Blog
/
Email
/
August 7, 2024

How Darktrace’s AI Applies a Zero-Trust Mentality within Critical Infrastructure Supply Chains

Darktrace prevented a Critical National Infrastructure organization from falling victim to a SharePoint phishing attack originating from one of its trusted suppliers. This blog discusses common perceptions of zero-trust in email security, how AI that uses anomaly-based threat detection embodies core zero-trust principles and the relevance of this approach to securing CNI bodies with complex but interdependent supply chains from Cloud account compromise. 
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nicole Wong
Cyber Security Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Aug 2024

Note: In order to name anonymity, real organization names have been replaced, all names used in this blog are fictitious.

What are critical national infrastructure sectors?

Critical National Infrastructure (CNI) sectors encompass of assets, systems, and networks essential to the functioning of society. Any disruption or destruction of these sectors could have wide-reaching and potentially disastrous effects on a country’s economy, security and/or healthcare services [1].

Cyber risks across Transportation Systems sector

Transportation Systems is one such CNI sector comprising of interconnected networks of fixed and mobile assets managed by both public and private operators. These systems are highly interdependent with other CNI sectors too. As such, the digital technologies this sector relies on – such as positioning and tracking, signaling, communications, industrial system controls, and data and business management – are often interconnected through different networks and remote access terminals. This interconnectedness creates multiple entry points that need to be security across the supply.

Digital transformation has swept through CNI sectors in recent years, including Transportation Systems. These organizations are now increasingly dependent on third-party and cloud providers for data storage and transmission, making their supply chains vulnerable to exploitation by malicious actors [2].

The exploitation of legitimate and popular cloud services mirrors the well-known “living-off-the-land” techniques, which are not being adapted to the cloud along with the resources they support. In one recent case previously discussed by Darktrace, for example, a phishing attack attempted to abuse Dropbox to deliver malicious payloads.

Zero-Trust within CNI Sectors

One recommended approach to secure an organization’s supply chain and cloud environments is the implementation of zero-trust strategies, which remove inherent trust within the network [3] [4]. The principle of “never trust, always verify” is widely recognized as an architectural design, with 63% of organizations surveyed by Gartner reportedly implementing a zero-trust strategy, but in most cases to less than 50% of their environments [5]

Although this figure reflects the reality and challenge of balancing operations and security, demands from the threat landscape and supply chain risks mean that organizations must adopt zero-trust principles in areas not traditionally considered part of network architecture, such as email and cloud environments.

Email is often the primary entry point for cyber-attacks with Business Email Compromise (BEC) being a major threat to CNI organizations. However, the application of zero-trust principles to secure email environments is still not well understood. Common misconceptions include:

  • “Positively identifying known and trusted senders” – Maintaining a list of “known and trusted senders” contradicts the zero-trust model, which assumes that no entity is inherently trustworthy.
  • “Using DMARC, DKIM and SPF” – While these protocols offer some protection, they are often insufficient on their own, as they can be bypassed and do not protect against email account takeovers. Research published from Darktrace’s last two threat reports consistently shows that at least 60% of phishing emails detected by Darktrace had bypassed Domain-based Message Authentication, Reporting & Conformance (DMARC) [6] [7].  
  • “Mapping transaction flows between internal and external users to determine what access is required/not required” – Although this aligns with the principles of least privilege, it is too static for today’s dynamic supply chains and evolving digital infrastructure. This approach also suggests the existence of “trusted” access routes into a network.

Attack Overview

In July 2024, Darktrace / EMAIL™ detected and contained a sophisticated phishing attack leveraging Microsoft SharePoint. This attack exploited the trusted relationship between a Darktrace customer in the public transport sector and a compromised supplier. Traditional methods, such as those detailed above, would likely have failed to defend against such an advanced threat. However, Darktrace’s behavioral analysis and zero-trust approach to email security allowed it to successfully identify and neutralize the attack, preventing any potential disruption.

Initial Intrusion Attempt

The observed phishing attack by Darktrace would suggest that the customer’s supplier was targeted by a similar campaign beforehand. This initial breach likely allowed the attacker to use the now compromised account as a vector to compromise additional accounts and networks.

On July 9, Darktrace / EMAIL identified a significant spike in inbound emails from “supplier@engineeringcompany[.]com”. The emails appeared to be legitimate notifications sent via SharePoint and contained a file named “Payment Applications Docs”.

Email correspondence in the weeks around the phishing attack.
Figure 1: Email correspondence in the weeks around the phishing attack. The sender is an established correspondent with ongoing communications prior to and after the attack, however there is a significant spike in incoming emails on the day of the attack.

This reflects a common technique in malicious social engineering attempts, where references to payment are used to draw attention and prompt a response. Darktrace observed a large number of recipients within the organization receiving the same file, suggesting that the motive was likely credential harvesting rather than financial gain. Financially motivated attacks typically require a more targeted, ‘under-the-radar’ approach to be successful.

These phishing emails were able to bypass the customer’s email gateways as they were sent from a trusted and authoritative source, SharePoint, and utilized an email address with which the customer had previously corresponded. The compromised account was likely whitelisted by traditional email security tools that rely on SPF, DKIM, and DMAC, allowing the malicious emails to evade detection.

Autonomous Response

Darktrace / EMAIL analysis of the unusual characteristics of the phishing email in relation to the supplier’s typical behaviour, despite the email originating from a legitimate SharePoint notification.
Figure 2: Darktrace / EMAIL analysis of the unusual characteristics of the phishing email in relation to the supplier’s typical behavior, despite the email originating from a legitimate SharePoint notification.

However, Darktrace / EMAIL did not use these static rules to automatically trust the email. Darktrace’s Self-Learning AI detected the following anomalies:

  • Although the sender was known, it was not normal for the supplier to share files with the customer via SharePoint.
  • The supplier initiated an unusually large number of file shares in a short period of time, indicating potential spam activity.
  • The SharePoint link had wide access permissions, which is unusual for a sensitive payment document legitimately shared between established contacts.

Darktrace understood that the email activity constituted a significant deviation in expected behavior between the sender and customer, regardless of the known sender and use of a legitimate filesharing platform like SharePoint.

As a result, Darktrace took action to hold more than 100 malicious emails connected to the phishing attack, preventing them from landing in recipient inboxes in the first instance.  By taking a behavioral approach to securing customer email environments, Darktrace’s Self-Learning AI embodies the principles of zero trust, assessing each interaction in real-time against a user’s dynamic baseline rather than relying on static and often inaccurate rules to define trust.

Conclusion

Cloud services, such as SharePoint, offer significant advantages to the transportation sector by streamlining data exchange with supply chain partners and facilitating access to information for analytics and planning. However, these benefits come with notable risks. If a cloud account is compromised, unauthorized access to sensitive information could lead to extortion and lateral movement into mission-critical systems for more damaging attacks on CNI. Even a brief disruption in cloud access can have severe economic repercussions due to the sector’s dependence on these services for resource coordination and the cascading impacts on other critical systems [9].

While supply chain resilience is often evaluated based on a supplier’s initial compliance with baseline standards, organizations must be wary of potential future threats and focus on post-implementation security. It is essential for organizations to employ strategies to protect their assets from attacks that would exploit vulnerabilities within the trusted supply chain. Given that CNI and the transportation sector are prime targets for state-sponsored actors and Advanced Persistent Threat (APT) groups, the complex and interconnected nature of their supply chains opens the door for opportunistic attackers.

Defenders face the challenge of ensuring secure access and collaboration across numerous, dynamic assets, often without full visibility. Therefore, security solutions must be as dynamic as the threats they face, avoiding reliance on static rules. Real-time assessment of devices behavior, even if deemed trusted by end-users and human security teams, is crucial for maintaining security.

Darktrace’s AI-driven threat detection aligns with the zero-trust principle of assuming the risk of a breach. By leveraging AI that learns an organization’s specific patterns of life, Darktrace provides a tailored security approach ideal for organizations with complex supply chains.

Credit to Nicole Wong, Senior Cyber Analyst Consultant and Ryan Traill, Threat Content Lead

Appendices

Darktrace Model Detections

Key model alerts:

  • Personalized Sharepoint Share + New Unknown Link
  • Personalized Sharepoint Share + Bad Display Text
  • Personalized Sharepoint Share + Distant Recipient Interaction with Domain
  • Personalized Sharepoint Share + Sender Surge
  • Personalized Sharepoint Share + Wide Access Sharepoint Link

MITRE ATT&CK Mapping

Resource Development • Compromise Accounts: Cloud Accounts • T1586.003

Initial Access • Supply Chain Compromise • T1195

References

[1] https://www.cisa.gov/topics/critical-infrastructure-security-and-resilience/critical-infrastructure-sectors

[2]  https://committees.parliament.uk/writtenevidence/126313/pdf/

[3] https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161r1.pdf

[4] https://cloudsecurityalliance.org/press-releases/2023/11/15/cloud-security-alliance-launches-the-industry-s-first-authoritative-zero-trust-training-and-credential-the-certificate-of-competence-in-zero-trust-cczt

[5] https://www.gartner.com/en/documents/5286863#:~:text=Summary,anticipate%20staffing%20and%20cost%20increases.

[6] https://darktrace.com/threat-report-2023

[7] https://darktrace.com/resources/first-6-half-year-threat-report-2024

[8] https://dfrlab.org/2023/07/10/critical-infrastructure-and-the-cloud-policy-for-emerging-risk/#transportation

[9] https://access-national-risk-register.service.cabinetoffice.gov.uk/risk-scenario/cyber-attack-transport-sector

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nicole Wong
Cyber Security Analyst

More in this series

No items found.

Blog

/

Cloud

/

July 23, 2025

Closing the Cloud Forensics and Incident Response Skills Gap

DFIR skills gap, man working on computer, SOC analyst, incident response, cloud incident responseDefault blog imageDefault blog image

Every alert that goes uninvestigated is a calculated risk — and teams are running out of room for error

Security operations today are stretched thin. SOCs face an overwhelming volume of alerts, and the shift to cloud has only made triage more complex.

Our research suggests that 23% of cloud alerts are never investigated, leaving risk on the table.

The rapid migration to cloud resources has security teams playing catch up. While they attempt to apply traditional on-prem tools to the cloud, it’s becoming increasingly clear that they are not fit for purpose. Especially in the context of forensics and incident response, the cloud presents unique complexities that demand cloud-specific solutions.

Organizations are increasingly adopting services from multiple cloud platforms (in fact, recent studies suggest 89% of organizations now operate multi-cloud environments), and container-based and serverless setups have become the norm. Security analysts already have enough on their plates; it’s unrealistic to expect them to be cloud experts too.

Why Digital Forensics and Incident Response (DFIR) roles are so hard to fill

Compounding these issues of alert fatigue and cloud complexity, there is a lack of DFIR talent. The cybersecurity skills gap is a well-known problem.

According to the 2024 ISC2 Cybersecurity Workforce Study, there is a global shortage of 4.8 million cybersecurity workers, up 19% from the previous year.

Why is this such an issue?

  • Highly specialized skill set: DFIR professionals need to have a deep understanding of various operating systems, network protocols, and security architectures, even more so when working in the cloud. They also need to be proficient in using a wide range of forensic tools and techniques. This level of expertise takes a lot of time and effort to develop.
  • Rapid technological changes: The cloud landscape is constantly changing and evolving with new services, monitoring tools, security mechanisms, and threats emerging regularly. Keeping up with these changes and staying current requires continuous learning and adaptation.
  • Lack of formal education and training: There are limited educational programs specifically dedicated for DFIR. Further, an industry for cloud DFIR has yet to be defined. While some universities and institutions offer courses or certifications in digital forensics, they may not cover the full spread of knowledge required in real-world incident response scenarios, especially for cloud-based environments.
  • High-stress nature of the job: DFIR professionals often work under tight deadlines in high-pressure situations, especially when handling security incidents. This can lead to burnout and high turnover rates in the profession.

Bridging the skills gap with usable cloud digital forensics and incident response tools  

To help organizations close the DFIR skills gap, it's critical that we modernize our approaches and implement a new way of doing things in DFIR that's fit for the cloud era. Modern cloud forensics and incident response platforms must prioritize usability in order to up-level security teams. A platform that is easy to use has the power to:

  • Enable more advanced analysts to be more efficient and have the ability to take on more cases
  • Uplevel more novel analysts to perform more advanced tasks than ever before
  • Eliminate cloud complexity– such as the complexities introduced by multi-cloud environments and container-based and serverless setups

What to look for in cloud forensics and incident response solutions

The following features greatly improve the impact of cloud forensics and incident response:

Data enrichment: Automated correlation of collected data with threat intelligence feeds, both external and proprietary, delivers immediate insight into suspicious or malicious activities. Data enrichment expedites investigations, enabling analysts to seamlessly pivot from key events and delve deeper into the raw data.

Single timeline view: A unified perspective across various cloud platforms and data sources is crucial. A single timeline view empowers security teams to seamlessly navigate evidence based on timestamps, events, users, and more, enhancing investigative efficiency. Pulling together a timeline has historically been a very time consuming task when using traditional approaches.

Saved search: Preserving queries during investigations allows analysts to re-execute complex searches or share them with colleagues, increasing efficiency and collaboration.

Faceted search: Facet search options provide analysts with quick insights into core data attributes, facilitating efficient dataset refinement.

Cross-cloud investigations: Analyzing evidence acquired from multiple cloud providers in a single platform is crucial for security teams. A unified view and timeline across cross cloud is critical in streamlining investigations.

How Darktrace can help

Darktrace’s cloud offerings have been bolstered with the acquisition of Cado Security Ltd., which enables security teams to gain immediate access to forensic-level data in multi-cloud, container, serverless, SaaS, and on-premises environments.

Not only does Darktrace offer centralized automation solutions for cloud forensics and investigation, but it also delivers a proactive approach Cloud Detection and Response (CDR). Darktrace / CLOUD is built with advanced AI to make cloud security accessible to all security teams and SOCs. By using multiple machine learning techniques, Darktrace brings unprecedented visibility, threat detection, investigation, and incident response to hybrid and multi-cloud environments.

[related-resource]

Continue reading
About the author
Calum Hall
Technical Content Researcher

Blog

/

Email

/

July 23, 2025

Global Telecom Provider: Powering and Protecting the World's Data Giants

Default blog imageDefault blog image

This global leader plays a critical role in keeping the world connected. The company works with some of the largest and most influential public and private organizations in the world to enable ultra-fast data transmission.

Safeguarding the systems that keep the world connected

Standing at the forefront of global connectivity, this industry leader designs and manages large-scale communications systems that power the world’s most data-intensive enterprises – including social media giants, hyperscale cloud providers, and major data center operators. Given the scale, confidentiality, and sensitivity of the systems and data it helps transport, the company faces complex cybersecurity challenges.

Protecting sensitive customer data

Most of the organization’s projects are custom-designed and highly proprietary, making data privacy and Intellectual Property (IP) protection critical to maintaining trust and confidentiality with customers. In an industry where every competitor knows the landscape intimately, any loss of data could cause significant damage.

International security implications

The company faces a broad range of advanced cyber threats – from corporate espionage and supply chain risks to cyber-physical attacks on critical infrastructure. Its international footprint adds complexity, including cross-border regulatory compliance. A successful attack could disrupt business, compromise IP, or trigger wider consequences like disruptions to international data transfers and other critical services.

The global leader works closely with communities to anticipate threats that could impact the global communications network at large.

In this environment, cybersecurity is a foundation for international trust,” said the organization’s CISO.

Building a resilient cybersecurity strategy from the ground up

The CISO had the rare opportunity to build the IT and cybersecurity infrastructure from scratch. "Initially, we bought what everyone else buys,” referencing the traditional mix of firewalls, routers, and antivirus tools. “But I knew we needed to do more.”

Self-Learning AI – “the missing piece”

With solid perimeter defenses in place, the security team sought deeper protection inside the network. Darktrace’s Self-Learning AI stood out. “Unlike other solutions, Darktrace’s AI looks beyond known threat signatures, learning what’s normal for our environment and flagging what’s not. That was the missing piece – something that could help us even when everything else failed.”

A solution and partnership that delivered

The CISO said he appreciated the ability to observe Darktrace in action before full deployment, noting that the Darktrace team was there every step of the way, providing guidance and expertise to ensure he got the most out of his investment.

Partnership was especially valuable given the company’s explosive 400% growth over the last six years. As resources were stretched and priorities shifted, “Darktrace remained patient and responsive. We’re slow and methodical, but the Darktrace support team was phenomenal, never losing momentum and earning our trust.”

A unified cybersecurity ecosystem

Today, the global leader is using the Darktrace ActiveAI Security Platform™ as a core part of its layered defense strategy, including:

The CISO appreciates how, as a unified cybersecurity platform, Darktrace has an intuitive user interface, which makes it easier for his team to investigate alerts visually, even without deep technical expertise.

Advancing defenses while impacting the bottom line

A 24/7 “safety net”

The fact that this company has never been hacked is the clearest proof it made the right decision with Darktrace, said the CISO. Initially rolled out in Human Confirmation Mode, meaning it would not take autonomous action without explicit approval from the security team, Darktrace immediately uncovered threats and anomalies that other tools had missed.

Darktrace acts as a must-have safety net—ready to step in when other tools fall short,” said the CISO.

From monitoring internal behavior and identifying unusual attack patterns, to autonomously neutralizing threats after hours, the platform provides peace of mind in a high-stakes industry. “Darktrace is my dark horse – the thing I have in my back pocket if everything else fails. It’s here to save the day, save my company, and maybe even save my career.”

Autonomous capabilities free up time for skilled analysts

Darktrace’s AI-powered detection and response capabilities are deeply embedded in the team’s day-to-day operations, autonomously investigating and responding to the majority of potential threats. Cyber AI Analyst conducted a total of 2,776 total investigations within three months, averaging just 12 minutes to autonomously investigate an incident. Of those 2,776 investigations, Darktrace resolved 2,671 (96%) autonomously and escalated only 105 (4%) to analysts. Darktrace has dramatically reduced alert fatigue and freed up analysts to focus on what really matters, saving the security team 486 analyst hours on investigations within a 20-day period.

From noise to actionable insight

Darktrace delivers meaningful data and meaningful alerts. “If Darktrace escalates an incident, we drop everything and work on that. We trust in Darktrace.” When analysts do need to investigate an incident, Darktrace’s forensic logs and guided remediation suggestions have slashed the time analysts spend on investigations by four to five times.

Stronger security. Lower cost.

The CISO says, “Darktrace is a money-saver for our organization, making continued investments an easy sell to the CEO and the board.”  When he found himself down a resource after a member of the security team left the organization, the CISO turned to Darktrace Managed Threat Detection and Response services for 24/7 expert support. “It was a no brainer. We got better coverage, higher skill levels, and around-the-clock support – all for less than what we would pay to employ a single analyst.”

Scaling securely into the future

Securing networks in motion  

The organization is preparing to scale both its operations and security posture across existing distributed, mobile and deployable communications networks that historically have been disconnected. Some of these networks are in constant motion and operating in some of the world’s most volatile regions. “Darktrace will act as an autonomous defender, monitoring for anomalous behavior and intervening, when necessary, especially during those dangerous times when an asset ‘goes dark’ and becomes disconnected from the broader network,” said the CISO.

Applying AI strategically

As the organization continues to evaluate where and how to apply AI, its emphasis will be on technologies that can act independently to contain threats – especially in environments where human response may be delayed. “It’s about using the right kind of AI for the right challenge. That’s why we’re investing in Darktrace, with tools that can adapt and learn even in isolation and provide real-time protection wherever we operate.”

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI