Blog
/
Network
/
November 7, 2021

GitLab Vulnerability Exploit Detected

Stay updated on the latest cybersecurity threats and learn how AI detected a vulnerability exploit in GitLab.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Andrew Lawrence
VP, Threat Analysis, Americas
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Nov 2021

Darktrace has discovered a significant number of cases involving a successful exploit of GitLab servers — a common open source software used by developers. The vulnerability, tracked as CVE-2021-22205, allows an unauthenticated, remote attacker to execute arbitrary commands as the ‘git’ user, giving them full access to the repository, including deleting, modifying, and exfiltrating source code.

In each case discovered by Darktrace AI, attackers successfully exploited servers and ran crypto-mining malware. However, this vulnerability opens the door into a wider range of possibilities, including data exfiltration, ransomware, and supply chain attacks.

The flaw was fixed on April 14, 2021, but recent research has revealed that this vulnerability is still exploitable with over 30,000 GitLab servers remaining unpatched.

The vulnerability has affected customers in every corner of the world, with Darktrace customers in the US, EMEA and APAC all targeted. Affected industries include technology, transportation, and education.

Attack details

The cases detailed below generally follow the same pattern. First, user accounts with admin privileges are registered on a publicly accessible GitLab server belonging to an unnamed customer. This is followed by a remote execution of commands that grant the rogue accounts elevated permissions.

Figure 1: Multiple model breaches firing on an unusual data egress event on October 30, which resulted in a Proactive Threat Notification model breach.

After multiple model breaches on malicious EXE downloads and command and control (C2) activities with the TOR network, the organization received a Proactive Threat Notification (PTN) from Darktrace that immediately alerted them to the issue. This enabled the customer to remove the compromised device from the network.

The next day, Darktrace discovered cryptocurrency mining occurring on a compromised server that was communicating on a non-standard port. This triggered alerts to the customer through Darktrace’s Proactive Threat Notification service, immediately escalating the threat to their security team.

Figure 2: Multiple cryptocurrency mining model breaches from the same server firing on November 3.

The related breaches include scripts from rare external locations and rare endpoints (endpoints that have never been contacted by the breach devices in the past). Not surprisingly, the endpoints in question are crypto-mining pools.

It is important to note that this GitLab vulnerability represents only the initial attack vector, which could result in a number of scenarios. In the customer environment detailed above, crypto-mining has occurred; however, exploitation of this vulnerability could serve as the first stage of a more destructive ransomware attack, or result in stolen intellectual property.

Lastly, throughout the compromises identified across Darktrace’s customer base, it appears that the Interactsh tool was leveraged by the threat actors in the attack. Interactsh is an open-source tool for out of band data transfers and validation of security flaws, and it is commonly used by both researchers and hackers. Darktrace was easily able to identify this tool as part of the larger threat.

Cyber AI Analyst investigates

Darktrace’s Cyber AI Analyst launched an immediate investigation, stitching together different events across a five-day period and revealing four stages of the attack. This presented the security team with all the information they needed to perform effective investigation and clean up, including isolating the infected devices.

Figure 3: Cyber AI Analyst automatically investigates, piecing together the events into a single narrative.

In another customer environment, Cyber AI Analyst was again able to piece together multiple security events to present a coherent security narrative, determining that the suspicious file downloads likely contained malicious software, and recommending immediate attention from security staff.

Figure 4: In a different case, Cyber AI Analyst surfaces a summary and key metrics around the suspicious file downloads.

Cyber AI Analyst made stellar detections and Proactive Threat Notification alerted affected clients ASAP. Clients were then supported through Ask the Expert (ATE) services. There has been no evidence of ransomware thus far, but these types of attacks typically gain a foothold on Internet-exposed servers and then pivot internally to deploy ransomware.

In a third example with a separate customer, Cyber AI Analyst stitched together six different security events into a single security narrative. Here, Darktrace’s technology was able to connect the dots between C2 behavior, suspicious file downloads, unusual connections, and Tor activity, eventually leading to its discovery of cryptocurrency mining.

Cyber AI Analyst specifically identified GitLab in the suspicious file downloads from a rare external endpoint. The fact that Darktrace was able to identify this in the context of a holistic view of threatening activity across this organization’s digital ecosystem — stretching from suspicious SSL connections to the eventual crypto-mining activity — presents a remarkable picture of Cyber AI Analyst in action.

Figure 5: Cyber AI Analyst identifying the GitLab activity in the context of the wider security narrative.

Concluding thoughts

Though the patch was released in April, over 50% of deployments remain unpatched. There are potential reasons why they remain unpatched — overworked security staff, or simply negligence.

Even when CVEs are mapped and patched promptly, however, novel and never-before-seen attacks can still slip through the cracks. Before the Gitlab flaw was publicly disclosed and fixed, this vulnerability was a zero-day.

And so, rather than wait for CVEs to be publicly disclosed, organizations would be prudent to adopt technologies that can detect and respond to emerging attacks at their earliest stages — regardless of whether they are exploiting known or unknown vulnerabilities.

At Darktrace we talk a lot about the problems novel and unknown threats pose for traditional security solutions. This case shows that even when a threat is known for over six months, difficulties in implementing and rolling out patching mean it can still cause issues.

Thanks to Darktrace’s AI continuously monitoring the behavior of our customer’s devices, they were able to identify the threat at its earliest stages, before it could develop into something more disruptive like ransomware. And had the customers had Darktrace Antigena configured, the technology would have responded autonomously to contain the malicious behavior before the attackers could get past stage one.

Thanks to Darktrace analyst Waseem Akhter for his insights on the above threat find.

Learn more about Darktrace’s Self-Learning AI

Technical details

Proactive Threat Notification model detections:

  • Compromise / Anomalous File then Tor
  • Compromise / High Priority Crypto Currency Mining
  • Device / Initial Breach Chain Compromise
  • Device / Large Number of Model Breaches from Critical Network Device
  • Unusual Activity / Enhanced Unusual External Data Transfer

Other Darktrace model detections:

  • Anomalous Connection / Anomalous SSL without SNI to New External
  • Anomalous Connection / Application Protocol on Uncommon Port
  • Anomalous Connection / Callback on Web Facing Device
  • Anomalous Connection / Data Sent to Rare Domain
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Anomalous File / Multiple EXE from Rare External Locations
  • Anomalous File / Internet Facing System File Download
  • Anomalous File / Script from Rare Location
  • Anomalous Server Activity / Outgoing from Serve
  • Compromise / Beaconing Activity To External Rare
  • Compliance / Crypto Currency Mining Activity
  • Compromise / High Volume of Connections with Beacon Score
  • Compromise / Large DNS Volume for Suspicious Domain
  • Compromise / Monero Mining
  • Compliance / Possible Tor Usage
  • Device / Internet Facing Device with High Priority Alert
  • Device / Large Number of Model Breaches
  • Device / Large Number of Connections to New Endpoints
  • Device / Suspicious Domain
  • Unusual Activity / Unusual External Data to New IPs

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Andrew Lawrence
VP, Threat Analysis, Americas

More in this series

No items found.

Blog

/

Endpoint

/

January 30, 2026

ClearFake: From Fake CAPTCHAs to Blockchain-Driven Payload Retrieval

fake captcha to blockchain driven palyload retrievalDefault blog imageDefault blog image

What is ClearFake?

As threat actors evolve their techniques to exploit victims and breach target networks, the ClearFake campaign has emerged as a significant illustration of this continued adaptation. ClearFake is a campaign observed using a malicious JavaScript framework deployed on compromised websites, impacting sectors such as e‑commerce, travel, and automotive. First identified in mid‑2023, ClearFake is frequently leveraged to socially engineer victims into installing fake web browser updates.

In ClearFake compromises, victims are steered toward compromised WordPress sites, often positioned by attackers through search engine optimization (SEO) poisoning. Once on the site, users are presented with a fake CAPTCHA. This counterfeit challenge is designed to appear legitimate while enabling the execution of malicious code. When a victim interacts with the CAPTCHA, a PowerShell command containing a download string is retrieved and executed.

Attackers commonly abuse the legitimate Microsoft HTML Application Host (MSHTA) in these operations. Recent campaigns have also incorporated Smart Chain endpoints, such as “bsc-dataseed.binance[.]org,” to obtain configuration code. The primary payload delivered through ClearFake is typically an information stealer, such as Lumma Stealer, enabling credential theft, data exfiltration, and persistent access [1].

Darktrace’s Coverage of ClearFake

Darktrace / ENDPOINT first detected activity likely associated with ClearFake on a single device on over the course of one day on November 18, 2025. The system observed the execution of “mshta.exe,” the legitimate Microsoft HTML Application Host utility. It also noted a repeated process command referencing “weiss.neighb0rrol1[.]ru”, indicating suspicious external activity. Subsequent analysis of this endpoint using open‑source intelligence (OSINT) indicated that it was a malicious, domain generation algorithm (DGA) endpoint [2].

The process line referencing weiss.neighb0rrol1[.]ru, as observed by Darktrace / ENDPOINT.
Figure 1: The process line referencing weiss.neighb0rrol1[.]ru, as observed by Darktrace / ENDPOINT.

This activity indicates that mshta.exe was used to contact a remote server, “weiss.neighb0rrol1[.]ru/rpxacc64mshta,” and execute the associated HTA file to initiate the next stage of the attack. OSINT sources have since heavily flagged this server as potentially malicious [3].

The first argument in this process uses the MSHTA utility to execute the HTA file hosted on the remote server. If successful, MSHTA would then run JavaScript or VBScript to launch PowerShell commands used to retrieve malicious payloads, a technique observed in previous ClearFake campaigns. Darktrace also detected unusual activity involving additional Microsoft executables, including “winlogon.exe,” “userinit.exe,” and “explorer.exe.” Although these binaries are legitimate components of the Windows operating system, threat actors can abuse their normal behavior within the Windows login sequence to gain control over user sessions, similar to the misuse of mshta.exe.

EtherHiding cover

Darktrace also identified additional ClearFake‑related activity, specifically a connection to bsc-testnet.drpc[.]org, a legitimate BNB Smart Chain endpoint. This activity was triggered by injected JavaScript on the compromised site www.allstarsuae[.]com, where the script initiated an eth_call POST request to the Smart Chain endpoint.

Example of a fake CAPTCHA on the compromised site www.allstarsuae[.]com.
Figure 2: Example of a fake CAPTCHA on the compromised site www.allstarsuae[.]com.

EtherHiding is a technique in which threat actors leverage blockchain technology, specifically smart contracts, as part of their malicious infrastructure. Because blockchain is anonymous, decentralized, and highly persistent, it provides threat actors with advantages in evading defensive measures and traditional tracking [4].

In this case, when a user visits a compromised WordPress site, injected base64‑encoded JavaScript retrieved an ABI string, which was then used to load and execute a contract hosted on the BNB Smart Chain.

JavaScript hosted on the compromised site www.allstaruae[.]com.
Figure 3: JavaScript hosted on the compromised site www.allstaruae[.]com.

Conducting malware analysis on this instance, the Base64 decoded into a JavaScript loader. A POST request to bsc-testnet.drpc[.]org was then used to retrieve a hex‑encoded ABI string that loads and executes the contract. The JavaScript also contained hex and Base64‑encoded functions that decoded into additional JavaScript, which attempted to retrieve a payload hosted on GitHub at “github[.]com/PrivateC0de/obf/main/payload.txt.” However, this payload was unavailable at the time of analysis.

Darktrace’s detection of the POST request to bsc-testnet.drpc[.]org.
Figure 4: Darktrace’s detection of the POST request to bsc-testnet.drpc[.]org.
Figure 5: Darktrace’s detection of the executable file and the malicious hostname.

Autonomous Response

As Darktrace’s Autonomous Response capability was enabled on this customer’s network, Darktrace was able to take swift mitigative action to contain the ClearFake‑related activity early, before it could lead to potential payload delivery. The affected device was blocked from making external connections to a number of suspicious endpoints, including 188.114.96[.]6, *.neighb0rrol1[.]ru, and neighb0rrol1[.]ru, ensuring that no further malicious connections could be made and no payloads could be retrieved.

Autonomous Response also acted to prevent the executable mshta.exe from initiating HTA file execution over HTTPS from this endpoint by blocking the attempted connections. Had these files executed successfully, the attack would likely have resulted in the retrieval of an information stealer, such as Lumma Stealer.

Autonomous Response’s intervention against the suspicious connectivity observed.
Figure 6: Autonomous Response’s intervention against the suspicious connectivity observed.

Conclusion

ClearFake continues to be observed across multiple sectors, but Darktrace remains well‑positioned to counter such threats. Because ClearFake’s end goal is often to deliver malware such as information stealers and malware loaders, early disruption is critical to preventing compromise. Users should remain aware of this activity and vigilant regarding fake CAPTCHA pop‑ups. They should also monitor unusual usage of MSHTA and outbound connections to domains that mimic formats such as “bsc-dataseed.binance[.]org” [1].

In this case, Darktrace was able to contain the attack before it could successfully escalate and execute. The attempted execution of HTA files was detected early, allowing Autonomous Response to intervene, stopping the activity from progressing. As soon as the device began communicating with weiss.neighb0rrol1[.]ru, an Autonomous Response inhibitor triggered and interrupted the connections.

As ClearFake continues to rise, users should stay alert to social engineering techniques, including ClickFix, that rely on deceptive security prompts.

Credit to Vivek Rajan (Senior Cyber Analyst) and Tara Gould (Malware Research Lead)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

Process / New Executable Launched

Endpoint / Anomalous Use of Scripting Process

Endpoint / New Suspicious Executable Launched

Endpoint / Process Connection::Unusual Connection from New Process

Autonomous Response Models

Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block

List of Indicators of Compromise (IoCs)

  • weiss.neighb0rrol1[.]ru – URL - Malicious Domain
  • 188.114.96[.]6 – IP – Suspicious Domain
  • *.neighb0rrol1[.]ru – URL – Malicious Domain

MITRE Tactics

Initial Access, Drive-by Compromise, T1189

User Execution, Execution, T1204

Software Deployment Tools, Execution and Lateral Movement, T1072

Command and Scripting Interpreter, T1059

System Binary Proxy Execution: MSHTA, T1218.005

References

1.        https://www.kroll.com/en/publications/cyber/rapid-evolution-of-clearfake-delivery

2.        https://www.virustotal.com/gui/domain/weiss.neighb0rrol1.ru

3.        https://www.virustotal.com/gui/file/1f1aabe87e5e93a8fff769bf3614dd559c51c80fc045e11868f3843d9a004d1e/community

4.        https://www.packetlabs.net/posts/etherhiding-a-new-tactic-for-hiding-malware-on-the-blockchain/

Continue reading
About the author
Vivek Rajan
Cyber Analyst

Blog

/

Network

/

January 30, 2026

The State of Cybersecurity in the Finance Sector: Six Trends to Watch

Default blog imageDefault blog image

The evolving cybersecurity threat landscape in finance

The financial sector, encompassing commercial banks, credit unions, financial services providers, and cryptocurrency platforms, faces an increasingly complex and aggressive cyber threat landscape. The financial sector’s reliance on digital infrastructure and its role in managing high-value transactions make it a prime target for both financially motivated and state-sponsored threat actors.

Darktrace’s latest threat research, The State of Cybersecurity in the Finance Sector, draws on a combination of Darktrace telemetry data from real-world customer environments, open-source intelligence, and direct interviews with financial-sector CISOs to provide perspective on how attacks are unfolding and how defenders in the sector need to adapt.  

Six cybersecurity trends in the finance sector for 2026

1. Credential-driven attacks are surging

Phishing continues to be a leading initial access vector for attacks targeting confidentiality. Financial institutions are frequently targeted with phishing emails designed to harvest login credentials. Techniques including Adversary-in-The-Middle (AiTM) to bypass Multi-factor Authentication (MFA) and QR code phishing (“quishing”) are surging and are capable of fooling even trained users. In the first half of 2025, Darktrace observed 2.4 million phishing emails within financial sector customer deployments, with almost 30% targeted towards VIP users.  

2. Data Loss Prevention is an increasing challenge

Compliance issues – particularly data loss prevention -- remain a persistent risk. In October 2025 alone, Darktrace observed over 214,000 emails across financial sector customers that contained unfamiliar attachments and were sent to suspected personal email addresses highlighting clear concerns around data loss prevention. Across the same set of customers within the same time frame, more than 351,000 emails containing unfamiliar attachments were sent to freemail addresses (e.g. gmail, yahoo, icloud), highlighting clear concerns around DLP.  

Confidentiality remains a primary concern for financial institutions as attackers increasingly target sensitive customer data, financial records, and internal communications.  

3. Ransomware is evolving toward data theft and extortion

Ransomware is no longer just about locking systems, it’s about stealing data first and encrypting second. Groups such as Cl0p and RansomHub now prioritize exploiting trusted file-transfer platforms to exfiltrate sensitive data before encryption, maximizing regulatory and reputational fallout for victims.  

Darktrace’s threat research identified routine scanning and malicious activity targeting internet-facing file-transfer systems used heavily by financial institutions. In one notable case involving Fortra GoAnywhere MFT, Darktrace detected malicious exploitation behavior six days before the CVE was publicly disclosed, demonstrating how attackers often operate ahead of patch cycles

This evolution underscores a critical reality: by the time a vulnerability is disclosed publicly, it may already be actively exploited.

4. Attackers are exploiting edge devices, often pre-disclosure.  

VPNs, firewalls, and remote access gateways have become high-value targets, and attackers are increasingly exploiting them before vulnerabilities are publicly disclosed. Darktrace observed pre-CVE exploitation activity affecting edge technologies including Citrix, Palo Alto, and Ivanti, enabling session hijacking, credential harvesting, and privileged lateral movement into core banking systems.  

Once compromised, these edge devices allow adversaries to blend into trusted network traffic, bypassing traditional perimeter defenses. CISOs interviewed for the report repeatedly described VPN infrastructure as a “concentrated focal point” for attackers, especially when patching and segmentation lag behind operational demands.

5. DPRK-linked activity is growing across crypto and fintech.  

State-sponsored activity, particularly from DPRK-linked groups affiliated with Lazarus, continues to intensify across cryptocurrency and fintech organizations. Darktrace identified coordinated campaigns leveraging malicious npm packages, previously undocumented BeaverTail and InvisibleFerret malware, and exploitation of React2Shell (CVE-2025-55182) for credential theft and persistent backdoor access.  

Targeting was observed across the United Kingdom, Spain, Portugal, Sweden, Chile, Nigeria, Kenya, and Qatar, highlighting the global scope of these operations.  

6. Cloud complexity and AI governance gaps are now systemic risks.  

Finally, CISOs consistently pointed to cloud complexity, insider risk from new hires, and ungoverned AI usage exposing sensitive data as systemic challenges. Leaders emphasized difficulty maintaining visibility across multi-cloud environments while managing sensitive data exposure through emerging AI tools.  

Rapid AI adoption without clear guardrails has introduced new confidentiality and compliance risks, turning governance into a board-level concern rather than a purely technical one.

Building cyber resilience in a shifting threat landscape

The financial sector remains a prime target for both financially motivated and state-sponsored adversaries. What this research makes clear is that yesterday’s security assumptions no longer hold. Identity attacks, pre-disclosure exploitation, and data-first ransomware require adaptive, behavior-based defenses that can detect threats as they emerge, often ahead of public disclosure.

As financial institutions continue to digitize, resilience will depend on visibility across identity, edge, cloud, and data, combined with AI-driven defense that learns at machine speed.  

Learn more about the threats facing the finance sector, and what your organization can do to keep up in The State of Cybersecurity in the Finance Sector report here.  

Acknowledgements:

The State of Cybersecurity in the Finance sector report was authored by Calum Hall, Hugh Turnbull, Parvatha Ananthakannan, Tiana Kelly, and Vivek Rajan, with contributions from Emma Foulger, Nicole Wong, Ryan Traill, Tara Gould, and the Darktrace Threat Research and Incident Management teams.

[related-resource]  

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI