Blog
/
Network
/
July 26, 2022

Identifying PrivateLoader Network Threats

Learn how Darktrace identifies network-based indicators of compromise for the PrivateLoader malware. Gain insights into advanced threat detection.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
SOC Analyst
Written by
Shuh Chin Goh
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Jul 2022

Instead of delivering their malicious payloads themselves, threat actors can pay certain cybercriminals (known as pay-per-install (PPI) providers) to deliver their payloads for them. Since January 2022, Darktrace’s SOC has observed several cases of PPI providers delivering their clients’ payloads using a modular malware downloader known as ‘PrivateLoader’.

This blog will explore how these PPI providers installed PrivateLoader onto systems and outline the steps which the infected PrivateLoader bots took to install further malicious payloads. The details provided here are intended to provide insight into the operations of PrivateLoader and to assist security teams in identifying PrivateLoader bots within their own networks.  

Threat Summary 

Between January and June 2022, Darktrace identified the following sequence of network behaviours within the environments of several Darktrace clients. Patterns of activity involving these steps are paradigmatic examples of PrivateLoader activity:

1. A victim’s device is redirected to a page which instructs them to download a password-protected archive file from a file storage service — typically Discord Content Delivery Network (CDN)

2. The device contacts a file storage service (typically Discord CDN) via SSL connections

3. The device either contacts Pastebin via SSL connections, makes an HTTP GET request with the URI string ‘/server.txt’ or ‘server_p.txt’ to 45.144.225[.]57, or makes an HTTP GET request with the URI string ‘/proxies.txt’ to 212.193.30[.]45

4. The device makes an HTTP GET request with the URI string ‘/base/api/statistics.php’ to either 212.193.30[.]21, 85.202.169[.]116, 2.56.56[.]126 or 2.56.59[.]42

5. The device contacts a file storage service (typically Discord CDN) via SSL connections

6. The device makes a HTTP POST request with the URI string ‘/base/api/getData.php’ to either 212.193.30[.]21, 85.202.169[.]116, 2.56.56[.]126 or 2.56.59[.]42

7. The device finally downloads malicious payloads from a variety of endpoints

The PPI Business 

Before exploring PrivateLoader in more detail, the pay-per-install (PPI) business should be contextualized. This consists of two parties:  

1. PPI clients - actors who want their malicious payloads to be installed onto a large number of target systems. PPI clients are typically entry-level threat actors who seek to widely distribute commodity malware [1]

2. PPI providers - actors who PPI clients can pay to install their malicious payloads 

As the smugglers of the cybercriminal world, PPI providers typically advertise their malware delivery services on underground web forums. In some cases, PPI services can even be accessed via Clearnet websites such as InstallBest and InstallShop [2] (Figure 1).  

Figure 1: A snapshot of the InstallBest PPI login page [2]


To utilize a PPI provider’s service, a PPI client must typically specify: 

(A)  the URLs of the payloads which they want to be installed

(B)  the number of systems onto which they want their payloads to be installed

(C)  their geographical targeting preferences. 

Payment of course, is also required. To fulfil their clients’ requests, PPI providers typically make use of downloaders - malware which instructs the devices on which it is running to download and execute further payloads. PPI providers seek to install their downloaders onto as many systems as possible. Follow-on payloads are usually determined by system information garnered and relayed back to the PPI providers’ command and control (C2) infrastructure. PPI providers may disseminate their downloaders themselves, or they may outsource the dissemination to third parties called ‘affiliates’ [3].  

Back in May 2021, Intel 471 researchers became aware of PPI providers using a novel downloader (dubbed ‘PrivateLoader’) to conduct their operations. Since Intel 471’s public disclosure of the downloader back in Feb 2022 [4], several other threat research teams, such as the Walmart Cyber Intel Team [5], Zscaler ThreatLabz [6], and Trend Micro Research [7] have all provided valuable insights into the downloader’s behaviour. 

Anatomy of a PrivateLoader Infection

The PrivateLoader downloader, which is written in C++, was originally monolithic (i.e, consisted of only one module). At some point, however, the downloader became modular (i.e, consisting of multiple modules). The modules communicate via HTTP and employ various anti-analysis methods. PrivateLoader currently consists of the following three modules [8]: 

  • The loader module: Instructs the system on which it is running to retrieve the IP address of the main C2 server and to download and execute the PrivateLoader core module
  • The core module: Instructs the system on which it is running to send system information to the main C2 server, to download and execute further malicious payloads, and to relay information regarding installed payloads back to the main C2 server
  • The service module: Instructs the system on which it is running to keep the PrivateLoader modules running

Kill Chain Deep-Dive 

The chain of activity starts with the user’s browser being redirected to a webpage which instructs them to download a password-protected archive file from a file storage service such as Discord CDN. Discord is a popular VoIP and instant messaging service, and Discord CDN is the service’s CDN infrastructure. In several cases, the webpages to which users’ browsers were redirected were hosted on ‘hero-files[.]com’ (Figure 2), ‘qd-files[.]com’, and ‘pu-file[.]com’ (Figure 3). 

Figure 2: An image of a page hosted on hero-files[.]com - an endpoint which Darktrace observed systems contacting before downloading PrivateLoader from Discord CDN
Figure 3: An image of a page hosted on pu-file[.]com- an endpoint which Darktrace observed systems contacting before downloading PrivateLoader from Discord CDN


On attempting to download cracked/pirated software, users’ browsers were typically redirected to download instruction pages. In one case however, a user’s device showed signs of being infected with the malicious Chrome extension, ChromeBack [9], immediately before it contacted a webpage providing download instructions (Figure 4). This may suggest that cracked software downloads are not the only cause of users’ browsers being redirected to these download instruction pages (Figure 5). 

Figure 4: The event log for this device (taken from the Darktrace Threat Visualiser interface) shows that the device contacted endpoints associated with ChromeBack ('freychang[.]fun') prior to visiting a page ('qd-file[.]com') which instructed the device’s user to download an archive file from Discord CDN
 Figure 5: An image of the website 'crackright[.]com'- a provider of cracked software. Systems which attempted to download software from this website were subsequently led to pages providing instructions to download a password-protected archive from Discord CDN


After users’ devices were redirected to pages instructing them to download a password-protected archive, they subsequently contacted cdn.discordapp[.]com over SSL. The archive files which users downloaded over these SSL connections likely contained the PrivateLoader loader module. Immediately after contacting the file storage endpoint, users’ devices were observed either contacting Pastebin over SSL, making an HTTP GET request with the URI string ‘/server.txt’ or ‘server_p.txt’ to 45.144.225[.]57, or making an HTTP GET request with the URI string ‘/proxies.txt’ to 212.193.30[.]45 (Figure 6).

Distinctive user-agent strings such as those containing question marks (e.g. ‘????ll’) and strings referencing outdated Chrome browser versions were consistently seen in these HTTP requests. The following chrome agent was repeatedly observed: ‘Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.169 Safari/537.36’.

In some cases, devices also displayed signs of infection with other strains of malware such as the RedLine infostealer and the BeamWinHTTP malware downloader. This may suggest that the password-protected archives embedded several payloads.

Figure 6: This figure, obtained from Darktrace's Advanced Search interface, represents the post-infection behaviour displayed by a PrivateLoader bot. After visiting hero-files[.]com and downloading the PrivateLoader loader module from Discord CDN, the device can be seen making HTTP GET requests for ‘/proxies.txt’ and ‘/server.txt’ and contacting pastebin[.]com

It seems that PrivateLoader bots contact Pastebin, 45.144.225[.]57, and 212.193.30[.]45 in order to retrieve the IP address of PrivateLoader’s main C2 server - the server which provides PrivateLoader bots with payload URLs. This technique used by the operators of PrivateLoader closely mirrors the well-known espionage tactic known as ‘dead drop’.

The dead drop is a method of espionage tradecraft in which an individual leaves a physical object such as papers, cash, or weapons in an agreed hiding spot so that the intended recipient can retrieve the object later on without having to come in to contact with the source. When threat actors host information about core C2 infrastructure on intermediary endpoints, the hosted information is analogously called a ‘Dead Drop Resolver’ or ‘DDR’. Example URLs of DDRs used by PrivateLoader:

  • https://pastebin[.]com/...
  • http://212.193.30[.]45/proxies.txt
  • http://45.144.225[.]57/server.txt
  • http://45.144.255[.]57/server_p.txt

The ‘proxies.txt’ DDR hosted on 212.193.40[.]45 contains a list of 132 IP address / port pairs. The 119th line of this list includes a scrambled version of the IP address of PrivateLoader’s main C2 server (Figures 7 & 8). Prior to June, it seems that the main C2 IP address was ‘212.193.30[.]21’, however, the IP address appears to have recently changed to ‘85.202.169[.]116’. In a limited set of cases, Darktrace also observed PrivateLoader bots retrieving payload URLs from 2.56.56[.]126 and 2.56.59[.]42 (rather than from 212.193.30[.]21 or 85.202.169[.]116). These IP addresses may be hardcoded secondary C2 address which PrivateLoader bots use in cases where they are unable to retrieve the primary C2 address from Pastebin, 212.193.30[.]45 or 45.144.255[.]57 [10]. 

Figure 7: Before June, the 119th entry of the ‘proxies.txt’ file lists '30.212.21.193' -  a scrambling of the ‘212.193.30[.]21’ main C2 IP address
Figure 8: Since June, the 119th entry of the ‘proxies.txt’ file lists '169.85.116.202' - a scrambling of the '85.202.169[.]116' main C2 IP address

Once PrivateLoader bots had retrieved C2 information from either Pastebin, 45.144.225[.]57, or 212.193.30[.]45, they went on to make HTTP GET requests for ‘/base/api/statistics.php’ to either 212.193.30[.]21, 85.202.169[.]116, 2.56.56[.]126, or 2.56.59[.]42 (Figure 9). The server responded to these requests with an XOR encrypted string. The strings were encrypted using a 1-byte key [11], such as 0001101 (Figure 10). Decrypting the string revealed a URL for a BMP file hosted on Discord CDN, such as ‘hxxps://cdn.discordapp[.]com/attachments/978284851323088960/986671030670078012/PL_Client.bmp’. These encrypted URLs appear to be file download paths for the PrivateLoader core module. 

Figure 9: HTTP response from server to an HTTP GET request for '/base/api/statistics.php'
Figure 10: XOR decrypting the string with the one-byte key, 00011101, outputs a URL in CyberChef

After PrivateLoader bots retrieved the 'cdn.discordapp[.]com’ URL from 212.193.30[.]21, 85.202.169[.]116, 2.56.56[.]126, or 2.56.59[.]42, they immediately contacted Discord CDN via SSL connections in order to obtain the PrivateLoader core module. Execution of this module resulted in the bots making HTTP POST requests (with the URI string ‘/base/api/getData.php’) to the main C2 address (Figures 11 & 12). Both the data which the PrivateLoader bots sent over these HTTP POST requests and the data returned via the C2 server’s HTTP responses were heavily encrypted using a combination of password-based key derivation, base64 encoding, AES encryption, and HMAC validation [12]. 

Figure 11: The above image, taken from Darktrace's Advanced Search interface, shows a PrivateLoader bot carrying out the following steps: contact ‘hero-files[.]com’ --> contact ‘cdn.discordapp[.]com’ --> retrieve ‘/proxies.txt’ from 212.193.30[.]45 --> retrieve ‘/base/api/statistics.php’ from 212.193.30[.]21 --> contact ‘cdn.discordapp[.]com --> make HTTP POST request with the URI ‘base/api/getData.php’ to 212.193.30[.]21
Figure 12: A PCAP of the data sent via the HTTP POST (in red), and the data returned by the C2 endpoint (in blue)

These ‘/base/api/getData.php’ POST requests contain a command, a campaign name and a JSON object. The response may either contain a simple status message (such as “success”) or a JSON object containing URLs of payloads. After making these HTTP connections, PrivateLoader bots were observed downloading and executing large volumes of payloads (Figure 13), ranging from crypto-miners to infostealers (such as Mars stealer), and even to other malware downloaders (such as SmokeLoader). In some cases, bots were also seen downloading files with ‘.bmp’ extensions, such as ‘Service.bmp’, ‘Cube_WW14.bmp’, and ‘NiceProcessX64.bmp’, from 45.144.225[.]57 - the same DDR endpoint from which PrivateLoader bots retrieved main C2 information. These ‘.bmp’ payloads are likely related to the PrivateLoader service module [13]. Certain bots made follow-up HTTP POST requests (with the URI string ‘/service/communication.php’) to either 212.193.30[.]21 or 85.202.169[.]116, indicating the presence of the PrivateLoader service module, which has the purpose of establishing persistence on the device (Figure 14). 

Figure 13: The above image, taken from Darktrace's Advanced Search interface, outlines the plethora of malware payloads downloaded by a PrivateLoader bot after it made an HTTP POST request to the ‘/base/api/getData.php’ endpoint. The PrivateLoader service module is highlighted in red
Figure 14: The event log for a PrivateLoader bot, obtained from the Threat Visualiser interface, shows a device making HTTP POST requests to ‘/service/communication.php’ and connecting to the NanoPool mining pool, indicating successful execution of downloaded payloads

In several observed cases, PrivateLoader bots downloaded another malware downloader called ‘SmokeLoader’ (payloads named ‘toolspab2.exe’ and ‘toolspab3.exe’) from “Privacy Tools” endpoints [14], such as ‘privacy-tools-for-you-802[.]com’ and ‘privacy-tools-for-you-783[.]com’. These “Privacy Tools” domains are likely impersonation attempts of the legitimate ‘privacytools[.]io’ website - a website run by volunteers who advocate for data privacy [15]. 

After downloading and executing malicious payloads, PrivateLoader bots were typically seen contacting crypto-mining pools, such as NanoPool, and making HTTP POST requests to external hosts associated with SmokeLoader, such as hosts named ‘host-data-coin-11[.]com’ and ‘file-coin-host-12[.]com’ [16]. In one case, a PrivateLoader bot went on to exfiltrate data over HTTP to an external host named ‘cheapf[.]link’, which was registered on the 14th March 2022 [17]. The name of the file which the PrivateLoader bot used to exfiltrate data was ‘NOP8QIMGV3W47Y.zip’, indicating information stealing activities by Mars Stealer (Figure 15) [18]. By saving the HTTP stream as raw data and utilizing a hex editor to remove the HTTP header portions, the hex data of the ZIP file was obtained. Saving the hex data using a ‘.zip’ extension and extracting the contents, a file directory consisting of system information and Chrome and Edge browsers’ Autofill data in cleartext .txt file format could be seen (Figure 16).

Figure 15: A PCAP of a PrivateLoader bot’s HTTP POST request to cheapf[.]link, with data sent by the bot appearing to include Chrome and Edge autofill data, as well as system information
Figure 16: File directory structure and files of the ZIP archive 

When left unattended, PrivateLoader bots continued to contact C2 infrastructure in order to relay details of executed payloads and to retrieve URLs of further payloads. 

Figure 17: Timeline of the attack

Darktrace Coverage 

Most of the incidents surveyed for this article belonged to prospective customers who were trialling Darktrace with RESPOND in passive mode, and thus without the ability for autonomous intervention. However in all observed cases, Darktrace DETECT was able to provide visibility into the actions taken by PrivateLoader bots. In one case, despite the infected bot being disconnected from the client’s network, Darktrace was still able to provide visibility into the device’s network behaviour due to the client’s usage of Darktrace/Endpoint. 

If a system within an organization’s network becomes infected with PrivateLoader, it will display a range of anomalous network behaviours before it downloads and executes malicious payloads. For example, it will contact Pastebin or make HTTP requests with new and unusual user-agent strings to rare external endpoints. These network behaviours will generate some of the following alerts on the Darktrace UI:

  • Compliance / Pastebin 
  • Device / New User Agent and New IP
  • Device / New User Agent
  • Device / Three or More New User Agents
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous Connection / POST to PHP on New External Host
  • Anomalous Connection / Posting HTTP to IP Without Hostname

Once the infected host obtains URLs for malware payloads from a C2 endpoint, it will likely start to download and execute large volumes of malicious files. These file downloads will usually cause Darktrace to generate some of the following alerts:

  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Numeric Exe Download
  • Anomalous File / Masqueraded File Transfer
  • Anomalous File / Multiple EXE from Rare External Locations
  • Device / Initial Breach Chain Compromise

If RESPOND is deployed in active mode, Darktrace will be able to autonomously block the download of additional malware payloads onto the target machine and the subsequent beaconing or crypto-mining activities through network inhibitors such as ‘Block matching connections’, ‘Enforce pattern of life’ and ‘Block all outgoing traffic’. The ‘Enforce pattern of life’ action results in a device only being able to make connections and data transfers which Darktrace considers normal for that device. The ‘Block all outgoing traffic’ action will cause all traffic originating from the device to be blocked. If the customer has Darktrace’s Proactive Threat Notification (PTN) service, then a breach of an Enhanced Monitoring model such as ‘Device / Initial Breach Chain Compromise’ will result in a Darktrace SOC analyst proactively notifying the customer of the suspicious activity. Below is a list of Darktrace RESPOND (Antigena) models which would be expected to breach due to PrivateLoader activity. Such models can seriously hamper attempts made by PrivateLoader bots to download malicious payloads. 

  • Antigena / Network / External Threat / Antigena Suspicious File Block
  • Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach
  • Antigena / Network / External Threat / Antigena File then New Outbound Block
  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block 
  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

In one observed case, the infected bot began to download malicious payloads within one minute of becoming infected with PrivateLoader. Since RESPOND was correctly configured, it was able to immediately intervene by autonomously enforcing the device’s pattern of life for 2 hours and blocking all of the device’s outgoing traffic for 10 minutes (Figure 17). When malware moves at such a fast pace, the availability of autonomous response technology, which can respond immediately to detected threats, is key for the prevention of further damage.  

Figure 18: The event log for a Darktrace RESPOND (Antigena) model breach shows Darktrace RESPOND performing inhibitive actions once the PrivateLoader bot begins to download payloads

Conclusion

By investigating PrivateLoader infections over the past couple of months, Darktrace has observed PrivateLoader operators making changes to the downloader’s main C2 IP address and to the user-agent strings which the downloader uses in its C2 communications. It is relatively easy for the operators of PrivateLoader to change these superficial network-based features of the malware in order to evade detection [19]. However, once a system becomes infected with PrivateLoader, it will inevitably start to display anomalous patterns of network behaviour characteristic of the Tactics, Techniques and Procedures (TTPs) discussed in this blog.

Throughout 2022, Darktrace observed overlapping patterns of network activity within the environments of several customers, which reveal the archetypal steps of a PrivateLoader infection. Despite the changes made to PrivateLoader’s network-based features, Darktrace’s Self-Learning AI was able to continually identify infected bots, detecting every stage of an infection without relying on known indicators of compromise. When configured, RESPOND was able to immediately respond to such infections, preventing further advancement in the cyber kill chain and ultimately preventing the delivery of floods of payloads onto infected devices.

IoCs

MITRE ATT&CK Techniques Observed

References

[1], [8],[13] https://www.youtube.com/watch?v=Ldp7eESQotM  

[2] https://news.sophos.com/en-us/2021/09/01/fake-pirated-software-sites-serve-up-malware-droppers-as-a-service/

[3] https://www.researchgate.net/publication/228873118_Measuring_Pay-per Install_The_Commoditization_of_Malware_Distribution 

[4], [15] https://intel471.com/blog/privateloader-malware

[5] https://medium.com/walmartglobaltech/privateloader-to-anubis-loader-55d066a2653e 

[6], [10],[11], [12] https://www.zscaler.com/blogs/security-research/peeking-privateloader 

[7] https://www.trendmicro.com/en_us/research/22/e/netdooka-framework-distributed-via-privateloader-ppi.html

[9] https://www.gosecure.net/blog/2022/02/10/malicious-chrome-browser-extension-exposed-chromeback-leverages-silent-extension-loading/

[14] https://www.proofpoint.com/us/blog/threat-insight/malware-masquerades-privacy-tool 

[16] https://asec.ahnlab.com/en/30513/ 

[17]https://twitter.com/0xrb/status/1515956690642161669

[18] https://isc.sans.edu/forums/diary/Arkei+Variants+From+Vidar+to+Mars+Stealer/28468

[19] http://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
SOC Analyst
Written by
Shuh Chin Goh

More in this series

No items found.

Blog

/

Email

/

May 21, 2025

Evaluating Email Security: How to Select the Best Solution for Your Organization

person holding ipadDefault blog imageDefault blog image

When evaluating email security solutions, it’s crucial to move beyond marketing claims and focus on real-world performance. One of the most effective ways to achieve this is through an A/B comparison approach – a side-by-side evaluation of vendors based on consistent, predefined criteria.

This method cuts through biases, reveals true capability differences, and ensures that all solutions are assessed on a level playing field. It’s not just about finding an objectively good solution – it’s about finding the best solution for your organization’s specific needs.

An A/B comparison approach is particularly effective for three main reasons:

  1. Eliminates bias: By comparing solutions under identical conditions, it’s easier to spot differences in performance without the fog of marketing jargon.
  2. Highlights real capabilities: Direct side-by-side testing exposes genuine strengths and weaknesses, making it easier to judge which features are impactful versus merely decorative.
  3. Encourages objective decision-making: This structured method reduces emotional or brand-driven decisions, focusing purely on metrics and performance.

Let’s look at the key factors to consider when setting up your evaluation to ensure a fair, accurate, and actionable comparison.

Deployment: Setting the stage for fair evaluation

To achieve a genuine comparison, deployment must be consistent across all evaluated solutions:

  • Establish the same scope: All solutions should be granted identical visibility across relevant tenants and domains to ensure parity.
  • Set a concrete timeline: Deploy and test each solution with the same dataset, at the same points in time. This allows you to observe differences in learning periods and adaptive capabilities.

Equal visibility and synchronized timelines prevent discrepancies that could skew your understanding of each vendor’s true capabilities. But remember – quicker results might not equal better learning or understanding!

Tuning and configurations: Optimizing for real-world conditions

Properly tuning and configuring each solution is critical for fair evaluation:

  • Compare on optimal performance: Consult with each vendor to understand what optimal deployment looks like for their solution, particularly if machine learning is involved.
  • Consider the long term: Configuration adjustments should be made with long-term usage in mind. Short-term fixes can mask long-term challenges.
  • Data visibility: Ensure each solution can retain and provide search capabilities on all data collected throughout the evaluation period.

These steps guarantee that you are comparing fully optimized versions of each platform, not underperforming or misconfigured ones.

Evaluation: Applying consistent metrics

Once deployment and configurations are aligned, the evaluation itself must be consistent, to prevent unfair scoring and help to identify true differences in threat detection and response capabilities.

  • Coordinate your decision criteria: Ensure all vendors are measured against the same set of criteria, established before testing begins.
  • Understand vendor threat classification: Each vendor may have different ways of classifying threats, so be sure to understand these nuances.
  • Maintain communication: If results seem inaccurate, engage with the vendors. Their response and remediation capabilities are part of the evaluation.

Making a decision: Look beyond the metrics

When it comes to reviewing the performance of each solution, it’s important to both consider and look beyond the raw data. This is about choosing the solution that best aligns with your specific business needs, which may include factors and features not captured in the results.

  • Evaluate based on results: Consider accuracy, threats detected, precision, and response effectiveness.
  • Evaluate beyond results: Assess the overall experience, including support, integrations, training, and long-term alignment with your security strategy.
  • Review and communicate: Internally review the findings and communicate them back to the vendors.

Choosing the right email security solution isn’t just about ticking boxes, it’s about strategic alignment with your organization’s goals and the evolving threat landscape. A structured, A/B comparison approach will help ensure that the solution you select is truly the best fit.

For a full checklist of the features and capabilities to compare, as well as how to perform a commercial and technical evaluation, check out the full Buyer’s Checklist for Evaluating Email Security.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

OT

/

May 21, 2025

Adapting to new USCG cybersecurity mandates: Darktrace for ports and maritime systems

Cargo ships at a portDefault blog imageDefault blog image

What is the Marine Transportation System (MTS)?

Marine Transportation Systems (MTS) play a substantial roll in U.S. commerce, military readiness, and economic security. Defined as a critical national infrastructure, the MTS encompasses all aspects of maritime transportation from ships and ports to the inland waterways and the rail and roadways that connect them.

MTS interconnected systems include:

  • Waterways: Coastal and inland rivers, shipping channels, and harbors
  • Ports: Terminals, piers, and facilities where cargo and passengers are transferred
  • Vessels: Commercial ships, barges, ferries, and support craft
  • Intermodal Connections: Railroads, highways, and logistics hubs that tie maritime transport into national and global supply chains

The Coast Guard plays a central role in ensuring the safety, security, and efficiency of the MTS, handling over $5.4 trillion in annual economic activity. As digital systems increasingly support operations across the MTS, from crane control to cargo tracking, cybersecurity has become essential to protecting this lifeline of U.S. trade and infrastructure.

Maritime Transportation Systems also enable international trade, making them prime targets for cyber threats from ransomware gangs to nation-state actors.

To defend against growing threats, the United States Coast Guard (USCG) has moved from encouraging cybersecurity best practices to enforcing them, culminating in a new mandate that goes into effect on July 16, 2025. These regulations aim to secure the digital backbone of the maritime industry.

Why maritime ports are at risk

Modern ports are a blend of legacy and modern OT, IoT, and IT digitally connected technologies that enable crane operations, container tracking, terminal storage, logistics, and remote maintenance.

Many of these systems were never designed with cybersecurity in mind, making them vulnerable to lateral movement and disruptive ransomware attack spillover.

The convergence of business IT networks and operational infrastructure further expands the attack surface, especially with the rise of cloud adoption and unmanaged IoT and IIoT devices.

Cyber incidents in recent years have demonstrated how ransomware or malicious activity can halt crane operations, disrupt logistics, and compromise safety at scale threatening not only port operations, but national security and economic stability.

Relevant cyber-attacks on maritime ports

Maersk & Port of Los Angeles (2017 – NotPetya):
A ransomware attack crippled A.P. Moller-Maersk, the world’s largest shipping company. Operations at 17 ports, including the Port of Los Angeles, were halted due to system outages, causing weeks of logistical chaos.

Port of San Diego (2018 – Ransomware Attack):
A ransomware attack targeted the Port of San Diego, disrupting internal IT systems including public records, business services, and dockside cargo operations. While marine traffic was unaffected, commercial activity slowed significantly during recovery.

Port of Houston (2021 – Nation-State Intrusion):
A suspected nation-state actor exploited a known vulnerability in a Port of Houston web application to gain access to its network. While the attack was reportedly thwarted, it triggered a federal investigation and highlighted the vulnerability of maritime systems.

Jawaharlal Nehru Port Trust, India (2022 – Ransomware Incident):
India’s largest container port experienced disruptions due to a ransomware attack affecting operations and logistics systems. Container handling and cargo movement slowed as IT systems were taken offline during recovery efforts.

A regulatory shift: From guidance to enforcement

Since the Maritime Transportation Security Act (MTSA) of 2002, ports have been required to develop and maintain security plans. Cybersecurity formally entered the regulatory fold in 2020 with revisions to 33 CFR Part 105 and 106, requiring port authorities to assess and address computer system vulnerabilities.

In January 2025, the USCG finalized new rules to enforce cybersecurity practices across the MTS. Key elements include (but are not limited to):

  • A dedicated cyber incident response plan (PR.IP-9)
  • Routine cybersecurity risk assessments and exercises (ID.RA)
  • Designation of a cybersecurity officer and regular workforce training (section 3.1)
  • Controls for access management, segmentation, logging, and encryption (PR.AC-1:7)
  • Supply chain risk management (ID.SC)
  • Incident reporting to the National Response Center

Port operators are encouraged to align their programs with the NIST Cybersecurity Framework (CSF 2.0) and NIST SP 800-82r3, which provide comprehensive guidance for IT and OT security in industrial environments.

How Darktrace can support maritime & ports

Unified IT + OT + Cloud coverage

Maritime ports operate in hybrid environments spanning business IT systems (finance, HR, ERP), industrial OT (cranes, gates, pumps, sensors), and an increasing array of cloud and SaaS platforms.

Darktrace is the only vendor that provides native visibility and threat detection across OT/IoT, IT, cloud, and SaaS environments — all in a single platform. This means:

  • Cranes and other physical process control networks are monitored in the same dashboard as Active Directory and Office 365.
  • Threats that start in the cloud (e.g., phishing, SaaS token theft) and pivot or attempt to pivot into OT are caught early — eliminating blind spots that siloed tools miss.

This unification is critical to meeting USCG requirements for network-wide monitoring, risk identification, and incident response.

AI that understands your environment. Not just known threats

Darktrace’s AI doesn’t rely on rules or signatures. Instead, it uses Self-Learning AI TM that builds a unique “pattern of life” for every device, protocol, user, and network segment, whether it’s a crane router or PLC, SCADA server, Workstation, or Linux file server.

  • No predefined baselines or manual training
  • Real-time anomaly detection for zero-days, ransomware, and supply chain compromise
  • Continuous adaptation to new devices, configurations, and operations

This approach is critical in diverse distributed OT environments where change and anomalous activity on the network are more frequent. It also dramatically reduces the time and expertise needed to classify and inventory assets, even for unknown or custom-built systems.

Supporting incident response requirements

A key USCG requirement is that cybersecurity plans must support effective incident response.

Key expectations include:

  • Defined response roles and procedures: Personnel must know what to do and when (RS.CO-1).
  • Timely reporting: Incidents must be reported and categorized according to established criteria (RS.CO-2, RS.AN-4).
  • Effective communication: Information must be shared internally and externally, including voluntary collaboration with law enforcement and industry peers (RS.CO-3 through RS.CO-5).
  • Thorough analysis: Alerts must be investigated, impacts understood, and forensic evidence gathered to support decision-making and recovery (RS.AN-1 through RS.AN-5).
  • Swift mitigation: Incidents must be contained and resolved efficiently, with newly discovered vulnerabilities addressed or documented (RS.MI-1 through RS.MI-3).
  • Ongoing improvement: Organizations must refine their response plans using lessons learned from past incidents (RS.IM-1 and RS.IM-2).

That means detections need to be clear, accurate, and actionable.

Darktrace cuts through the noise using AI that prioritizes only high-confidence incidents and provides natural-language narratives and investigative reports that explain:

  • What’s happening, where it’s happening, when it’s happening
  • Why it’s unusual
  • How to respond

Result: Port security teams often lean and multi-tasked can meet USCG response-time expectations and reporting needs without needing to scale headcount or triage hundreds of alerts.

Built-for-edge deployment

Maritime environments are constrained. Many traditional SaaS deployment types often are unsuitable for tugboats, cranes, or air-gapped terminal systems.

Darktrace builds and maintains its own ruggedized, purpose-built appliances and unique virtual deployment options that:

  • Deploy directly into crane networks or terminal enclosures
  • Require no configuration or tuning, drop-in ready
  • Support secure over-the-air updates and fleet management
  • Operate without cloud dependency, supporting isolated and air-gapped systems

Use case: Multiple ports have been able to deploy Darktrace directly into the crane’s switch enclosure, securing lateral movement paths without interfering with the crane control software itself.

Segmentation enforcement & real-time threat containment

Darktrace visualizes real-time connectivity and attack pathways across IT, OT, and IoT it and integrates with firewalls (e.g., Fortinet, Cisco, Palo Alto) to enforce segmentation using AI insights alongside Darktrace’s own native autonomous and human confirmed response capabilities.

Benefits of autonomous and human confirmed response:

  • Auto-isolate rogue devices before the threat can escalate
  • Quarantine a suspicious connectivity with confidence operations won’t be halted
  • Autonomously buy time for human responders during off-hours or holidays
  • This ensures segmentation isn't just documented but that in the case of its failure or exploitation responses are performed as a compensating control

No reliance on 3rd parties or external connectivity

Darktrace’s supply chain integrity is a core part of its value to critical infrastructure customers. Unlike solutions that rely on indirect data collection or third-party appliances, Darktrace:

  • Uses in-house engineered sensors and appliances
  • Does not require transmission of data to or from the cloud

This ensures confidence in both your cyber visibility and the security of the tools you deploy.

See examples here of how Darktrace stopped supply chain attacks:

Readiness for USCG and Beyond

With a self-learning system that adapts to each unique port environment, Darktrace helps maritime operators not just comply but build lasting cyber resilience in a high-threat landscape.

Cybersecurity is no longer optional for U.S. ports its operationally and nationally critical. Darktrace delivers the intelligence, automation, and precision needed to meet USCG requirements and protect the digital lifeblood of the modern port.

Continue reading
About the author
Daniel Simonds
Director of Operational Technology
Your data. Our AI.
Elevate your network security with Darktrace AI