Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Jenny Moshea
Chief Information Officer, Sellen Construction
Share
08
Sep 2021
At Sellen Construction, safety is our top priority. We are one of the largest general contractors in the Pacific Northwest — we’ve changed tourist maps and helped grow the Seattle skyline. We are proud of our contribution to community structures, from high-rises and hospitals to campuses and high-tech facilities.
The Darktrace-Microsoft dynamic
All of our cloud applications that help us do our job – help us build great – are center to our digital strategy. We are true partners with Microsoft, not only are we a Microsoft 365 customer, but we have worked with them on their construction projects, even building one of the original sections of the Microsoft Campus.
Our digital ecosystem is centered around Microsoft: it’s our knowledge base, document management system, automation and analytics platform – it powers our day-to-day work and helps us deliver to our clients.
Darktrace is a critical component of our security stack because it protects our digital ecosystem and keeps us safe. When we first implemented Darktrace, we put in place the Enterprise Immune System to protect our infrastructure, and we’ve since added Darktrace for SaaS for total coverage. So not only do we have eyes across our digital estate detecting threats immediately, we also have the power of Autonomous Response. Darktrace for SaaS works with Microsoft seamlessly – the technology takes targeted action to contain in-progress threats in real time. It brings a sense of calm, knowing we have Darktrace and Microsoft in concert keeping our landscape safe.
When Autonomous Response stops a bad behavior, shutting down something that could be dangerous, it buys us time. It keeps everyone safe by automatically shutting down the behavior so we can really evaluate what happened. We wouldn’t have that without a 24-hour SOC. And it stairsteps our users back to where it is safe to go without stopping their whole work day.
AI threat analysis
We do all of this with a small but mighty technology team. So it has been critical that we are supported with the augmenting power of AI. We have a Security Operations SWAT Team and Darktrace has been a key extension of our team efforts. We rely on the Cyber AI Analyst like another team member.
The Darktrace Cyber AI Analyst is an AI-powered threat analyst. It’s like an extension of Darktrace’s analysts but supercharged with the speed and scale of AI. It has greatly influenced our workflow — supporting our staff by helping them more immediately triage what happens on our infrastructure.
The AI Analyst is another application of Darktrace’s unique machine learning. It can serve up a prioritized list of suspicious behavior that we can tackle and we can also be alerted to major events, even through our phones via the Mobile App. We keep Darktrace close at all times.
Protecting remote workers
Extending Darktrace’s Self-Learning AI to the endpoint gave us the chance to adjust to our remote network, because even now, not everyone is back in the office. As we untether from the corporate VPN, and move more and more into our SharePoint and Microsoft world, our day-to-day continues to shift. Darktrace has been profound in highlighting interesting behavior on our endpoint devices. For example, we know there has been a surge in crypto-mining activity on our infrastructure. We wouldn’t have caught that without Darktrace. We have eyes like never before.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
CastleLoader & CastleRAT: Behind TAG150’s Modular Malware Delivery System
What is TAG-150?
TAG-150, a relatively new Malware-as-a-Service (MaaS) operator, has been active since March 2025, demonstrating rapid development and an expansive, evolving infrastructure designed to support its malicious operations. The group employs two custom malware families, CastleLoader and CastleRAT, to compromise target systems, with a primary focus on the United States [1]. TAG-150’s infrastructure included numerous victim-facing components, such as IP addresses and domains functioning as command-and-control (C2) servers associated with malware families like SecTopRAT and WarmCookie, in addition to CastleLoader and CastleRAT [2].
As of May 2025, CastleLoader alone had infected a reported 469 devices, underscoring the scale and sophistication of TAG-150’s campaign [1].
What are CastleLoader and CastleRAT?
CastleLoader is a loader malware, primarily designed to download and install additional malware, enabling chain infections across compromised systems [3]. TAG-150 employs a technique known as ClickFix, which uses deceptive domains that mimic document verification systems or browser update notifications to trick victims into executing malicious scripts. Furthermore, CastleLoader leverages fake GitHub repositories that impersonate legitimate tools as a distribution method, luring unsuspecting users into downloading and installing malware on their devices [4].
CastleRAT, meanwhile, is a remote access trojan (RAT) that serves as one of the primary payloads delivered by CastleLoader. Once deployed, CastleRAT grants attackers extensive control over the compromised system, enabling capabilities such as keylogging, screen capturing, and remote shell access.
TAG-150 leverages CastleLoader as its initial delivery mechanism, with CastleRAT acting as the main payload. This two-stage attack strategy enhances the resilience and effectiveness of their operations by separating the initial infection vector from the final payload deployment.
How are they deployed?
Castleloader uses code-obfuscation methods such as dead-code insertion and packing to hinder both static and dynamic analysis. After the payload is unpacked, it connects to its command-and-control server to retrieve and running additional, targeted components.
Its modular architecture enables it to function both as a delivery mechanism and a staging utility, allowing threat actors to decouple the initial infection from payload deployment. CastleLoader typically delivers its payloads as Portable Executables (PEs) containing embedded shellcode. This shellcode activates the loader’s core module, which then connects to the C2 server to retrieve and execute the next-stage malware.[6]
Following this, attackers deploy the ClickFix technique, impersonating legitimate software distribution platforms like Google Meet or browser update notifications. These deceptive sites trick victims into copying and executing PowerShell commands, thereby initiating the infection kill chain. [1]
When a user clicks on a spoofed Cloudflare “Verification Step” prompt, a background request is sent to a PHP script on the distribution domain (e.g., /s.php?an=0). The server’s response is then automatically copied to the user’s clipboard using the ‘unsecuredCopyToClipboard()’ function. [7].
The Python-based variant of CastleRAT, known as “PyNightShade,” has been engineered with stealth in mind, showing minimal detection across antivirus platforms [2]. As illustrated in Figure 1, PyNightShade communicates with the geolocation API service ip-api[.]com, demonstrating both request and response behavior
Figure 1: Packet Capture (PCAP) of PyNightShade, the Python-based variant of CastleRAT, communicating with the geolocation API service ip-api[.]com.
Darktrace Coverage
In mid-2025, Darktrace observed a range of anomalous activities across its customer base that appeared linked to CastleLoader, including the example below from a US based organization.
The activity began on June 26, when a device on the customer’s network was observed connecting to the IP address 173.44.141[.]89, a previously unseen IP for this network along with the use of multiple user agents, which was also rare for the user. It was later determined that the IP address was a known indicator of compromise (IoC) associated with TAG-150’s CastleRAT and CastleLoader operations [2][5].
Figure 2: Darktrace’s detection of a device making unusual connections to the malicious endpoint 173.44.141[.]89.
The device was observed downloading two scripts from this endpoint, namely ‘/service/download/data_5x.bin’ and ‘/service/download/data_6x.bin’, which have both been linked to CastleLoader infections by open-source intelligence (OSINT) [8]. The archives contains embedded shellcode, which enables attackers to execute arbitrary code directly in memory, bypassing disk writes and making detection by endpoint detection and response (EDR) tools significantly more difficult [2].
Figure 3: Darktrace’s detection of two scripts from the malicious endpoint.
In addition to this, the affected device exhibited a high volume of internal connections to a broad range of endpoints, indicating potential scanning activity. Such behavior is often associated with reconnaissance efforts aimed at mapping internal infrastructure.
Darktrace / NETWORK correlated these behaviors and generated an Enhanced Monitoring model, a high-fidelity security model designed to detect activity consistent with the early stages of an attack. These high-priority models are continuously monitored and triaged by Darktrace’s Security Operations Center (SOC) as part of the Managed Threat Detection and Managed Detection & Response services, ensuring that subscribed customers are promptly alerted to emerging threats.
Figure 4: Darktrace detected an unusual ZIP file download alongside the anomalous script, followed by internal connectivity. This activity was correlated under an Enhanced Monitoring model.
Darktrace Autonomous Response
Fortunately, Darktrace’s Autonomous Response capability was fully configured, enabling it to take immediate action against the offending device by blocking any further connections external to the malicious endpoint, 173.44.141[.]89. Additionally, Darktrace enforced a ‘group pattern of life’ on the device, restricting its behavior to match other devices in its peer group, ensuring it could not deviate from expected activity, while also blocking connections over 443, shutting down any unwanted internal scanning.
Figure 5: Actions performed by Darktrace’s Autonomous Response to contain the ongoing attack.
Conclusion
The rise of the MaaS ecosystem, coupled with attackers’ growing ability to customize tools and techniques for specific targets, is making intrusion prevention increasingly challenging for security teams. Many threat actors now leverage modular toolkits, dynamic infrastructure, and tailored payloads to evade static defenses and exploit even minor visibility gaps. In this instance, Darktrace demonstrated its capability to counter these evolving tactics by identifying early-stage attack chain behaviors such as network scanning and the initial infection attempt. Autonomous Response then blocked the CastleLoader IP delivering the malicious ZIP payload, halting the attack before escalation and protecting the organization from a potentially damaging multi-stage compromise
Credit to Ahmed Gardezi (Cyber Analyst) Tyler Rhea (Senior Cyber Analyst) Edited by Ryan Traill (Analyst Content Lead)
UK Cyber Security & Resilience Bill: What Organizations Need to Know
Why the Bill has been introduced
The UK’s cyber threat landscape has evolved dramatically since the 2018 NIS regime was introduced. Incidents such as the Synnovis attack against hospitals and the British Library ransomware attack show how quickly operational risk can become public harm. In this context, the UK Department for Science, Innovation and Technology estimates that cyber-attacks cost UK businesses around £14.7 billion each year.
At the same time, the widespread adoption of AI has expanded organisations’ attack surfaces and empowered threat actors to launch more effective and sophisticated activities, including crafting convincing phishing campaigns, exploiting vulnerabilities and initiating ransomware attacks at unprecedented speed and scale.
The CSRB responds to these challenges by widening who is regulated, accelerating incident reporting and tightening supply chain accountability, while enabling rapid updates that keep pace with technology and emerging risks.
Key provisions of the Cyber Security and Resilience Bill
A wider set of organisations in scope
The Bill significantly broadens the range of organisations regulated under the NIS framework.
Managed service providers (MSPs) - medium and large MSPs, including MSSPs, managed SOCs, SIEM providers and similar services,will now fall under NIS obligations due to their systemic importance and privileged access to client systems. The Information Commissioner’s Office (ICO) will act as the regulator. Government analysis anticipates that a further 900 to 1,100 MSPs will be in scope.
Data infrastructure is now recognised as essential to the functioning of the economy and public services. Medium and large data centres, as well as enterprise facilities meeting specified thresholds, will be required to implement appropriate and proportionate measures to manage cyber risk. Oversight will be shared between DSIT and Ofcom, with Ofcom serving as the operational regulator.
Organisations that manage electrical loads for smart appliances, such as those supporting EV charging during peak times, are now within scope.
These additions sit alongside existing NIS-regulated sectors such as transport, energy, water, health, digital infrastructure, and certain digital services (including online marketplaces, search engines, and cloud computing).
Stronger supply chain requirements
Under the CSRB, regulators can now designate third-party suppliers as ‘designated critical suppliers’ (DCS) when certain threshold criteria are met and where disruption could have significant knock-on effects. Designated suppliers will be subject to the same security and incident-reporting obligations as Operators of Essential Services (OES) and Relevant Digital Service Providers (RDSPs).
Government will scope the supply chain duties for OES and RDSPs via secondary legislation, following consultation. infrastructure incidents where a single supplier’s compromise caused widespread disruption.
Faster incident reporting
Sector-specific regulators, 12 in total, will be responsible for implementing the CSRB, allowing for more effective and consistent reporting. In addition, the CSRB introduces a two-stage reporting process and expands incident reporting criteria. Regulated entities must submit an initial notification within 24 hours of becoming aware of a significant incident, followed by an incident report within 72 hours. Incident reporting criteria are also broadened to capture incidents beyond those which actually resulted in an interruption, ensuring earlier visibility for regulators and the National Cyber Security Centre (NCSC). The importance of information sharing across agencies, law enforcement and regulators is also facilitated by the CSRB.
The reforms also require data centres and managed service providers to notify affected customers where they are likely to have been impacted by a cyber incident.
An agile regulatory framework
To keep pace with technological change, the CSRB will enable the Secretary of State to update elements of the framework via secondary legislation. Supporting materials such as the NCSC Cyber Assessment Framework (CAF) are to be "put on a stronger footing” allowing for requirements to be more easily followed, managed and updated. Regulators will also now be able to recover full costs associated with NIS duties meaning they are better resourced to carry out their associated responsibilities.
Relevant Managed Service Providers must identify and take appropriate and proportionate measures to manage risks to the systems they rely on for providing services within the UK. Importantly, these measures must, having regard to the state of the art, ensure a level of security appropriate to the risk posed, and prevent or minimise the impact of incidents.
The Secretary of State will also be empowered to issue a Statement of Strategic Priorities, setting cross-regime outcomes to drive consistency across the 12 competent authorities responsible for implementation.
Penalties
The enforcement framework will be strengthened, with maximum fines aligned with comparable regimes such as the GDPR, which incorporate maximums tied to turnover. Under the CSRB, maximum penalties for more serious breaches could be up to £17 million or 4% of global turnover, whichever is higher.
Next steps
The Bill is expected to progress through Parliament over the course of 2025 and early 2026, with Royal Assent anticipated in 2026. Once enacted, most operational measures will not take immediate effect. Instead, Government will bring key components into force through secondary legislation following further consultation, providing regulators and industry with time to adjust practices and prepare for compliance.
Anticipated timeline
2025-2026: Parliamentary scrutiny and passage;
2026: Royal Assent;
2026 consultation: DSIT intends to consult on detailed implementation;
From 2026 onwards: Phased implementation via secondary legislation, following further consultation led by DSIT.
How Darktrace can help
The CSRB represents a step change in how the UK approaches digital risk, shifting the focus from compliance to resilience.
Darktrace can help organisations operationalise this shift by using AI to detect, investigate and respond to emerging threats at machine speed, before they escalate into incidents requiring regulatory notification. Proactive tools which can be included in the Darktrace platform allow security teams to stress-test defences, map supply chain exposure and rehearse recovery scenarios, directly supporting the CSRB’s focus on resilience, transparency and rapid response. If an incident does occur, Darktrace’s autonomous agent, Cyber AI Analyst, can accelerate investigations and provide a view of every stage of the attack chain, supporting timely reporting.
Darktrace’s AI can provide organisations with a vital lens into both internal and external cyber risk. By continuously learning patterns of behaviour across interconnected systems, Darktrace can flag potential compromise or disruption to detect supply chain risk before it impacts your organisation.
In a landscape where compliance and resilience go hand in hand, Darktrace can equip organisations to stay ahead of both evolving threats and evolving regulatory requirements.