Blog
/
Email
/
August 7, 2024

How Darktrace’s AI Applies a Zero-Trust Mentality within Critical Infrastructure Supply Chains

Darktrace prevented a Critical National Infrastructure organization from falling victim to a SharePoint phishing attack originating from one of its trusted suppliers. This blog discusses common perceptions of zero-trust in email security, how AI that uses anomaly-based threat detection embodies core zero-trust principles and the relevance of this approach to securing CNI bodies with complex but interdependent supply chains from Cloud account compromise. 
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nicole Wong
Cyber Security Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Aug 2024

Note: In order to name anonymity, real organization names have been replaced, all names used in this blog are fictitious.

What are critical national infrastructure sectors?

Critical National Infrastructure (CNI) sectors encompass of assets, systems, and networks essential to the functioning of society. Any disruption or destruction of these sectors could have wide-reaching and potentially disastrous effects on a country’s economy, security and/or healthcare services [1].

Cyber risks across Transportation Systems sector

Transportation Systems is one such CNI sector comprising of interconnected networks of fixed and mobile assets managed by both public and private operators. These systems are highly interdependent with other CNI sectors too. As such, the digital technologies this sector relies on – such as positioning and tracking, signaling, communications, industrial system controls, and data and business management – are often interconnected through different networks and remote access terminals. This interconnectedness creates multiple entry points that need to be security across the supply.

Digital transformation has swept through CNI sectors in recent years, including Transportation Systems. These organizations are now increasingly dependent on third-party and cloud providers for data storage and transmission, making their supply chains vulnerable to exploitation by malicious actors [2].

The exploitation of legitimate and popular cloud services mirrors the well-known “living-off-the-land” techniques, which are not being adapted to the cloud along with the resources they support. In one recent case previously discussed by Darktrace, for example, a phishing attack attempted to abuse Dropbox to deliver malicious payloads.

Zero-Trust within CNI Sectors

One recommended approach to secure an organization’s supply chain and cloud environments is the implementation of zero-trust strategies, which remove inherent trust within the network [3] [4]. The principle of “never trust, always verify” is widely recognized as an architectural design, with 63% of organizations surveyed by Gartner reportedly implementing a zero-trust strategy, but in most cases to less than 50% of their environments [5]

Although this figure reflects the reality and challenge of balancing operations and security, demands from the threat landscape and supply chain risks mean that organizations must adopt zero-trust principles in areas not traditionally considered part of network architecture, such as email and cloud environments.

Email is often the primary entry point for cyber-attacks with Business Email Compromise (BEC) being a major threat to CNI organizations. However, the application of zero-trust principles to secure email environments is still not well understood. Common misconceptions include:

  • “Positively identifying known and trusted senders” – Maintaining a list of “known and trusted senders” contradicts the zero-trust model, which assumes that no entity is inherently trustworthy.
  • “Using DMARC, DKIM and SPF” – While these protocols offer some protection, they are often insufficient on their own, as they can be bypassed and do not protect against email account takeovers. Research published from Darktrace’s last two threat reports consistently shows that at least 60% of phishing emails detected by Darktrace had bypassed Domain-based Message Authentication, Reporting & Conformance (DMARC) [6] [7].  
  • “Mapping transaction flows between internal and external users to determine what access is required/not required” – Although this aligns with the principles of least privilege, it is too static for today’s dynamic supply chains and evolving digital infrastructure. This approach also suggests the existence of “trusted” access routes into a network.

Attack Overview

In July 2024, Darktrace / EMAIL™ detected and contained a sophisticated phishing attack leveraging Microsoft SharePoint. This attack exploited the trusted relationship between a Darktrace customer in the public transport sector and a compromised supplier. Traditional methods, such as those detailed above, would likely have failed to defend against such an advanced threat. However, Darktrace’s behavioral analysis and zero-trust approach to email security allowed it to successfully identify and neutralize the attack, preventing any potential disruption.

Initial Intrusion Attempt

The observed phishing attack by Darktrace would suggest that the customer’s supplier was targeted by a similar campaign beforehand. This initial breach likely allowed the attacker to use the now compromised account as a vector to compromise additional accounts and networks.

On July 9, Darktrace / EMAIL identified a significant spike in inbound emails from “supplier@engineeringcompany[.]com”. The emails appeared to be legitimate notifications sent via SharePoint and contained a file named “Payment Applications Docs”.

Email correspondence in the weeks around the phishing attack.
Figure 1: Email correspondence in the weeks around the phishing attack. The sender is an established correspondent with ongoing communications prior to and after the attack, however there is a significant spike in incoming emails on the day of the attack.

This reflects a common technique in malicious social engineering attempts, where references to payment are used to draw attention and prompt a response. Darktrace observed a large number of recipients within the organization receiving the same file, suggesting that the motive was likely credential harvesting rather than financial gain. Financially motivated attacks typically require a more targeted, ‘under-the-radar’ approach to be successful.

These phishing emails were able to bypass the customer’s email gateways as they were sent from a trusted and authoritative source, SharePoint, and utilized an email address with which the customer had previously corresponded. The compromised account was likely whitelisted by traditional email security tools that rely on SPF, DKIM, and DMAC, allowing the malicious emails to evade detection.

Autonomous Response

Darktrace / EMAIL analysis of the unusual characteristics of the phishing email in relation to the supplier’s typical behaviour, despite the email originating from a legitimate SharePoint notification.
Figure 2: Darktrace / EMAIL analysis of the unusual characteristics of the phishing email in relation to the supplier’s typical behavior, despite the email originating from a legitimate SharePoint notification.

However, Darktrace / EMAIL did not use these static rules to automatically trust the email. Darktrace’s Self-Learning AI detected the following anomalies:

  • Although the sender was known, it was not normal for the supplier to share files with the customer via SharePoint.
  • The supplier initiated an unusually large number of file shares in a short period of time, indicating potential spam activity.
  • The SharePoint link had wide access permissions, which is unusual for a sensitive payment document legitimately shared between established contacts.

Darktrace understood that the email activity constituted a significant deviation in expected behavior between the sender and customer, regardless of the known sender and use of a legitimate filesharing platform like SharePoint.

As a result, Darktrace took action to hold more than 100 malicious emails connected to the phishing attack, preventing them from landing in recipient inboxes in the first instance.  By taking a behavioral approach to securing customer email environments, Darktrace’s Self-Learning AI embodies the principles of zero trust, assessing each interaction in real-time against a user’s dynamic baseline rather than relying on static and often inaccurate rules to define trust.

Conclusion

Cloud services, such as SharePoint, offer significant advantages to the transportation sector by streamlining data exchange with supply chain partners and facilitating access to information for analytics and planning. However, these benefits come with notable risks. If a cloud account is compromised, unauthorized access to sensitive information could lead to extortion and lateral movement into mission-critical systems for more damaging attacks on CNI. Even a brief disruption in cloud access can have severe economic repercussions due to the sector’s dependence on these services for resource coordination and the cascading impacts on other critical systems [9].

While supply chain resilience is often evaluated based on a supplier’s initial compliance with baseline standards, organizations must be wary of potential future threats and focus on post-implementation security. It is essential for organizations to employ strategies to protect their assets from attacks that would exploit vulnerabilities within the trusted supply chain. Given that CNI and the transportation sector are prime targets for state-sponsored actors and Advanced Persistent Threat (APT) groups, the complex and interconnected nature of their supply chains opens the door for opportunistic attackers.

Defenders face the challenge of ensuring secure access and collaboration across numerous, dynamic assets, often without full visibility. Therefore, security solutions must be as dynamic as the threats they face, avoiding reliance on static rules. Real-time assessment of devices behavior, even if deemed trusted by end-users and human security teams, is crucial for maintaining security.

Darktrace’s AI-driven threat detection aligns with the zero-trust principle of assuming the risk of a breach. By leveraging AI that learns an organization’s specific patterns of life, Darktrace provides a tailored security approach ideal for organizations with complex supply chains.

Credit to Nicole Wong, Senior Cyber Analyst Consultant and Ryan Traill, Threat Content Lead

Appendices

Darktrace Model Detections

Key model alerts:

  • Personalized Sharepoint Share + New Unknown Link
  • Personalized Sharepoint Share + Bad Display Text
  • Personalized Sharepoint Share + Distant Recipient Interaction with Domain
  • Personalized Sharepoint Share + Sender Surge
  • Personalized Sharepoint Share + Wide Access Sharepoint Link

MITRE ATT&CK Mapping

Resource Development • Compromise Accounts: Cloud Accounts • T1586.003

Initial Access • Supply Chain Compromise • T1195

References

[1] https://www.cisa.gov/topics/critical-infrastructure-security-and-resilience/critical-infrastructure-sectors

[2]  https://committees.parliament.uk/writtenevidence/126313/pdf/

[3] https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161r1.pdf

[4] https://cloudsecurityalliance.org/press-releases/2023/11/15/cloud-security-alliance-launches-the-industry-s-first-authoritative-zero-trust-training-and-credential-the-certificate-of-competence-in-zero-trust-cczt

[5] https://www.gartner.com/en/documents/5286863#:~:text=Summary,anticipate%20staffing%20and%20cost%20increases.

[6] https://darktrace.com/threat-report-2023

[7] https://darktrace.com/resources/first-6-half-year-threat-report-2024

[8] https://dfrlab.org/2023/07/10/critical-infrastructure-and-the-cloud-policy-for-emerging-risk/#transportation

[9] https://access-national-risk-register.service.cabinetoffice.gov.uk/risk-scenario/cyber-attack-transport-sector

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nicole Wong
Cyber Security Analyst

More in this series

No items found.

Blog

/

Network

/

June 27, 2025

Patch and Persist: Darktrace’s Detection of Blind Eagle (APT-C-36)

Default blog imageDefault blog image

What is Blind Eagle?

Since 2018, APT-C-36, also known as Blind Eagle, has been observed performing cyber-attacks targeting various sectors across multiple countries in Latin America, with a particular focus on Colombian organizations.

Blind Eagle characteristically targets government institutions, financial organizations, and critical infrastructure [1][2].

Attacks carried out by Blind Eagle actors typically start with a phishing email and the group have been observed utilizing various Remote Access Trojans (RAT) variants, which often have in-built methods for hiding command-and-control (C2) traffic from detection [3].

What we know about Blind Eagle from a recent campaign

Since November 2024, Blind Eagle actors have been conducting an ongoing campaign targeting Colombian organizations [1].

In this campaign, threat actors have been observed using phishing emails to deliver malicious URL links to targeted recipients, similar to the way threat actors have previously been observed exploiting CVE-2024-43451, a vulnerability in Microsoft Windows that allows the disclosure of a user’s NTLMv2 password hash upon minimal interaction with a malicious file [4].

Despite Microsoft patching this vulnerability in November 2024 [1][4], Blind Eagle actors have continued to exploit the minimal interaction mechanism, though no longer with the intent of harvesting NTLMv2 password hashes. Instead, phishing emails are sent to targets containing a malicious URL which, when clicked, initiates the download of a malicious file. This file is then triggered by minimal user interaction.

Clicking on the file triggers a WebDAV request, with a connection being made over HTTP port 80 using the user agent ‘Microsoft-WebDAV-MiniRedir/10.0.19044’. WebDAV is a transmission protocol which allows files or complete directories to be made available through the internet, and to be transmitted to devices [5]. The next stage payload is then downloaded via another WebDAV request and malware is executed on the target device.

Attackers are notified when a recipient downloads the malicious files they send, providing an insight into potential targets [1].

Darktrace’s coverage of Blind Eagle

In late February 2025, Darktrace observed activity assessed with medium confidence to be  associated with Blind Eagle on the network of a customer in Colombia.

Within a period of just five hours, Darktrace / NETWORK detected a device being redirected through a rare external location, downloading multiple executable files, and ultimately exfiltrating data from the customer’s environment.

Since the customer did not have Darktrace’s Autonomous Response capability enabled on their network, no actions were taken to contain the compromise, allowing it to escalate until the customer’s security team responded to the alerts provided by Darktrace.

Darktrace observed a device on the customer’s network being directed over HTTP to a rare external IP, namely 62[.]60[.]226[.]112, which had never previously been seen in this customer’s environment and was geolocated in Germany. Multiple open-source intelligence (OSINT) providers have since linked this endpoint with phishing and malware campaigns [9].

The device then proceeded to download the executable file hxxp://62[.]60[.]226[.]112/file/3601_2042.exe.

Darktrace’s detection of the affected device connecting to an unusual location based in Germany.
Figure 1: Darktrace’s detection of the affected device connecting to an unusual location based in Germany.
Darktrace’s detection of the affected device downloading an executable file from the suspicious endpoint.
Figure 2: Darktrace’s detection of the affected device downloading an executable file from the suspicious endpoint.

The device was then observed making unusual connections to the rare endpoint 21ene.ip-ddns[.]com and performing unusual external data activity.

This dynamic DNS endpoint allows a device to access an endpoint using a domain name in place of a changing IP address. Dynamic DNS services ensure the DNS record of a domain name is automatically updated when the IP address changes. As such, malicious actors can use these services and endpoints to dynamically establish connections to C2 infrastructure [6].

Further investigation into this dynamic endpoint using OSINT revealed multiple associations with previous likely Blind Eagle compromises, as well as Remcos malware, a RAT commonly deployed via phishing campaigns [7][8][10].

Darktrace’s detection of the affected device connecting to the suspicious dynamic DNS endpoint, 21ene.ip-ddns[.]com.
Figure 3: Darktrace’s detection of the affected device connecting to the suspicious dynamic DNS endpoint, 21ene.ip-ddns[.]com.

Shortly after this, Darktrace observed the user agent ‘Microsoft-WebDAV-MiniRedir/10.0.19045’, indicating usage of the aforementioned transmission protocol WebDAV. The device was subsequently observed connected to an endpoint associated with Github and downloading data, suggesting that the device was retrieving a malicious tool or payload. The device then began to communicate to the malicious endpoint diciembrenotasenclub[.]longmusic[.]com over the new TCP port 1512 [11].

Around this time, the device was also observed uploading data to the endpoints 21ene.ip-ddns[.]com and diciembrenotasenclub[.]longmusic[.]com, with transfers of 60 MiB and 5.6 MiB observed respectively.

Figure 4: UI graph showing external data transfer activity.

This chain of activity triggered an Enhanced Monitoring model alert in Darktrace / NETWORK. These high-priority model alerts are designed to trigger in response to higher fidelity indicators of compromise (IoCs), suggesting that a device is performing activity consistent with a compromise.

 Darktrace’s detection of initial attack chain activity.
Figure 5: Darktrace’s detection of initial attack chain activity.

A second Enhanced Monitoring model was also triggered by this device following the download of the aforementioned executable file (hxxp://62[.]60[.]226[.]112/file/3601_2042.exe) and the observed increase in C2 activity.

Following this activity, Darktrace continued to observe the device beaconing to the 21ene.ip-ddns[.]com endpoint.

Darktrace’s Cyber AI Analyst was able to correlate each of the individual detections involved in this compromise, identifying them as part of a broader incident that encompassed C2 connectivity, suspicious downloads, and external data transfers.

Cyber AI Analyst’s investigation into the activity observed on the affected device.
Figure 6: Cyber AI Analyst’s investigation into the activity observed on the affected device.
Figure 7: Cyber AI Analyst’s detection of the affected device’s broader connectivity throughout the course of the attack.

As the affected customer did not have Darktrace’s Autonomous Response configured at the time, the attack was able to progress unabated. Had Darktrace been properly enabled, it would have been able to take a number of actions to halt the escalation of the attack.

For example, the unusual beaconing connections and the download of an unexpected file from an uncommon location would have been shut down by blocking the device from making external connections to the relevant destinations.

Conclusion

The persistence of Blind Eagle and ability to adapt its tactics, even after patches were released, and the speed at which the group were able to continue using pre-established TTPs highlights that timely vulnerability management and patch application, while essential, is not a standalone defense.

Organizations must adopt security solutions that use anomaly-based detection to identify emerging and adapting threats by recognizing deviations in user or device behavior that may indicate malicious activity. Complementing this with an autonomous decision maker that can identify, connect, and contain compromise-like activity is crucial for safeguarding organizational networks against constantly evolving and sophisticated threat actors.

Credit to Charlotte Thompson (Senior Cyber Analyst), Eugene Chua (Principal Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

IoCs

IoC – Type - Confidence
Microsoft-WebDAV-MiniRedir/10.0.19045 – User Agent

62[.]60[.]226[.]112 – IP – Medium Confidence

hxxp://62[.]60[.]226[.]112/file/3601_2042.exe – Payload Download – Medium Confidence

21ene.ip-ddns[.]com – Dynamic DNS Endpoint – Medium Confidence

diciembrenotasenclub[.]longmusic[.]com  - Hostname – Medium Confidence

Darktrace’s model alert coverage

Anomalous File / Suspicious HTTP Redirect
Anomalous File / EXE from Rare External Location
Anomalous File / Multiple EXE from Rare External Location
Anomalous Server Activity / Outgoing from Server
Unusual Activity / Unusual External Data to New Endpoint
Device / Anomalous Github Download
Anomalous Connection / Multiple Connections to New External TCP Port
Device / Initial Attack Chain Activity
Anomalous Server Activity / Rare External from Server
Compromise / Suspicious File and C2
Compromise / Fast Beaconing to DGA
Compromise / Large Number of Suspicious Failed Connections
Device / Large Number of Model Alert

Mitre Attack Mapping:

Tactic – Technique – Technique Name

Initial Access - T1189 – Drive-by Compromise
Initial Access - T1190 – Exploit Public-Facing Application
Initial Access ICS - T0862 – Supply Chain Compromise
Initial Access ICS - T0865 – Spearphishing Attachment
Initial Access ICS - T0817 - Drive-by Compromise
Resource Development - T1588.001 – Malware
Lateral Movement ICS - T0843 – Program Download
Command and Control - T1105 - Ingress Tool Transfer
Command and Control - T1095 – Non-Application Layer Protocol
Command and Control - T1571 – Non-Standard Port
Command and Control - T1568.002 – Domain Generation Algorithms
Command and Control ICS - T0869 – Standard Application Layer Protocol
Evasion ICS - T0849 – Masquerading
Exfiltration - T1041 – Exfiltration Over C2 Channel
Exfiltration - T1567.002 – Exfiltration to Cloud Storage

References

1)    https://research.checkpoint.com/2025/blind-eagle-and-justice-for-all/

2)    https://assets.kpmg.com/content/dam/kpmgsites/in/pdf/2025/04/kpmg-ctip-blind-eagle-01-apr-2025.pdf.coredownload.inline.pdf

3)    https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-remote-access-trojan/#:~:text=They%20might%20be%20attached%20to,remote%20access%20or%20system%20administration

4)    https://msrc.microsoft.com/update-guide/vulnerability/CVE-2024-43451

5)    https://www.ionos.co.uk/digitalguide/server/know-how/webdav/

6)    https://vercara.digicert.com/resources/dynamic-dns-resolution-as-an-obfuscation-technique

7)    https://threatfox.abuse.ch/ioc/1437795

8)    https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-malware/remcos-malware/

9)    https://www.virustotal.com/gui/url/b3189db6ddc578005cb6986f86e9680e7f71fe69f87f9498fa77ed7b1285e268

10) https://www.virustotal.com/gui/domain/21ene.ip-ddns.com

11) https://www.virustotal.com/gui/domain/diciembrenotasenclub.longmusic.com/community

Continue reading
About the author
Charlotte Thompson
Cyber Analyst

Blog

/

Network

/

June 19, 2025

Customer Case Study: Leading Petrochemical Manufacturer

Default blog imageDefault blog image

Headquartered in Saudi Arabia, this industry leading petrochemical manufacturer serves customers in more than 80 countries across diverse markets throughout Europe, Africa, Latin America, the Middle East, China, and Southeast Asia.

Cyber resiliency critical to growth strategy

This leading petrochemical manufacturer’s vision is to be one of the major global players in the production and marketing of designated petrochemicals and downstream products. The company aims to significantly increase its capacity to up to a million metric tons within the next few years.

With cyber-attacks on critical infrastructure increasing 30% globally last year, cyber resiliency is essential to supporting the company’s strategic business goals of:

  • Maximizing production through efficient asset utilization
  • Maximizing sales by conducting 90% of its business outside Saudi Arabia
  • Optimizing resources and processes by integrating with UN Global Compact principles for sustainability and efficiency
  • Growing its business portfolio by engaging in joint ventures to diversify production and add value to the economy

However, the industry leader faced several challenges in its drive to fortify its cybersecurity defenses.

Visibility gaps delay response time

The company’s existing security setup provided limited visibility to the in-house security team, hindering its ability to detect anomalous network and user activity in real time. This resulted in delayed responses to potential incidents, making proactive issue resolution difficult and any remediation in the event of a successful attack costly and time-consuming.

Manual detection drains resources

Without automated detection and response capabilities, the organization’s security team had to manually monitor for suspicious activity – a time-consuming and inefficient approach that strained resources and left the organization vulnerable. This made it difficult for the team to stay current with training or acquire new skills and certifications, which are core to the ethos of both the company’s owners and the team itself.

Cyber-attacks on critical infrastructure increasing

The petrochemical manufacturer is part of a broader ecosystem of companies, making the protection of its supply chain – both upstream and downstream – critical. With several manufacturing entities and multiple locations, the customer’s internal structure is complex and challenging to secure. As cyber-attacks on critical infrastructure escalate, it needed a more comprehensive approach to safeguard its business and the wider ecosystem.

