Blog
/
/
August 18, 2020

Evil Corp's WastedLocker Ransomware Attacks Observation

Darktrace detects Evil Corp intrusions with WastedLocker ransomware. Learn how AI spotted malicious activity, from initial intrusion to data exfiltration.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
18
Aug 2020

Darktrace has recently observed several targeted intrusions associated with Evil Corp, an advanced cyber-criminal group recently in the headlines after a surge in WastedLocker ransomware cases. The group is believed to have targeted hundreds of organizations in over 40 countries, demanding ransoms of $500,000 to $1m to unlock computer files it seizes. US authorities are now offering a $5m reward for information leading to the arrest of the group’s leaders — understood to be the largest sum of money ever offered for a cyber-criminal.

Thanks to its self-learning nature, Darktrace's AI detected these intrusions without the use of any threat intelligence or static Indicators of Compromise (IoCs). This blog describes the techniques, tools and procedures used in multiple intrusions by Evil Corp – also known as TA505 or SectorJ04.

Key takeaways

  • The threat actor was reusing TTPs as well as infrastructure across multiple intrusions
  • Some infrastructure was only observed in individual intrusions
  • While most WastedLocker reports focus on the ransomware, Darktrace has observed Evil Corp conducting data exfiltration
  • The attacker used various ‘Living off the Land’ techniques for lateral movement
  • Data exfiltration and ransomware activity took place on weekends, likely to reduce response capabilities of IT teams
  • Although clearly an advanced actor, Evil Corp can be detected and stopped before encryption ensues

Evil Corp ransomware attack

Figure 1: The standard attack lifecycle observed in Evil Corp campaigns

Initial intrusion

While Evil Corp is technically sophisticated enough to choose from an array of initial intrusion methods, fake browser updates were the weapon of choice in the observed campaign. These were delivered from legitimate websites and used social engineering to convince users to download these malicious ‘updates’. Evil Corp has actually built a framework around this capability, referred to as SocGholish.

Establishing foothold / Command & Control Traffic

Darktrace detected different C2 domains being contacted after the initial infection. These domains overlap across various victims, showing that the attacker is reusing infrastructure within the same campaign. The C2 communication – comprised of thousands of connections over several days – took place over encrypted channels with valid SSL certificates. No single infected device ever beaconed to more than one C2 domain at a time.

Two example C2 domains are listed below with more details:

techgreeninc[.]com

SSL beacon details:

  • Median beacon period: 3 seconds
  • Range of periods: 1 seconds - 2.58 minutes
  • Data volume sent per connection on average: 921 Bytes

investimentosefinancas[.]com

SSL beacon details:

  • Median beacon period: 1.7 minutes
  • Range of periods: 1 seconds - 6.68 minutes
  • Data volume sent per connection on average: 935 Bytes

Certificate information:

  • Subject: CN=investimentosefinancas.com
  • Issuer: CN=Thawte RSA CA 2018,OU=www.digicert.com,O=DigiCert Inc,C=US
  • Validation status: OK

Note in particular the median beacon period, which indicates that some C2 channels were much more hands-on, whilst others possibly acted as backup channels in case the main C2 was burned or detected. It’s also interesting to see the low amount of data being transferred to the hands-on C2 domains. The actual data exfiltration took place to yet another C2 destination, intentionally separated from the hands-on intrusion C2s. All observed C2 websites were recently registered with Russian providers and are not responsive (see below).

Figure 2: The unresponsive C2 domain

Registrar: reg.ru

Created: 2020-06-29 (6 weeks ago) | Updated: 2020-07-07 (5 weeks ago)

Figure 3: Some key information relating to the C2 domain

Darktrace’s Cyber AI Platform detected this Command & Control activity via various behavioral indicators, including unusual beaconing and unusual usage of TLS (JA3).

Internal reconnaissance

In some cases, Darktrace witnessed several days of inactivity between establishing C2 and internal reconnaissance. The attackers used Advanced Port Scanner, a common IT tool, in a clear attempt to blend in with regular network activity. Several hundred IPs and dozens of popular ports were scanned at once, with tens of thousands of connections made in a short period of time.

Some key ports scanned were: 21, 22, 23, 80, 135, 139, 389, 443, 445, 1433, 3128, 3306, 3389, 4444, 4899, 5985, 5986, 8080. Darktrace detected this anomalous behavior easily as the infected devices don’t usually scan the network.

Lateral movement

Different methods of lateral movement were observed across intrusions, but also within the same intrusion, with WMI used to move between devices. Darktrace detected this by identifying when WMI usage was unusual or new for a device. An example of the lateral movement is shown below, with Darktrace detecting this as ‘New Activity’.

Figure 4: The model breach event log

PsExec was used where it already existed in the environment and Darktrace also witnessed SMB drive writes to hidden shares to copy malware, e.g.

C$ file=Programdata\[REDACTED]4rgsfdbf[REDACTED]

A malicious Powershell file was downloaded – partly shown in the screenshot below.

Figure 5: The malicious Powershell file

Accomplish mission – Data exfiltration or ransomware deployment

Evil Corp is currently best known for its WastedLocker ransomware. Whilst some of its recent intrusions have seen ransomware deployments, others have been classic cases of data exfiltration. Darktrace has not yet observed a double-threat – a case of exfiltration followed by ransomware.

The data exfiltration took place over HTTP to generic .php endpoints under the attacker’s control.

How Cyber AI Analyst reported on WastedLocker

When the first signs of anomalous activity were picked up by Darktrace’s Enterprise Immune System, Cyber AI Analyst automatically launched a full investigation and quickly provided a full overview of the overall incident. The AI Analyst continued to add more details to the ongoing incident as it evolved. There were a total of six AI Analyst incidents for the week spanning an example Evil Corp intrusion – and two of them directly covered the Evil Corp attack. In stitching together disparate security events and presenting a single narrative, Cyber AI Analyst did all the heavy lifting for human security staff, who could look at just a handful of fully-investigated incidents, instead of having to triage countless individual model breaches.

Figure 6: Cyber AI Analyst’s overview of the incident

Note how AI Analyst covers five phases of the attack lifecycle in a single incident report:

  1. Unusual Repeated Connections – Initial C2
  2. Possible HTTP Command & Control Traffic – Further C2
  3. Possible SSL Command & Control Traffic – Further C2
  4. Scanning of Multiple Devices – Internal reconnaissance with Advanced IP Scanner
  5. SMB Writes of Suspicious Files – Lateral Movement

Evil Corp rising

Every indicator suggests that this was not a case of indiscriminate ransomware, but rather highly sophisticated and targeted attacks by an advanced threat actor. With the ultimate goal of ransoming operations, the attacker moved towards the crown jewels of the organization: file servers and databases.

The organizations involved in the above analysis did not have Darktrace Antigena – Darktrace’s Autonomous Response technology – in active mode, and the threat was therefore allowed to escalate beyond its initial stages. With Antigena in full operation, the activity would have been contained at its early stages with a precise and surgical response which would have stopped the malicious behavior whilst allowing the business to operate as normal.

Despite the targeted and advanced nature of the threat, security teams are perfectly capable of detecting, investigating, and stopping the threat with Cyber AI. Darktrace was able to not only detect WastedLocker ransomware based on a series of anomalies in network traffic, but also stitch together those anomalies and investigate the incident in real time, presenting an actionable summary of the different attack stages without flooding the security team with meaningless alerts.

Learn more about Autonomous Response

Network IoCs:

IoCCommenttechgreeninc[.]comC2 domaininvestimentosefinancas[.]comC2 domain

Selected associated Darktrace model breaches:

  • Compromise / Beaconing Activity To External Rare
  • Compromise / Agent Beacon (Medium Period)
  • Compromise / Slow Beaconing Activity To External Rare
  • Compromise / Suspicious Beaconing Behaviour
  • Device / New or Unusual Remote Command Execution
  • Compromise / Beaconing Activity To External Rare
  • Compromise / Agent Beacon (Medium Period)
  • Compromise / Slow Beaconing Activity To External Rare
  • Device / New User Agent
  • Unusual Activity / Unusual Internal Connections
  • Device / Suspicious Network Scan Activity
  • Device / Network Scan
  • Device / Network Scan - Low Anomaly Score
  • Device / ICMP Address Scan
  • Anomalous Server Activity / Anomalous External Activity from Critical Network Device
  • Compromise / SSL Beaconing to Rare Destination
  • Anomalous Connection / SMB Enumeration
  • Compliance / SMB Drive Write
  • Anomalous File / Internal / Unusual SMB Script Write

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI