing Behaviour
  • Device / New or Unusual Remote Command Execution
  • Compromise / Beaconing Activity To External Rare
  • Compromise / Agent Beacon (Medium Period)
  • Compromise / Slow Beaconing Activity To External Rare
  • Device / New User Agent
  • Unusual Activity / Unusual Internal Connections
  • Device / Suspicious Network Scan Activity
  • Device / Network Scan
  • Device / Network Scan - Low Anomaly Score
  • Device / ICMP Address Scan
  • Anomalous Server Activity / Anomalous External Activity from Critical Network Device
  • Compromise / SSL Beaconing to Rare Destination
  • Anomalous Connection / SMB Enumeration
  • Compliance / SMB Drive Write
  • Anomalous File / Internal / Unusual SMB Script Write

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Cloud

/

January 15, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

React2Shell Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO) and Mark Turner (Specialist Security Researcher)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

Cloud

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

runtime, cloud security, cnaapDefault blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace
Your data. Our AI.
Elevate your network security with Darktrace AI