Keeping and growing skills and focus in-house

To strengthen its cybersecurity strategy, the company considered two options:

  1. Make a significant initial and ongoing investment in a Security Operations Center (SOC), which would involve skills development outside the company and substantial management overhead.
  2. Use a combination of new, automated tools and an outsourced Managed Detection and Response (MDR) service to reduce the burden on internal security specialists and allow the company to invest in upskilling its staff so they can focus on more strategic tasks.

Faced with this choice between entirely outsourcing security and augmenting the security team with new capabilities, the customer chose the second option, selecting Darktrace to automate the company’s monitoring, detection, and response. Today, the petrochemical manufacturer is using:

Extending the SOC with 24/7 expert support

To alleviate the burden on its lean security team, the company augmented its in-house capabilities with Darktrace’s Managed Detection & Response service. This support acts as an extension of its SOC, providing 24/7 monitoring, investigation, and escalation of high-priority threats. With Darktrace’s global SOC managing alert triage and autonomously containing threats, the organization’s internal team can focus on strategic initiatives. The result is a stronger security posture and increased capacity to proactively address evolving cyber risks – without expanding headcount or sacrificing visibility.

A unique approach to AI

In its search for a new security platform, the company’s Director of Information Technology said Darktrace’s autonomous response capability, coupled with Self-Learning AI-driven threat reduction, were two big reasons for selecting Darktrace over competing products and services.

AI was a huge factor – no one else was doing what Darktrace was doing with [AI].”

Demonstrated visibility

Before Darktrace, the customer had no visibility into the network activity to and from remote worker devices. Some employees need the ability to connect to its networks at any time and from any location, including the Director of Information Technology. The trial deployment of Darktrace / ENDPOINT was a success and gave the team peace of mind that, no matter the location or device, high-value remote workers were protected by Darktrace.

Modular architecture  

Darktrace's modular architecture allowed the company to deploy security controls across its complex, multi-entity environment. The company’s different locations run on segregated networks but are still interconnected and need to be protected. Darktrace / NETWORK provides a unified view and coordinated security response across the organization’s entire network infrastructure, including endpoint devices.

Results

The petrochemical manufacturer is using Darktrace across all of its locations and has achieved total visibility across network and user activity. “Darktrace is increasing in value every day,” said the Director of Information Technology.

I don’t have a big team, and Darktrace makes our lives very, very easy, not least the automation of some of the tasks that require constant manual review.”

Time savings frees analysts to focus on proactive security

Darktrace / NETWORK provides continuous, AI-driven monitoring and analysis of the company’s network activity, user behavior, and threat patterns, establishing a baseline of what normal activity looks like, and then alerting analysts to any deviations from normal traffic, activity, and behaviors. Darktrace’s autonomous response capabilities speed up response to detected threats, meaning intervention from the security team is required for fewer incidents and alerts.

In October 2024 alone, Darktrace Cyber AI Analyst saved the team 810 investigation hours, and autonomously responded to 180 anomalous behaviors that were uncovered during the investigations. With Darktrace managing the majority of threat detection and response efforts, the security team has been able to change its day-to-day activity from manual review of traffic and alerts and belated response to activity, to proactively fortifying its detection and response posture and upskilling to meet evolving requirements.  

Layered email protection reduces phishing threats

The company’s email infrastructure posed a challenge due to petrochemical industry regulations requiring on-premises email servers, with some security delivered via Microsoft Azure. By integrating Darktrace / EMAIL into the Azure stack, the organization has reduced the volume of phishing emails its users receive by 5%.

“Now we have one more layer of security related to email – every email goes through two filters. If something is not being caught or traced by Azure, it is being detected by Darktrace,” said the Director of Information Technology. “As a result, we’re now seeing only about 15% to 20% of the phishing emails we used to receive before implementing Darktrace.”

Preparing for a secure future

The time saved using Darktrace has helped the security team take proactive steps, including preparing for new cyber resilience regulations for Saudi Arabia’s Critical National Infrastructure, as mandated by the National Cybersecurity Authority (NCA).

“The team now has ample time to prepare policies and procedures that meet the new NCA regulations and, in some cases, enhance the requirements of the new law,” said the Director of Information Technology. “All of this is possible because they don’t need to keep watch; Darktrace takes on so much of that task for them.”

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI