Blog
/
Network
/
April 2, 2024

Darktrace's Investigation of Raspberry Robin Worm

Discover how Darktrace is leading the hunt for Raspberry Robin. Explore early insights and strategies in the battle against cyber threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
02
Apr 2024

Introduction

In the face of increasingly hardened digital infrastructures and skilled security teams, malicious actors are forced to constantly adapt their attack methods, resulting in sophisticated attacks that are designed to evade human detection and bypass traditional network security measures.  

One such example that was recently investigated by Darktrace is Raspberry Robin, a highly evasive worm malware renowned for merging existing and novel techniques, as well as leveraging both physical hardware and software, to establish a foothold within organization’s networks and propagate additional malicious payloads.

What is Raspberry Robin?

Raspberry Robin, also known as ‘QNAP worm’, is a worm malware that was initially discovered at the end of 2023 [1], however, its debut in the threat landscape may have predated this, with Microsoft uncovering malicious artifacts linked to this threat (which it tracks under the name Storm-0856) dating back to 2019 [4]. At the time, little was known regarding Raspberry Robin’s objectives or operators, despite the large number of successful infections worldwide. While the identity of the actors behind Raspberry Robin still remains a mystery, more intelligence has been gathered about the malware and its end goals as it was observed delivering payloads from different malware families.

Who does Raspberry Robin target?

While it was initially reported that Raspberry Robin primarily targeted the technology and manufacturing industries, researchers discovered that the malware had actually targeted multiple sectors [3] [4]. Darktrace’s own investigations echoed this, with Raspberry Robin infections observed across various industries, including public administration, finance, manufacturing, retail education and transportation.

How does Raspberry Robin work?

Initially, it appeared that Raspberry Robin's access to compromised networks had not been utilized to deliver final-stage malware payloads, nor to steal corporate data. This uncertainty led researchers to question whether the actors involved were merely “cybercriminals playing around” or more serious threats [3]. This lack of additional exploitation was indeed peculiar, considering that attackers could easily escalate their attacks, given Raspberry Robin’s ability to bypass User Account Control using legitimate Windows tools [4].

However, at the end of July 2022, some clarity emerged regarding the operators' end goals. Microsoft researchers revealed that the access provided by Raspberry Robin was being utilized by an access broker tracked as DEV-0206 to distribute the FakeUpdates malware downloader [2]. Researchers further discovered malicious activity associated with Evil Corp TTPs (i.e., DEV-0243) [5] and payloads from the Fauppod malware family leveraging Raspberry Robin’s access [8]. This indicates that Raspberry Robin may, in fact, be an initial access broker, utilizing its presence on hundreds of infected networks to distribute additional payloads for paying malware operators. Thus far, Raspberry Robin has been observed distributing payloads linked to FIN11, Clop Gang, BumbleBee, IcedID, and TrueBot on compromised networks [12].

Raspberry Robin’s Continued Evolution

Since it first appeared in the wild, Raspberry Robin has evolved from "being a widely distributed worm with no observed post-infection actions [...] to one of the largest malware distribution platforms currently active" [8]. The fact that Raspberry Robin has become such a prevalent threat is likely due to the continual addition of new features and evasion capabilities to their malware [6] [7].  

Since its emergence, the malware has “changed its communication method and lateral movement” [6] in order to evade signature detections based on threat intelligence and previous versions. Endpoint security vendors commonly describe it as heavily obfuscated malware, employing multiple layers of evasion techniques to hinder detection and analysis. These include for example dropping a fake payload when analyzed in a sandboxed environment and using mixed-case executing commands, likely to avoid case-sensitive string-based detections.  

In more recent campaigns, Raspberry Robin further appears to have added a new distribution method as it was observed being downloaded from archive files sent as attachments using the messaging service Discord [11]. These attachments contained a legitimate and signed Windows executable, often abused by attackers for side-loading, alongside a malicious dynamic-link library (DLL) containing a Raspberry Robin sample.

Another reason for the recent success of the malware may be found in its use of one-day exploits. According to researchers, Raspberry Robin now utilizes several local privilege escalation exploits that had been recently disclosed, even before a proof of concept had been made available [9] [10]. This led cyber security professionals to believe that operators of the malware may have access to an exploit seller [6]. The use of these exploits enhances Raspberry Robin's detection evasion and persistence capabilities, enabling it to propagate on networks undetected.

Darktrace’s Coverage of Raspberry Robin

Through two separate investigations carried out by Darktrace’s Threat Research team, first in late 2022 and then in November 2023, it became evident that Raspberry Robin was capable of integrating new functionalities and tactics, techniques and procedures (TTPs) into its attacks. Darktrace DETECT™ provided full visibility over the evolving campaign activity, allowing for a comparison of the threat across both investigations. Additionally, if Darktrace RESPOND™ was enabled on affected networks, it was able to quickly mitigate and contain emerging activity during the initial stages, thwarting the further escalation of attacks.

Raspberry Robin Initial Infection

The most prevalent initial infection vector appears to be the introduction of an infected external drive, such as a USB stick, containing a malicious .LNK file (i.e., a Windows shortcut file) disguised as a thumb drive or network share. When clicked, the LNK file automatically launches cmd.exe to execute the malicious file stored on the external drive, and msiexec.exe to connect to a Raspberry Robin command-and-control (C2) endpoint and download the main malware component. The whole process leverages legitimate Windows processes and is therefore less likely to raise any alarms from more traditional security solutions. However, Darktrace DETECT was able to identify the use of Msiexec to connect to a rare endpoint as anomalous in every case investigated.

Little is currently known regarding how the external drives are infected and distributed, but it has been reported that affected USB drives had previously been used for printing at printing and copying shops, suggesting that the infection may have originated from such stores [13].

A method as simple as leaving an infected USB on a desk in a public location can be a highly effective social engineering tactic for attackers. Exploiting both curiosity and goodwill, unsuspecting individuals may innocently plug in a found USB, hoping to identify its owner, unaware that they have unwittingly compromised their device.

As Darktrace primarily operates on the network layer, the insertion of a USB endpoint device would not be within its visibility. Nevertheless, Darktrace did observe several instances wherein multiple Microsoft endpoints were contacted by compromised devices prior to the first connection to a Raspberry Robin domain. For example, connections to the URI '/fwlink/?LinkID=252669&clcid=0x409' were observed in multiple customer environments prior to the first Raspberry Robin external connection. This connectivity seems to be related to Windows attempting to retrieve information about installed hardware, such as a printer, and could also be related to the inserting of an external USB drive.

Figure 1: Device Event Log showing an affected device making connections to Microsoft endpoints, prior to contacting the Raspberry Robin C2 endpoint ‘vqdn[.]net’.
Figure 1: Device Event Log showing an affected device making connections to Microsoft endpoints, prior to contacting the Raspberry Robin C2 endpoint ‘vqdn[.]net’.

Raspberry Robin Command-and-Control Activity

In all cases investigated by Darktrace, compromised devices were detected making HTTP GET connections via the unusual port 8080 to Raspberry Robin C2 endpoints using the new user agent 'Windows Installer'.

The C2 hostnames observed were typically short and matched the regex /[a-zA-Z0-9]{2,4}.[a-zA-Z0-9]{2,6}/, and were hosted on various top-level domains (TLD) such as ‘.rocks’, ‘.pm’, and ‘.wf’. On one customer network, Darktrace observed the download of an MSI file from the Raspberry Robin domain ‘wak[.]rocks’. This package contained a heavily protected malicious DLL file whose purpose was unknown at the time.  

However, in September 2022, external researchers revealed that the main purpose of this DLL was to download further payloads and enable lateral movement, persistence and privilege escalation on compromised devices, as well as exfiltrating sensitive information about the device. As worm infections spread through networks automatically, exfiltrating device data is an essential process for threat actor to keep track of which systems have been infected.

On affected networks investigated by Darktrace, compromised devices were observed making C2 connections that contained sensitive device information, including hostnames and credentials, with additional host information likely found within the data packets [12].

Figure 2: Model Breach Event Log displaying the events that triggered the the ‘New User Agent and Suspicious Request Data’ DETECT model breach.
Figure 2: Model Breach Event Log displaying the events that triggered the the ‘New User Agent and Suspicious Request Data’ DETECT model breach.

As for C2 infrastructure, Raspberry Robin leverages compromised Internet of Things (IoT) devices such as QNAP network attached storage (NAS) systems with hijacked DNS settings [13]. NAS devices are data storage servers that provide access to the files they store from anywhere in the world. These features have been abused by Raspberry Robin operators to distribute their malicious payloads, as any uploaded file could be stored and shared easily using NAS features.

However, Darktrace found that QNAP servers are not the only devices being exploited by Raspberry Robin, with DETECT identifying other IoT devices being used as C2 infrastructure, including a Cerio wireless access point in one example. Darktrace recognized that this connection was new to the environment and deemed it as suspicious, especially as it also used new software and an unusual port for the HTTP protocol (i.e., 8080 rather than 80).

In several instances, Darktrace observed Raspberry Robin utilizing TOR exit notes as backup C2 infrastructure, with compromised devices detected connecting to TOR endpoints.

Figure 3: Raspberry Robin C2 endpoint when viewed in a sandbox environment.
Figure 3: Raspberry Robin C2 endpoint when viewed in a sandbox environment.
Figure 4: Raspberry Robin C2 endpoint when viewed in a sandbox environment.
Figure 4: Raspberry Robin C2 endpoint when viewed in a sandbox environment.

Raspberry Robin in 2022 vs 2023

Despite the numerous updates and advancements made to Raspberry Robin between the investigations carried out in 2022 and 2023, Darktrace’s detection of the malware was largely the same.

DETECT models breached during first investigation at the end of 2022:

  • Device / New User Agent
  • Anomalous Server Activity / New User Agent from Internet Facing System
  • Device / New User Agent and New IP
  • Compromise / Suspicious Request Data
  • Compromise / Uncommon Tor Usage
  • Possible Tor Usage

DETECT models breached during second investigation in late 2023:

  • Device / New User Agent and New IP
  • Device / New User Agent and Suspicious Request Data
  • Device / New User Agent
  • Device / Suspicious Domain
  • Possible Tor Usage

Darktrace’s anomaly-based approach to threat detection enabled it to consistently detect the TTPs and IoCs associated with Raspberry Robin across the two investigations, despite the operator’s efforts to make it stealthier and more difficult to analyze.

In the first investigation in late 2022, Darktrace detected affected devices downloading addition executable (.exe) files following connections to the Raspberry Robin C2 endpoint, including a numeric executable file that appeared to be associated with the Vidar information stealer. Considering the advanced evasion techniques and privilege escalation capabilities of Raspberry Robin, early detection is key to prevent the malware from downloading additional malicious payloads.

In one affected customer environment investigated in late 2023, a total of 12 devices were compromised between mid-September and the end of October. As this particular customer did not have Darktrace RESPOND, the Raspberry Robin infection was able to spread through the network unabated until the customer acted upon Darktrace DETECT’s alerts.

Had Darktrace RESPOND been enabled in autonomous response mode, it would have been able to take immediate action following the first observed connection to a Raspberry Robin C2 endpoint, by blocking connections to the suspicious endpoint and enforcing a device’s normal ‘pattern of life’.

By enforcing a pattern of life on an affected device, RESPOND would prevent it from carrying out any activity that deviates from this learned pattern, including connections to new endpoints using new software as was the case in Figure 5, effectively shutting down the attack in the first instance.

Model Breach Event Log showing RESPOND’s actions against connections to Raspberry Robin C2 endpoints.
Figure 5: Model Breach Event Log showing RESPOND’s actions against connections to Raspberry Robin C2 endpoints.

Conclusion

Raspberry Robin is a highly evasive and adaptable worm known to evolve and change its TTPs on a regular basis in order to remain undetected on target networks for as long as possible. Due to its ability to drop additional malware variants onto compromised devices, it is crucial for organizations and their security teams to detect Raspberry Robin infections at the earliest possible stage to prevent the deployment of potentially disruptive secondary attacks.

Despite its continued evolution, Darktrace's detection of Raspberry Robin remained largely unchanged across the two investigations. Rather than relying on previous IoCs or leveraging existing threat intelligence, Darktrace DETECT’s anomaly-based approach allows it to identify emerging compromises by detecting the subtle deviations in a device’s learned behavior that would typically come with a malware compromise.

By detecting the attacks at an early stage, Darktrace gave its customers full visibility over malicious activity occurring on their networks, empowering them to identify affected devices and remove them from their environments. In cases where Darktrace RESPOND was active, it would have been able to take autonomous follow-up action to halt any C2 communication and prevent the download of any additional malicious payloads.  

Credit to Alexandra Sentenac, Cyber Analyst, Trent Kessler, Senior Cyber Analyst, Victoria Baldie, Director of Incident Management

Appendices

Darktrace DETECT Model Coverage

Device / New User Agent and New IP

Device / New User Agent and Suspicious Request Data

Device / New User Agent

Compromise / Possible Tor Usage

Compromise / Uncommon Tor Usage

MITRE ATT&CK Mapping

Tactic - Technique

Command & Control - T1090.003 Multi-hop Proxy

Lateral Movement - T1210 Exploitation of remote services

Exfiltration over C2 Data - T1041 Exfiltration over C2 Channel

Data Obfuscation - T1001 Data Obfuscation

Vulnerability Scanning - T1595.002 Vulnerability Scanning

Non-Standard Port - T1571 Non-Standard Port

Persistence - T1176 Browser Extensions

Initial Access - T1189 Drive By Compromise / T1566.002  Spearphishing Link

Collection - T1185 Man in the browser

List of IoCs

IoC - Type - Description + Confidence

vqdn[.]net - Hostname - C2 Server

mwgq[.]net - Hostname - C2 Server

wak[.]rocks - Hostname - C2 Server

o7car[.]com - Hostname - C2 Server

6t[.]nz - Hostname - C2 Server

fcgz[.]net - Hostname - Possible C2 Server

d0[.]wf - Hostname - C2 Server

e0[.]wf - Hostname - C2 Server

c4z[.]pl - Hostname - C2 Server

5g7[.]at - Hostname - C2 Server

5ap[.]nl - Hostname - C2 Server

4aw[.]ro - Hostname - C2 Server

0j[.]wf - Hostname - C2 Server

f0[.]tel - Hostname - C2 Server

h0[.]pm - Hostname - C2 Server

y0[.]pm - Hostname - C2 Server

5qy[.]ro - Hostname - C2 Server

g3[.]rs - Hostname - C2 Server

5qe8[.]com - Hostname - C2 Server

4j[.]pm - Hostname - C2 Server

m0[.]yt - Hostname - C2 Server

zk4[.]me - Hostname - C2 Server

59.15.11[.]49 - IP address - Likely C2 Server

82.124.243[.]57 - IP address - C2 Server

114.32.120[.]11 - IP address - Likely C2 Server

203.186.28[.]189 - IP address - Likely C2 Server

70.124.238[.]72 - IP address - C2 Server

73.6.9[.]83 - IP address - Likely C2 Server

References

[1] https://redcanary.com/blog/raspberry-robin/  

[2] https://www.bleepingcomputer.com/news/security/microsoft-links-raspberry-robin-malware-to-evil-corp-attacks/

[3] https://7095517.fs1.hubspotusercontent-na1.net/hubfs/7095517/FLINT%202022-016%20-%20QNAP%20worm_%20who%20benefits%20from%20crime%20(1).pdf

[4] https://www.bleepingcomputer.com/news/security/microsoft-finds-raspberry-robin-worm-in-hundreds-of-windows-networks/

[5] https://therecord.media/microsoft-ties-novel-raspberry-robin-malware-to-evil-corp-cybercrime-syndicate

[6] https://securityaffairs.com/158969/malware/raspberry-robin-1-day-exploits.html

[7] https://research.checkpoint.com/2024/raspberry-robin-keeps-riding-the-wave-of-endless-1-days/

[8] https://redmondmag.com/articles/2022/10/28/microsoft-details-threat-actors-leveraging-raspberry-robin-worm.aspx

[9] https://www.bleepingcomputer.com/news/security/raspberry-robin-malware-evolves-with-early-access-to-windows-exploits/

[10] https://www.bleepingcomputer.com/news/security/raspberry-robin-worm-drops-fake-malware-to-confuse-researchers/

[11] https://thehackernews.com/2024/02/raspberry-robin-malware-upgrades-with.html

[12] https://decoded.avast.io/janvojtesek/raspberry-robins-roshtyak-a-little-lesson-in-trickery/

[13] https://blog.bushidotoken.net/2023/05/raspberry-robin-global-usb-malware.html

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Alexandra Sentenac
Cyber Analyst

More in this series

No items found.

Blog

/

Compliance

/

November 25, 2025

UK Cyber Security & Resilience Bill: What Organizations Need to Know

Default blog imageDefault blog image

Why the Bill has been introduced

The UK’s cyber threat landscape has evolved dramatically since the 2018 NIS regime was introduced. Incidents such as the Synnovis attack against hospitals and the British Library ransomware attack show how quickly operational risk can become public harm. In this context, the UK Department for Science, Innovation and Technology estimates that cyber-attacks cost UK businesses around £14.7 billion each year.

At the same time, the widespread adoption of AI has expanded organisations’ attack surfaces and empowered threat actors to launch more effective and sophisticated activities, including crafting convincing phishing campaigns, exploiting vulnerabilities and initiating ransomware attacks at unprecedented speed and scale.  

The CSRB responds to these challenges by widening who is regulated, accelerating incident reporting and tightening supply chain accountability, while enabling rapid updates that keep pace with technology and emerging risks.

Key provisions of the Cyber Security and Resilience Bill

A wider set of organisations in scope

The Bill significantly broadens the range of organisations regulated under the NIS framework.

  • Managed service providers (MSPs) - medium and large MSPs, including MSSPs, managed SOCs, SIEM providers and similar services,will now fall under NIS obligations due to their systemic importance and privileged access to client systems. The Information Commissioner’s Office (ICO) will act as the regulator. Government analysis anticipates that a further 900 to 1,100 MSPs will be in scope.
  • Data infrastructure is now recognised as essential to the functioning of the economy and public services. Medium and large data centres, as well as enterprise facilities meeting specified thresholds, will be required to implement appropriate and proportionate measures to manage cyber risk. Oversight will be shared between DSIT and Ofcom, with Ofcom serving as the operational regulator.
  • Organisations that manage electrical loads for smart appliances, such as those supporting EV charging during peak times, are now within scope.

These additions sit alongside existing NIS-regulated sectors such as transport, energy, water, health, digital infrastructure, and certain digital services (including online marketplaces, search engines, and cloud computing).

Stronger supply chain requirements

Under the CSRB, regulators can now designate third-party suppliers as ‘designated critical suppliers’ (DCS) when certain threshold criteria are met and where disruption could have significant knock-on effects. Designated suppliers will be subject to the same security and incident-reporting obligations as Operators of Essential Services (OES) and Relevant Digital Service Providers (RDSPs).

Government will scope the supply chain duties for OES and RDSPs via secondary legislation, following consultation. infrastructure incidents where a single supplier’s compromise caused widespread disruption.

Faster incident reporting

Sector-specific regulators, 12 in total, will be responsible for implementing the CSRB, allowing for more effective and consistent reporting. In addition, the CSRB introduces a two-stage reporting process and expands incident reporting criteria. Regulated entities must submit an initial notification within 24 hours of becoming aware of a significant incident, followed by an incident report within 72 hours. Incident reporting criteria are also broadened to capture incidents beyond those which actually resulted in an interruption, ensuring earlier visibility for regulators and the National Cyber Security Centre (NCSC). The importance of information sharing across agencies, law enforcement and regulators is also facilitated by the CSRB.

The reforms also require data centres and managed service providers to notify affected customers where they are likely to have been impacted by a cyber incident.

An agile regulatory framework

To keep pace with technological change, the CSRB will enable the Secretary of State to update elements of the framework via secondary legislation. Supporting materials such as the NCSC Cyber Assessment Framework (CAF) are to be "put on a stronger footing” allowing for requirements to be more easily followed, managed and updated. Regulators will also now be able to recover full costs associated with NIS duties meaning they are better resourced to carry out their associated responsibilities.

Relevant Managed Service Providers must identify and take appropriate and proportionate measures to manage risks to the systems they rely on for providing services within the UK. Importantly, these measures must, having regard to the state of the art, ensure a level of security appropriate to the risk posed, and prevent or minimise the impact of incidents.

The Secretary of State will also be empowered to issue a Statement of Strategic Priorities, setting cross-regime outcomes to drive consistency across the 12 competent authorities responsible for implementation.

Penalties

The enforcement framework will be strengthened, with maximum fines aligned with comparable regimes such as the GDPR, which incorporate maximums tied to turnover. Under the CSRB, maximum penalties for more serious breaches could be up to £17 million or 4% of global turnover, whichever is higher.

Next steps

The Bill is expected to progress through Parliament over the course of 2025 and early 2026, with Royal Assent anticipated in 2026. Once enacted, most operational measures will not take immediate effect. Instead, Government will bring key components into force through secondary legislation following further consultation, providing regulators and industry with time to adjust practices and prepare for compliance.

Anticipated timeline

  • 2025-2026: Parliamentary scrutiny and passage;
  • 2026: Royal Assent;  
  • 2026 consultation: DSIT intends to consult on detailed implementation;
  • From 2026 onwards: Phased implementation via secondary legislation, following further consultation led by DSIT.

How Darktrace can help

The CSRB represents a step change in how the UK approaches digital risk, shifting the focus from compliance to resilience.

Darktrace can help organisations operationalise this shift by using AI to detect, investigate and respond to emerging threats at machine speed, before they escalate into incidents requiring regulatory notification. Proactive tools which can be included in the Darktrace platform allow security teams to stress-test defences, map supply chain exposure and rehearse recovery scenarios, directly supporting the CSRB’s focus on resilience, transparency and rapid response. If an incident does occur, Darktrace’s autonomous agent, Cyber AI Analyst, can accelerate investigations and provide a view of every stage of the attack chain, supporting timely reporting.  

Darktrace’s AI can provide organisations with a vital lens into both internal and external cyber risk. By continuously learning patterns of behaviour across interconnected systems, Darktrace can flag potential compromise or disruption to detect supply chain risk before it impacts your organisation.

In a landscape where compliance and resilience go hand in hand, Darktrace can equip organisations to stay ahead of both evolving threats and evolving regulatory requirements.

[related-resource]

Continue reading
About the author
The Darktrace Community

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

managing OT remote access with zero trust control and ai driven detectionDefault blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI