Blog
/
Email
/
August 7, 2024

How Darktrace’s AI Applies a Zero-Trust Mentality within Critical Infrastructure Supply Chains

Darktrace prevented a Critical National Infrastructure organization from falling victim to a SharePoint phishing attack originating from one of its trusted suppliers. This blog discusses common perceptions of zero-trust in email security, how AI that uses anomaly-based threat detection embodies core zero-trust principles and the relevance of this approach to securing CNI bodies with complex but interdependent supply chains from Cloud account compromise. 
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nicole Wong
Cyber Security Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Aug 2024

Note: In order to name anonymity, real organization names have been replaced, all names used in this blog are fictitious.

What are critical national infrastructure sectors?

Critical National Infrastructure (CNI) sectors encompass of assets, systems, and networks essential to the functioning of society. Any disruption or destruction of these sectors could have wide-reaching and potentially disastrous effects on a country’s economy, security and/or healthcare services [1].

Cyber risks across Transportation Systems sector

Transportation Systems is one such CNI sector comprising of interconnected networks of fixed and mobile assets managed by both public and private operators. These systems are highly interdependent with other CNI sectors too. As such, the digital technologies this sector relies on – such as positioning and tracking, signaling, communications, industrial system controls, and data and business management – are often interconnected through different networks and remote access terminals. This interconnectedness creates multiple entry points that need to be security across the supply.

Digital transformation has swept through CNI sectors in recent years, including Transportation Systems. These organizations are now increasingly dependent on third-party and cloud providers for data storage and transmission, making their supply chains vulnerable to exploitation by malicious actors [2].

The exploitation of legitimate and popular cloud services mirrors the well-known “living-off-the-land” techniques, which are not being adapted to the cloud along with the resources they support. In one recent case previously discussed by Darktrace, for example, a phishing attack attempted to abuse Dropbox to deliver malicious payloads.

Zero-Trust within CNI Sectors

One recommended approach to secure an organization’s supply chain and cloud environments is the implementation of zero-trust strategies, which remove inherent trust within the network [3] [4]. The principle of “never trust, always verify” is widely recognized as an architectural design, with 63% of organizations surveyed by Gartner reportedly implementing a zero-trust strategy, but in most cases to less than 50% of their environments [5]

Although this figure reflects the reality and challenge of balancing operations and security, demands from the threat landscape and supply chain risks mean that organizations must adopt zero-trust principles in areas not traditionally considered part of network architecture, such as email and cloud environments.

Email is often the primary entry point for cyber-attacks with Business Email Compromise (BEC) being a major threat to CNI organizations. However, the application of zero-trust principles to secure email environments is still not well understood. Common misconceptions include:

  • “Positively identifying known and trusted senders” – Maintaining a list of “known and trusted senders” contradicts the zero-trust model, which assumes that no entity is inherently trustworthy.
  • “Using DMARC, DKIM and SPF” – While these protocols offer some protection, they are often insufficient on their own, as they can be bypassed and do not protect against email account takeovers. Research published from Darktrace’s last two threat reports consistently shows that at least 60% of phishing emails detected by Darktrace had bypassed Domain-based Message Authentication, Reporting & Conformance (DMARC) [6] [7].  
  • “Mapping transaction flows between internal and external users to determine what access is required/not required” – Although this aligns with the principles of least privilege, it is too static for today’s dynamic supply chains and evolving digital infrastructure. This approach also suggests the existence of “trusted” access routes into a network.

Attack Overview

In July 2024, Darktrace / EMAIL™ detected and contained a sophisticated phishing attack leveraging Microsoft SharePoint. This attack exploited the trusted relationship between a Darktrace customer in the public transport sector and a compromised supplier. Traditional methods, such as those detailed above, would likely have failed to defend against such an advanced threat. However, Darktrace’s behavioral analysis and zero-trust approach to email security allowed it to successfully identify and neutralize the attack, preventing any potential disruption.

Initial Intrusion Attempt

The observed phishing attack by Darktrace would suggest that the customer’s supplier was targeted by a similar campaign beforehand. This initial breach likely allowed the attacker to use the now compromised account as a vector to compromise additional accounts and networks.

On July 9, Darktrace / EMAIL identified a significant spike in inbound emails from “supplier@engineeringcompany[.]com”. The emails appeared to be legitimate notifications sent via SharePoint and contained a file named “Payment Applications Docs”.

Email correspondence in the weeks around the phishing attack.
Figure 1: Email correspondence in the weeks around the phishing attack. The sender is an established correspondent with ongoing communications prior to and after the attack, however there is a significant spike in incoming emails on the day of the attack.

This reflects a common technique in malicious social engineering attempts, where references to payment are used to draw attention and prompt a response. Darktrace observed a large number of recipients within the organization receiving the same file, suggesting that the motive was likely credential harvesting rather than financial gain. Financially motivated attacks typically require a more targeted, ‘under-the-radar’ approach to be successful.

These phishing emails were able to bypass the customer’s email gateways as they were sent from a trusted and authoritative source, SharePoint, and utilized an email address with which the customer had previously corresponded. The compromised account was likely whitelisted by traditional email security tools that rely on SPF, DKIM, and DMAC, allowing the malicious emails to evade detection.

Autonomous Response

Darktrace / EMAIL analysis of the unusual characteristics of the phishing email in relation to the supplier’s typical behaviour, despite the email originating from a legitimate SharePoint notification.
Figure 2: Darktrace / EMAIL analysis of the unusual characteristics of the phishing email in relation to the supplier’s typical behavior, despite the email originating from a legitimate SharePoint notification.

However, Darktrace / EMAIL did not use these static rules to automatically trust the email. Darktrace’s Self-Learning AI detected the following anomalies:

  • Although the sender was known, it was not normal for the supplier to share files with the customer via SharePoint.
  • The supplier initiated an unusually large number of file shares in a short period of time, indicating potential spam activity.
  • The SharePoint link had wide access permissions, which is unusual for a sensitive payment document legitimately shared between established contacts.

Darktrace understood that the email activity constituted a significant deviation in expected behavior between the sender and customer, regardless of the known sender and use of a legitimate filesharing platform like SharePoint.

As a result, Darktrace took action to hold more than 100 malicious emails connected to the phishing attack, preventing them from landing in recipient inboxes in the first instance.  By taking a behavioral approach to securing customer email environments, Darktrace’s Self-Learning AI embodies the principles of zero trust, assessing each interaction in real-time against a user’s dynamic baseline rather than relying on static and often inaccurate rules to define trust.

Conclusion

Cloud services, such as SharePoint, offer significant advantages to the transportation sector by streamlining data exchange with supply chain partners and facilitating access to information for analytics and planning. However, these benefits come with notable risks. If a cloud account is compromised, unauthorized access to sensitive information could lead to extortion and lateral movement into mission-critical systems for more damaging attacks on CNI. Even a brief disruption in cloud access can have severe economic repercussions due to the sector’s dependence on these services for resource coordination and the cascading impacts on other critical systems [9].

While supply chain resilience is often evaluated based on a supplier’s initial compliance with baseline standards, organizations must be wary of potential future threats and focus on post-implementation security. It is essential for organizations to employ strategies to protect their assets from attacks that would exploit vulnerabilities within the trusted supply chain. Given that CNI and the transportation sector are prime targets for state-sponsored actors and Advanced Persistent Threat (APT) groups, the complex and interconnected nature of their supply chains opens the door for opportunistic attackers.

Defenders face the challenge of ensuring secure access and collaboration across numerous, dynamic assets, often without full visibility. Therefore, security solutions must be as dynamic as the threats they face, avoiding reliance on static rules. Real-time assessment of devices behavior, even if deemed trusted by end-users and human security teams, is crucial for maintaining security.

Darktrace’s AI-driven threat detection aligns with the zero-trust principle of assuming the risk of a breach. By leveraging AI that learns an organization’s specific patterns of life, Darktrace provides a tailored security approach ideal for organizations with complex supply chains.

Credit to Nicole Wong, Senior Cyber Analyst Consultant and Ryan Traill, Threat Content Lead

Appendices

Darktrace Model Detections

Key model alerts:

  • Personalized Sharepoint Share + New Unknown Link
  • Personalized Sharepoint Share + Bad Display Text
  • Personalized Sharepoint Share + Distant Recipient Interaction with Domain
  • Personalized Sharepoint Share + Sender Surge
  • Personalized Sharepoint Share + Wide Access Sharepoint Link

MITRE ATT&CK Mapping

Resource Development • Compromise Accounts: Cloud Accounts • T1586.003

Initial Access • Supply Chain Compromise • T1195

References

[1] https://www.cisa.gov/topics/critical-infrastructure-security-and-resilience/critical-infrastructure-sectors

[2]  https://committees.parliament.uk/writtenevidence/126313/pdf/

[3] https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161r1.pdf

[4] https://cloudsecurityalliance.org/press-releases/2023/11/15/cloud-security-alliance-launches-the-industry-s-first-authoritative-zero-trust-training-and-credential-the-certificate-of-competence-in-zero-trust-cczt

[5] https://www.gartner.com/en/documents/5286863#:~:text=Summary,anticipate%20staffing%20and%20cost%20increases.

[6] https://darktrace.com/threat-report-2023

[7] https://darktrace.com/resources/first-6-half-year-threat-report-2024

[8] https://dfrlab.org/2023/07/10/critical-infrastructure-and-the-cloud-policy-for-emerging-risk/#transportation

[9] https://access-national-risk-register.service.cabinetoffice.gov.uk/risk-scenario/cyber-attack-transport-sector

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nicole Wong
Cyber Security Analyst

More in this series

No items found.

Blog

/

/

February 3, 2026

Introducing Darktrace / SECURE AI: Complete AI Security Across Your Enterprise

Darktrace Secure AIDefault blog imageDefault blog image

Why securing AI can’t wait

AI is entering the enterprise faster than IT and security teams can keep up, appearing in SaaS tools, embedded in core platforms, and spun up by teams eager to move faster.  

As this adoption accelerates, it introduces unpredictable behaviors and expands the attack surface in ways existing security tools can’t see or control, startup or platform, they all lack one trait. These new types of risks command the attention of security teams and boardrooms, touching everything from business integrity to regulatory exposure.

Securing AI demands a fundamentally different approach, one that understands how AI behaves, how it interacts with data and users, and how risk emerges in real time. That shift is at the core of how organizations should be thinking about securing AI across the enterprise.

What is the current state of securing AI?

In Darktrace’s latest State of AI in Cybersecurity Report research across 1,500 cybersecurity professionals shows that the percentage of organizations without an AI adoption policy grew from 55% last year to 63% this year.

More troubling, the percentage of organizations without any plan to create an AI policy nearly tripled from 3% to 8%. Without clear policies, businesses are effectively accelerating blindfolded.

When we analyzed activity across our own customer base, we saw the same patterns playing out in their environments. Last October alone, we saw a 39% month-over-month increase in anomalous data uploads to generative AI services, with the average upload being 75MB. Given the size and frequency of these uploads, it's almost certain that much of this data should never be leaving the enterprise.

Many security teams still lack visibility into how AI is being used across their business; how it’s behaving, what it’s accessing, and most importantly, whether it’s operating safely. This unsanctioned usage quietly expands, creating pockets of AI activity that fall completely outside established security controls. The result is real organizational exposure with almost no visibility, underscoring just how widespread AI use has already become desipite the existence of formal policies.

This challenge doesn’t stop internally. Shadow AI extends into third-party tools, vendor platforms, and partner systems, where AI features are embedded without clear oversight.

Meanwhile, attackers are now learning to exploit AI’s unique characteristics, compounding the risks organizations are already struggling to manage.

The leader in AI cybersecurity now secures AI

Darktrace brings more than a decade of behavioral AI expertise built on an enterprise‑wide platform designed to operate in the complex, ambiguous environments where today’s AI now lives.  

Other cybersecurity technologies try to predict each new attack based on historical attacks. The problem is AI operates like humans do. Every action introduces new information that changes how AI behaves, its unpredictable, and historical attack tactics are now only a small part of the equation, forcing vendors to retrofit unproven acquisitions to secure AI.  

Darktrace is fundamentally different. Our Self‑Learning AI learns what “normal” looks like for your unique business: how your users, systems, applications, and now AI agents behave, how they communicate, and how data flows. This allows us to spot even the smallest shifts when something changes in meaningful ways. Long before AI agents were introduced, our technology was already interpreting nuance, detecting drift, uncovering hidden relationships, and making sense of ambiguous activity across networks, cloud, SaaS, email, OT, identities, and endpoints.

As AI introduces new behaviors, unstructured interactions, invisible pathways, and the rise of Shadow AI, these challenges have only intensified. But this is exactly the environment our platform was built for. Securing AI isn’t a new direction for Darktrace — it’s the natural evolution of the behavioral intelligence we’ve delivered to thousands of organizations worldwide.

Introducing Darktrace / SECURE AI – Complete AI security across your enterprise

We are proud to introduce Darktrace / SECURE AI, the newest product in the Darktrace ActiveAI Security Platform designed to secure AI across the whole enterprise.

This marks the next chapter in our mission to secure organizations from cyber threats and emerging risks. By combining full visibility, intelligent behavioral oversight, and real-time control, Darktrace is enabling enterprises to safely adopt, manage, and build AI within their business. This ensures that AI usage, data access, and behavior remain aligned to security baselines, compliance, and business goals.

Darktrace / SECURE AI can bring every AI interaction into a single view, helping teams understand intent, assess risk, protect sensitive data, and enforce policy across both human and AI Agent activity. Now organizations can embrace AI with confidence, with visibility to ensure it is operating safely, responsibly, and in alignment with their security and compliance needs.  

Because securing AI spans multiple areas and layers of complexity, Darktrace / SECURE AI is built around four foundational use cases that ensure your whole enterprise and every AI use affecting your business, whether owned or through third parties, is protected, they are:

  • Monitoring the prompts driving GenAI agents and assistants
  • Securing business AI agent identities in real time
  • Evaluating AI risks in development and deployment
  • Discovering and controlling Shadow AI

Monitoring the prompts driving GenAI agents and assistants

For AI systems, prompts are one of the most active and sensitive points of interaction—spanning human‑AI exchanges where users express intent and AI‑AI interactions where agents generate internal prompts to reason and coordinate. Because prompt language effectively is behavior, and because it relies on natural language rather than a fixed, finite syntax, the attack surface is open‑ended. This makes prompt‑driven risks far more complex than traditional API‑based vulnerabilities tied to CVEs.

Whether an attacker is probing for weaknesses, an employee inadvertently exposes sensitive data, or agents generate their own sub‑tasks to drive complex workflows, security teams must understand how prompt behavior shapes model behavior—and where that behavior can go wrong. Without that behavioral understanding, organizations face heightened risks of exploitation, drift, and cascading failures within their AI systems.

Darktrace / SECURE AI brings together all prompt activity across enterprise AI systems, including Microsoft Copilot and ChatGPT Enterprise, low‑code environments like Microsoft Copilot Studio, SaaS providers like Salesforce and Microsoft 365, and high‑code platforms such as AWS Bedrock and SageMaker, into a single, unified layer of visibility.  

Beyond visibility, Darktrace applies behavioral analytics to understand whether a prompt is unusual or risky in the context of the user, their peers, and the broader organization. Because AI attacks are far more complex and conversational than traditional exploits against fixed APIs – sharing more in common with email and Teams/Slack interactions, —this behavioral understanding is essential. By treating prompts as behavioral signals, Darktrace can detect conversational attacks, malicious chaining, and subtle prompt‑injection attempts, and where integrations allow, intervene in real time to block unsafe prompts or prevent harmful model actions as they occur.

Securing business AI agent identities in real time

As organizations adopt more AI‑driven workflows, we’re seeing a rapid rise in autonomous and semi‑autonomous agents operating across the business. These agents operate within existing identities, with the capability to access systems, read and write data, and trigger actions across cloud platforms, internal infrastructure, applications, APIs, and third‑party services. Some identities are controlled, like users, others like the ones mentioned, can appear anywhere, with organizations having limited visibility into how they’re configured or how their permissions evolve over time.  

Darktrace / SECURE AI gives organizations a real‑time, identity‑centric understanding of what their AI agents are doing, not just what they were designed to do. It automatically discovers live agent identities operating across SaaS, cloud, network, endpoints, OT, and email, including those running inside third‑party environments.  

The platform maps how each agent is configured, what systems it accesses, and how it communicates, including activity such as MCP usage or interactions with storage services where sensitive data may reside.  

By continuously observing agent behavior across all domains, Darktrace / SECURE AI highlights when unnecessary or risky permissions are granted, when activity patterns deviate, or when agents begin chaining together actions in unintended ways. This real‑time audit trail allows organizations to evaluate whether agent actions align with intended operational parameters and catch anomalous or risky behavior early.    

Evaluating AI risks in development and deployment

In the build phase, new identities are created, entitlements accumulate, components are stitched together across SaaS, cloud, and internal environments, and logic starts taking shape through prompts and configurations.  

It’s a highly dynamic and often fragmented process, and even small missteps here, such as a misconfiguration in a created agent identity, can become major security issues once the system is deployed. This is why evaluating AI risk during development and deployment is critical.

Darktrace / SECURE AI brings clarity and control across this entire lifecycle — from the moment an AI system starts taking shape to the moment it goes live. It allows you to gain visibility into created identities and their access across hyperscalers, low‑code SaaS, and internal labs, supported by AI security posture management that surfaces misconfigurations, over‑entitlement, and anomalous building events. Darktrace/ SECURE AI then connects these development insights directly to prompt oversight, connecting how AI is being built to how it will behave once deployed.  The result is a safer, more predictable AI lifecycle where risks are discovered early, guardrails are applied consistently, and innovations move forward with confidence rather than guesswork.

Discovering and controlling Shadow AI

Shadow AI has now appeared across every corner of the enterprise. It’s not just an employee pasting internal data into an external chatbot; it includes unsanctioned agent builders, hidden MCP servers, rogue model deployments, and AI‑driven workflows running on devices or services no one expected to be using AI.  

Darktrace / SECURE AI brings this frontier into view by continuously analyzing interactions across cloud, networks, endpoints, OT, and SASE environments. It surfaces unapproved AI usage wherever it appears and distinguishes legitimate activity in sanctioned tools from misuse or high‑risk behavior. The system identifies hidden AI components and rogue agents, reveals unauthorized deployments and unexpected connections to external AI systems, and highlights risky data flows that deviate from business norms.

When the behavior warrants a response, Darktrace / SECURE AI enables policy enforcement that guides users back toward sanctioned options while containing unsafe or ungoverned adoption. This closes one of the fastest‑expanding security gaps in modern enterprises and significantly reduces the attack surface created by shadow AI.

Conclusion

What’s needed now along with policies and frameworks for AI adoption is the right tooling to detect threats based on AI behavior across shadow use, prompt risks, identity misuse, and AI development.  

Darktrace is uniquely positioned to secure AI, we’ve spent over a decade building AI that learns your business – understanding subtle behavior across the entire enterprise long before AI agents arrived. With over 10,000 customers relying on Darktrace as the last line of defense to capture threats others cannot, Securing AI isn’t a pivot for us, it's not an acquisition; it’s the natural extension of the behavioral expertise and enterprise‑wide intelligence our platform was built on from the start.  

To learn more about how to secure AI at your organization we curated a readiness program that brings together IT and security leaders navigating this responsibility, providing a forum to prepare for high-impact decisions, explore guardrails, and guide the business amid growing uncertainty and pressure.

Sign up for the Secure AI Readiness Program here: This gives you exclusive access to the latest news on the latest AI threats, updates on emerging approaches shaping AI security, and insights into the latest innovations, including Darktrace’s ongoing work in this area.

Ready to talk with a Darktrace expert on securing AI? Register here to receive practical guidance on the AI risks that matter most to your business, paired with clarity on where to focus first across governance, visibility, risk reduction, and long-term readiness.  

Continue reading
About the author
Brittany Woodsmall
Product Marketing Manager, AI

Blog

/

Endpoint

/

February 1, 2026

ClearFake: From Fake CAPTCHAs to Blockchain-Driven Payload Retrieval

fake captcha to blockchain driven palyload retrievalDefault blog imageDefault blog image

What is ClearFake?

As threat actors evolve their techniques to exploit victims and breach target networks, the ClearFake campaign has emerged as a significant illustration of this continued adaptation. ClearFake is a campaign observed using a malicious JavaScript framework deployed on compromised websites, impacting sectors such as e‑commerce, travel, and automotive. First identified in mid‑2023, ClearFake is frequently leveraged to socially engineer victims into installing fake web browser updates.

In ClearFake compromises, victims are steered toward compromised WordPress sites, often positioned by attackers through search engine optimization (SEO) poisoning. Once on the site, users are presented with a fake CAPTCHA. This counterfeit challenge is designed to appear legitimate while enabling the execution of malicious code. When a victim interacts with the CAPTCHA, a PowerShell command containing a download string is retrieved and executed.

Attackers commonly abuse the legitimate Microsoft HTML Application Host (MSHTA) in these operations. Recent campaigns have also incorporated Smart Chain endpoints, such as “bsc-dataseed.binance[.]org,” to obtain configuration code. The primary payload delivered through ClearFake is typically an information stealer, such as Lumma Stealer, enabling credential theft, data exfiltration, and persistent access [1].

Darktrace’s Coverage of ClearFake

Darktrace / ENDPOINT first detected activity likely associated with ClearFake on a single device on over the course of one day on November 18, 2025. The system observed the execution of “mshta.exe,” the legitimate Microsoft HTML Application Host utility. It also noted a repeated process command referencing “weiss.neighb0rrol1[.]ru”, indicating suspicious external activity. Subsequent analysis of this endpoint using open‑source intelligence (OSINT) indicated that it was a malicious, domain generation algorithm (DGA) endpoint [2].

The process line referencing weiss.neighb0rrol1[.]ru, as observed by Darktrace / ENDPOINT.
Figure 1: The process line referencing weiss.neighb0rrol1[.]ru, as observed by Darktrace / ENDPOINT.

This activity indicates that mshta.exe was used to contact a remote server, “weiss.neighb0rrol1[.]ru/rpxacc64mshta,” and execute the associated HTA file to initiate the next stage of the attack. OSINT sources have since heavily flagged this server as potentially malicious [3].

The first argument in this process uses the MSHTA utility to execute the HTA file hosted on the remote server. If successful, MSHTA would then run JavaScript or VBScript to launch PowerShell commands used to retrieve malicious payloads, a technique observed in previous ClearFake campaigns. Darktrace also detected unusual activity involving additional Microsoft executables, including “winlogon.exe,” “userinit.exe,” and “explorer.exe.” Although these binaries are legitimate components of the Windows operating system, threat actors can abuse their normal behavior within the Windows login sequence to gain control over user sessions, similar to the misuse of mshta.exe.

EtherHiding cover

Darktrace also identified additional ClearFake‑related activity, specifically a connection to bsc-testnet.drpc[.]org, a legitimate BNB Smart Chain endpoint. This activity was triggered by injected JavaScript on the compromised site www.allstarsuae[.]com, where the script initiated an eth_call POST request to the Smart Chain endpoint.

Example of a fake CAPTCHA on the compromised site www.allstarsuae[.]com.
Figure 2: Example of a fake CAPTCHA on the compromised site www.allstarsuae[.]com.

EtherHiding is a technique in which threat actors leverage blockchain technology, specifically smart contracts, as part of their malicious infrastructure. Because blockchain is anonymous, decentralized, and highly persistent, it provides threat actors with advantages in evading defensive measures and traditional tracking [4].

In this case, when a user visits a compromised WordPress site, injected base64‑encoded JavaScript retrieved an ABI string, which was then used to load and execute a contract hosted on the BNB Smart Chain.

JavaScript hosted on the compromised site www.allstaruae[.]com.
Figure 3: JavaScript hosted on the compromised site www.allstaruae[.]com.

Conducting malware analysis on this instance, the Base64 decoded into a JavaScript loader. A POST request to bsc-testnet.drpc[.]org was then used to retrieve a hex‑encoded ABI string that loads and executes the contract. The JavaScript also contained hex and Base64‑encoded functions that decoded into additional JavaScript, which attempted to retrieve a payload hosted on GitHub at “github[.]com/PrivateC0de/obf/main/payload.txt.” However, this payload was unavailable at the time of analysis.

Darktrace’s detection of the POST request to bsc-testnet.drpc[.]org.
Figure 4: Darktrace’s detection of the POST request to bsc-testnet.drpc[.]org.
Figure 5: Darktrace’s detection of the executable file and the malicious hostname.

Autonomous Response

As Darktrace’s Autonomous Response capability was enabled on this customer’s network, Darktrace was able to take swift mitigative action to contain the ClearFake‑related activity early, before it could lead to potential payload delivery. The affected device was blocked from making external connections to a number of suspicious endpoints, including 188.114.96[.]6, *.neighb0rrol1[.]ru, and neighb0rrol1[.]ru, ensuring that no further malicious connections could be made and no payloads could be retrieved.

Autonomous Response also acted to prevent the executable mshta.exe from initiating HTA file execution over HTTPS from this endpoint by blocking the attempted connections. Had these files executed successfully, the attack would likely have resulted in the retrieval of an information stealer, such as Lumma Stealer.

Autonomous Response’s intervention against the suspicious connectivity observed.
Figure 6: Autonomous Response’s intervention against the suspicious connectivity observed.

Conclusion

ClearFake continues to be observed across multiple sectors, but Darktrace remains well‑positioned to counter such threats. Because ClearFake’s end goal is often to deliver malware such as information stealers and malware loaders, early disruption is critical to preventing compromise. Users should remain aware of this activity and vigilant regarding fake CAPTCHA pop‑ups. They should also monitor unusual usage of MSHTA and outbound connections to domains that mimic formats such as “bsc-dataseed.binance[.]org” [1].

In this case, Darktrace was able to contain the attack before it could successfully escalate and execute. The attempted execution of HTA files was detected early, allowing Autonomous Response to intervene, stopping the activity from progressing. As soon as the device began communicating with weiss.neighb0rrol1[.]ru, an Autonomous Response inhibitor triggered and interrupted the connections.

As ClearFake continues to rise, users should stay alert to social engineering techniques, including ClickFix, that rely on deceptive security prompts.

Credit to Vivek Rajan (Senior Cyber Analyst) and Tara Gould (Malware Research Lead)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

Process / New Executable Launched

Endpoint / Anomalous Use of Scripting Process

Endpoint / New Suspicious Executable Launched

Endpoint / Process Connection::Unusual Connection from New Process

Autonomous Response Models

Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block

List of Indicators of Compromise (IoCs)

  • weiss.neighb0rrol1[.]ru – URL - Malicious Domain
  • 188.114.96[.]6 – IP – Suspicious Domain
  • *.neighb0rrol1[.]ru – URL – Malicious Domain

MITRE Tactics

Initial Access, Drive-by Compromise, T1189

User Execution, Execution, T1204

Software Deployment Tools, Execution and Lateral Movement, T1072

Command and Scripting Interpreter, T1059

System Binary Proxy Execution: MSHTA, T1218.005

References

1.        https://www.kroll.com/en/publications/cyber/rapid-evolution-of-clearfake-delivery

2.        https://www.virustotal.com/gui/domain/weiss.neighb0rrol1.ru

3.        https://www.virustotal.com/gui/file/1f1aabe87e5e93a8fff769bf3614dd559c51c80fc045e11868f3843d9a004d1e/community

4.        https://www.packetlabs.net/posts/etherhiding-a-new-tactic-for-hiding-malware-on-the-blockchain/

Continue reading
About the author
Vivek Rajan
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI