Blog
/
/
April 28, 2021

How AI Email Security Benefits Human Defenders

Learn how autonomous AI frees up IT teams and allows them to focus on what matters. Say goodbye to weighed-down teams and lengthy security processes.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
28
Apr 2021

At the heart of any email attack is the goal of moving the recipient to engage: whether that’s clicking a link, filling in a form, or opening an attachment. And with over nine in ten cyber-attacks starting with an email, this attack vector continues to prove successful, despite organizations’ best efforts to safeguard their workforce by deploying email gateways and training employees to spot phishing attempts.

Email attackers have seen such success because they understand their victims. They know that, ultimately, human beings are creatures of habit, prone to error, and susceptible to their emotions. Years of experience has allowed attackers to fine tune their emails making them more plausible and more provocative. Automated tools are now increasing the speed and scale at which criminals can buy new domains and send emails en masse. This makes it even easier to ‘A/B test’ attack methods: abandoning those that don’t see high success rates and capitalizing on those that do.

We can classify phishing attempts into five broad categories, each aiming to trigger a different emotional reaction and elicit a response.

  • Fear: “We have detected a virus on your device, log in to your McAfee account.”
  • Curiosity: “You have 3 new voicemails, click here.”
  • Generosity: “COVID-19 has greatly impacted homelessness in your area. Donate now.”
  • Greed: “Only 23 iPhones left to give away, act now!”
  • Concern: “Coronavirus outbreak in your area: Find out more.”

It’s worth noting that today’s increasingly dynamic workforces are more susceptible to these techniques, isolated in their homes and hungry for new information.

Turning to tech

As email attacks continue to trick employees and find success, many organizations have realized that the built-in security tools that come with their email provider aren’t enough to defend against today’s attacks. Additional email gateways are successful in catching spam and other low-hanging fruit, but fail to stop advanced attacks – particularly those leveraging novel malware, new domains, or advanced techniques. These advanced attacks are also the most damaging to businesses.

This failure is due to an inherent weakness in the legacy approach of traditional security tools. They compare inbound mail against lists of ‘known bad’ IPs, domains, and file hashes. Senders and recipients are treated simply as data points – ignoring the nuances of the human beings behind the keyboards.

Looking at these metrics in isolation fails to take into account the full context that can only be gained by understanding the people behind email interactions: where they usually log in from, who they communicate with, how they write, and what types of attachments they send and receive. It is this rich, personal context that reveals seemingly benign emails to be unmistakably malicious, especially when other data fails to reveal the danger.

Misunderstanding the human

Frustrated with the ineffectiveness of traditional tools, many organizations think that the solution is to minimize the chances that employees engage with malicious emails through comprehensive employee training. Indeed, companies often attempt to train their employees to spot malicious emails to compensate for their technology’s lack of detection.

Considering humans to be the last line of defense is dangerous, and this approach overlooks the fact that today’s sophisticated fakes can appear indistinguishable to legitimate mails. It's only when you really break an email down beyond the text, beyond the personal name, beyond the domain and email address (in the case of compromised trusted senders), that you can decipher between real and fake.

Large data breaches of recent years have given attackers greater access than ever to corporate emails and stolen passwords, and so supply chain attacks are becoming increasingly common. When attackers take over a trusted account or an existing email thread, how can an employee be expected to notice a subtle change in wording or the different type of attached document? However rigorous the internal training program and regardless of how vigilant employees are, we are now at the point where humans cannot spot these very subtle indicators. And one click is all it takes.

Understanding the human

Email security, for a long time, remains an unsolved piece of the complex cyber security puzzle. The failure of both traditional tools and employee training has prompted organizations to take a radically different approach. Thousands of businesses across the world, in both the public and private sector, use artificial intelligence that understands the human behind the keyboard and forms a nuanced and continually evolving understanding of email interactions across the business.

By learning what a human does, who they interact with, how they write, and the substance of a typical conversation between any two or more people, AI begins to understand the habits of employees, and over time it builds a comprehensive picture of their normal patterns of behavior. Most importantly, AI is self-learning, continuously revising its understanding of ‘normal’ so that when employees’ habits change, so does the AI’s understanding.

This enables the technology to detect behavioral anomalies that fall outside of an employee’s ‘pattern of life’, or the pattern of life for the organization as a whole.

This fundamentally new approach to email security enables the system to recognize the subtle indicators of a threat and make accurate decisions to stop or allow emails to pass through, even if a threat has never been seen before.

Sitting behind email gateways, this self-learning technology has extremely high catch rates. It has caught countless malicious emails that other tools missed, from impersonations of senior financial personnel to ‘fearware’ that played on the workforce’s uncertainties at a time of pandemic.

Attackers are continuing to innovate, and automation has led to a new wave of email threats. 88% of security leaders now believe that cyber-attacks powered by offensive AI are inevitable. The email threat landscape is rapidly changing, and we can expect to receive more hoax emails that are more convincing. Now is a crucial moment for organizations to prepare for this eventuality by adopting AI in their email defenses.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product

More in this series

No items found.

Blog

/

Cloud

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

runtime, cloud security, cnaapDefault blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

Network

/

January 12, 2026

Maduro Arrest Used as a Lure to Deliver Backdoor

maduro arrest used as lure to deliver backdoorDefault blog imageDefault blog image

Introduction

Threat actors frequently exploit ongoing world events to trick users into opening and executing malicious files. Darktrace security researchers recently identified a threat group using reports around the arrest of Venezuelan President Nicolàs Maduro on January 3, 2025, as a lure to deliver backdoor malware.

Technical Analysis

While the exact initial access method is unknown, it is likely that a spear-phishing email was sent to victims, containing a zip archive titled “US now deciding what’s next for Venezuela.zip”. This file included an executable named “Maduro to be taken to New York.exe” and a dynamic-link library (DLL), “kugou.dll”.  

The binary “Maduro to be taken to New York.exe” is a legitimate binary (albeit with an expired signature) related to KuGou, a Chinese streaming platform. Its function is to load the DLL “kugou.dll” via DLL search order. In this instance, the expected DLL has been replaced with a malicious one with the same name to load it.  

DLL called with LoadLibraryW.
Figure 1: DLL called with LoadLibraryW.

Once the DLL is executed, a directory is created C:\ProgramData\Technology360NB with the DLL copied into the directory along with the executable, renamed as “DataTechnology.exe”. A registry key is created for persistence in “HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Lite360” to run DataTechnology.exe --DATA on log on.

 Registry key added for persistence.
Figure 2. Registry key added for persistence.
Folder “Technology360NB” created.
Figure 3: Folder “Technology360NB” created.

During execution, a dialog box appears with the caption “Please restart your computer and try again, or contact the original author.”

Message box prompting user to restart.
Figure 4. Message box prompting user to restart.

Prompting the user to restart triggers the malware to run from the registry key with the command --DATA, and if the user doesn't, a forced restart is triggered. Once the system is reset, the malware begins periodic TLS connections to the command-and-control (C2) server 172.81.60[.]97 on port 443. While the encrypted traffic prevents direct inspection of commands or data, the regular beaconing and response traffic strongly imply that the malware has the ability to poll a remote server for instructions, configuration, or tasking.

Conclusion

Threat groups have long used geopolitical issues and other high-profile events to make malicious content appear more credible or urgent. Since the onset of the war in Ukraine, organizations have been repeatedly targeted with spear-phishing emails using subject lines related to the ongoing conflict, including references to prisoners of war [1]. Similarly, the Chinese threat group Mustang Panda frequently uses this tactic to deploy backdoors, using lures related to the Ukrainian war, conventions on Tibet [2], the South China Sea [3], and Taiwan [4].  

The activity described in this blog shares similarities with previous Mustang Panda campaigns, including the use of a current-events archive, a directory created in ProgramData with a legitimate executable used to load a malicious DLL and run registry keys used for persistence. While there is an overlap of tactics, techniques and procedures (TTPs), there is insufficient information available to confidently attribute this activity to a specific threat group. Users should remain vigilant, especially when opening email attachments.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

172.81.60[.]97
8f81ce8ca6cdbc7d7eb10f4da5f470c6 - US now deciding what's next for Venezuela.zip
722bcd4b14aac3395f8a073050b9a578 - Maduro to be taken to New York.exe
aea6f6edbbbb0ab0f22568dcb503d731  - kugou.dll

References

[1] https://cert.gov.ua/article/6280422  

[2] https://www.ibm.com/think/x-force/hive0154-mustang-panda-shifts-focus-tibetan-community-deploy-pubload-backdoor

[3] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

[4] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

Continue reading
About the author
Tara Gould
Malware Research Lead
Your data. Our AI.
Elevate your network security with Darktrace AI