Blog
/
/
January 13, 2025

Agent vs. Agentless Cloud Security: Why Deployment Methods Matter

Cloud security solutions can be deployed with agentless or agent-based approaches or use a combination of methods. Organizations must weigh which method applies best to the assets and data the tool will protect.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Kellie Regan
Director, Product Marketing - Cloud Security
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Jan 2025

The rapid adoption of cloud technologies has brought significant security challenges for organizations of all sizes. According to recent studies, over 70% of enterprises now operate in hybrid or multi-cloud environments, with 93% employing a multi-cloud strategy[1]. This complexity requires robust security tools, but opinions vary on the best deployment method—agent-based, agentless, or a combination of both.

Agent-based and agentless cloud security approaches offer distinct benefits and limitations, and organizations often make deployment choices based on their unique needs depending on the function of the specific assets covered, the types of data stored, and cloud architecture, such as hybrid or multi-cloud deployments.

For example, agentless solutions are increasingly favored for their ease of deployment and ability to provide broad visibility across dynamic cloud environments. These are especially useful for DevOps teams, with 64% of organizations citing faster deployment as a key reason for adopting agentless tools[2].

On the other hand, agent-based solutions remain the preferred choice for environments requiring deep monitoring and granular control, such as securing sensitive high-value workloads in industries like finance and healthcare. In fact, over 50% of enterprises with critical infrastructure report relying on agent-based solutions for their advanced protection capabilities[3].

As the debate continues, many organizations are turning to combined approaches, leveraging the strengths of both agent-based and agentless tools to address the full spectrum of their security needs for comprehensive coverage. Understanding the capabilities and limitations of these methods is critical to building an effective cloud security strategy that adapts to evolving threats and complex infrastructures.

Agent-based cloud security

Agent-based security solutions involve deploying software agents on each device or system that needs protection. Agent-based solutions are great choices when you need in-depth monitoring and protection capabilities. They are ideal for organizations that require deep security controls and real-time active response, particularly in hybrid and on-premises environments.

Key advantages include:

1. Real-time monitoring and protection: Agents detect and block threats like malware, ransomware, and anomalous behaviors in real time, providing ongoing protection and enforcing compliance by continuously monitoring workload activities.  Agents enable full control over workloads for active response such as blocking IP addresses, killing processes, disabling accounts, and isolating infected systems from the network, stopping lateral movement.

2. Deep visibility for hybrid environments: Agent-based approaches allow for full visibility across on-premises, hybrid, and multi-cloud environments by deploying agents on physical and virtual machines. Agents offer detailed insights into system behavior, including processes, files, memory, network connections, and more, detecting subtle anomalies that might indicate security threats. Host-based monitoring tracks vulnerabilities at the system and application level, including unpatched software, rogue processes, and unauthorized network activity.

3. Comprehensive coverage: Agents are very effective in hybrid environments (cloud and on-premises), as they can be installed on both physical and virtual machines.  Agents can function independently on each host device onto which they are installed, which is especially helpful for endpoints that may operate outside of constant network connectivity.

Challenges:

1. Resource-intensive: Agents can consume CPU, memory, and network resources, which may affect performance, especially in environments with large numbers of workloads or ephemeral resources.

2. Challenging in dynamic environments: Managing hundreds or thousands of agents in highly dynamic or ephemeral environments (e.g., containers, serverless functions) can be complex and labor-intensive.

3. Slower deployment: Requires agent installation on each workload or instance, which can be time-consuming, particularly in large or complex environments.  

Agentless cloud security

Agentless security does not require software agents to be installed on each device. Instead, it uses cloud infrastructure and APIs to perform security checks. Agentless solutions are highly scalable with minimal impact on performance, and ideal for cloud-native and highly dynamic environments like serverless and containerized. These solutions are great choices for your cloud-native and multi-cloud environments where rapid deployment, scalability, and minimal impact on performance are critical, but response actions can be handled through external tools or manual processes.

Key advantages include:

1. Scalability and ease of deployment: Because agentless security doesn’t require installation on each individual device, it is much easier to deploy and can quickly scale across a vast number of cloud assets. This approach is ideal for environments where resources are frequently created and destroyed (e.g., serverless, containerized workloads), as there is no need for agent installation or maintenance.

2. Reduced system overhead: Without the need to run local agents, agentless security minimizes the impact on system performance. This is crucial in high-performance environments.

3. Broad visibility: Agentless security connects via API to cloud service providers, offering near-instant visibility and threat detection. It provides a comprehensive view of your cloud environment, making it easier to manage and secure large and complex infrastructures.

Challenges

1. Infrastructure-level monitoring: Agentless solutions rely on cloud service provider logs and API calls, meaning that detection might not be as immediate as agent-based solutions. They collect configuration data and logs, focusing on infrastructure misconfigurations, identity risks, exposed resources, and network traffic, but lack visibility and access to detailed, system-level information such as running processes and host-level vulnerabilities.

2. Cloud-focused: Primarily for cloud environments, although some tools may integrate with on-premises systems through API-based data gathering. For organizations with hybrid cloud environments, this approach fragments visibility and security, leading to blind spots and increasing security risk.

3. Passive remediation: Typically provides alerts and recommendations, but lacks deep control over workloads, requiring manual intervention or orchestration tools (e.g., SOAR platforms) to execute responses. Some agentless tools trigger automated responses via cloud provider APIs (e.g., revoking permissions, adjusting security groups), but with limited scope.

Combined agent-based and agentless approaches

A combined approach leverages the strengths of both agent-based and agentless security for complete coverage. This hybrid strategy helps security teams achieve comprehensive coverage by:

  • Using agent-based solutions for deep, real-time protection and detailed monitoring of critical systems or sensitive workloads.
  • Employing agentless solutions for fast deployment, broader visibility, and easier scalability across all cloud assets, which is particularly useful in dynamic cloud environments where workloads frequently change.

The combined approach has distinct practical applications. For example, imagine a financial services company that deals with sensitive transactions. Its security team might use agent-based security for critical databases to ensure stringent protections are in place. Meanwhile, agentless solutions could be ideal for less critical, transient workloads in the cloud, where rapid scalability and minimal performance impact are priorities. With different data types and infrastructures, the combined approach is best.

Best of both worlds: The benefits of a combined approach

The combined approach not only maximizes security efficacy but also aligns with diverse operational needs. This means that all parts of the cloud environment are secured according to their risk profile and functional requirements. Agent-based deployment provides in-depth monitoring and active protection against threats, suitable for environments requiring tight security controls, such as financial services or healthcare data processing systems. Agentless deployment complements agents by offering broader visibility and easier scalability across diverse and dynamic cloud environments, ideal for rapidly changing cloud resources.

There are three major benefits from combining agent-based and agentless approaches.

1. Building a holistic security posture: By integrating both agent-based and agentless technologies, organizations can ensure that all parts of their cloud environments are covered—from persistent, high-risk endpoints to transient cloud resources. This comprehensive coverage is crucial for detecting and responding to threats promptly and effectively.

2. Reducing overhead while boosting scalability: Agentless systems require no software installation on each device, reducing overhead and eliminating the need to update and maintain agents on a large number of endpoints. This makes it easier to scale security as the organization grows or as the cloud environment changes.

3. Applying targeted protection where needed: Agent-based solutions can be deployed on selected assets that handle sensitive information or are critical to business operations, thus providing focused protection without incurring the costs and complexity of universal deployment.

Use cases for a combined approach

A combined approach gives security teams the flexibility to deploy agent-based and agentless solutions based on the specific security requirements of different assets and environments. As a result, organizations can optimize their security expenditures and operational efforts, allowing for greater adaptability in cloud security use cases.

Let’s take a look at how this could practically play out. In the combined approach, agent-based security can perform the following:

1. Deep monitoring and real-time protection:

  • Workload threat detection: Agent-based solutions monitor individual workloads for suspicious activity, such as unauthorized file changes or unusual resource usage, providing high granularity for detecting threats within critical cloud applications.
  • Behavioral analysis of applications: By deploying agents on virtual machines or containers, organizations can monitor behavior patterns and flag anomalies indicative of insider threats, lateral movement, or Advanced Persistent Threats (APTs).
  • Protecting high-sensitivity environments: Agents provide continuous monitoring and advanced threat protection for environments processing sensitive data, such as payment processing systems or healthcare records, leveraging capabilities like memory protection and file integrity monitoring.

2. Cloud asset protection:

  • Securing critical infrastructure: Agent-based deployments are ideal for assets like databases or storage systems that require real-time defense against exploits and ransomware.
  • Advanced packet inspection: For high-value assets, agents offer deep packet inspection and in-depth logging to detect stealthy attacks such as data exfiltration.
  • Customizable threat response: Agents allow for tailored security rules and automated responses at the workload level, such as shutting down compromised instances or quarantining infected files.

At the same time, agentless cloud security provides complementary benefits such as:

1. Broad visibility and compliance:

  • Asset discovery and management: Agentless systems can quickly scan the entire cloud environment to identify and inventory all assets, a crucial capability for maintaining compliance with regulations like GDPR or HIPAA, which require up-to-date records of data locations and usage.
  • Regulatory compliance auditing and configuration management: Quickly identify gaps in compliance frameworks like PCI DSS or SOC 2 by scanning configurations, permissions, and audit trails without installing agents. Using APIs to check configurations across cloud services ensures that all instances comply with organizational and regulatory standards, an essential aspect for maintaining security hygiene and compliance.
  • Shadow IT Detection: Detect and map unauthorized cloud services or assets that are spun up without security oversight, ensuring full inventory coverage.

2. Rapid environmental assessment:

  • Vulnerability assessment of new deployments: In environments where new code is frequently deployed, agentless security can quickly assess new instances, containers, or workloads in CI/CD pipelines for vulnerabilities and misconfigurations, enabling secure deployments at DevOps speed.
  • Misconfiguration alerts: Detect and alert on common cloud configuration issues, such as exposed storage buckets or overly permissive IAM roles, across cloud providers like AWS, Azure, and GCP.
  • Policy enforcement: Validate that new resources adhere to established security baselines and organizational policies, preventing security drift during rapid cloud scaling.

Combining agent-based and agentless approaches in cloud security not only maximizes the protective capabilities, but also offers flexibility, efficiency, and comprehensive coverage tailored to the diverse and evolving needs of modern cloud environments. This integrated strategy ensures that organizations can protect their assets more effectively while also adapting quickly to new threats and regulatory requirements.

Darktrace offers complementary and flexible deployment options for holistic cloud security

Powered by multilayered AI, Darktrace / CLOUD is a Cloud Detection and Response (CDR) solution that is agentless by default, with optional lightweight, host-based server agents for enhanced real-time actioning and deep inspection. As such, it can deploy in cloud environments in minutes and provide unified visibility and security across hybrid, multi-cloud environments.

With any deployment method, Darktrace supports multi-tenant, hybrid, and serverless cloud environments. Its Self-Learning AI learns the normal behavior across architectures, assets, and users to identify unusual activity that may indicate a threat. With this approach, Darktrace / CLOUD quickly disarms threats, whether they are known, unknown, or completely novel. It then accelerates the investigation process and responds to threats at machine speed.

Learn more about how Darktrace / CLOUD secures multi and hybrid cloud environments in the Solution Brief.

References:

1. Flexera 2023 State of the Cloud Report

2. ESG Research 2023 Report on Cloud-Native Security

3. Gartner, Market Guide for Cloud Workload Protection Platforms, 2023

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Kellie Regan
Director, Product Marketing - Cloud Security

More in this series

No items found.

Blog

/

/

October 20, 2025

Salty Much: Darktrace’s view on a recent Salt Typhoon intrusion

salt typhoonDefault blog imageDefault blog image

What is Salt Typhoon?

Salt Typhoon represents one of the most persistent and sophisticated cyber threats targeting global critical infrastructure today. Believed to be linked to state-sponsored actors from the People’s Republic of China (PRC), this advanced persistent threat (APT) group has executed a series of high-impact campaigns against telecommunications providers, energy networks, and government systems—most notably across the United States.

Active since at least 2019, the group—also tracked as Earth Estries, GhostEmperor, and UNC2286—has demonstrated advanced capabilities in exploiting edge devices, maintaining deep persistence, and exfiltrating sensitive data across more than 80 countries. While much of the public reporting has focused on U.S. targets, Salt Typhoon’s operations have extended into Europe, the Middle East, and Africa (EMEA) where it has targeted telecoms, government entities, and technology firms. Its use of custom malware and exploitation of high-impact vulnerabilities (e.g., Ivanti, Fortinet, Cisco) underscores the strategic nature of its campaigns, which blend intelligence collection with geopolitical influence [1].

Leveraging zero-day exploits, obfuscation techniques, and lateral movement strategies, Salt Typhoon has demonstrated an alarming ability to evade detection and maintain long-term access to sensitive environments. The group’s operations have exposed lawful intercept systems, compromised metadata for millions of users, and disrupted essential services, prompting coordinated responses from intelligence agencies and private-sector partners worldwide. As organizations reassess their threat models, Salt Typhoon serves as a stark reminder of the evolving nature of nation-state cyber operations and the urgent need for proactive defense strategies.

Darktrace’s coverage

In this case, Darktrace observed activity in a European telecommunications organisation consistent with Salt Typhoon’s known tactics, techniques and procedures (TTPs), including dynamic-link library (DLL) sideloading and abuse of legitimate software for stealth and execution.

Initial access

The intrusion likely began with exploitation of a Citrix NetScaler Gateway appliance in the first week of July 2025. From there, the actor pivoted to Citrix Virtual Delivery Agent (VDA) hosts in the client’s Machine Creation Services (MCS) subnet. Initial access activities in the intrusion originated from an endpoint potentially associated with the SoftEther VPN service, suggesting infrastructure obfuscation from the outset.

Tooling

Darktrace subsequently observed the threat actor delivering a backdoor assessed with high confidence to be SNAPPYBEE (also known as Deed RAT) [2][3] to multiple Citrix VDA hosts. The backdoor was delivered to these internal endpoints as a DLL alongside legitimate executable files for antivirus software such as Norton Antivirus, Bkav Antivirus, and IObit Malware Fighter. This pattern of activity indicates that the attacker relied on DLL side-loading via legitimate antivirus software to execute their payloads. Salt Typhoon and similar groups have a history of employing this technique [4][5], enabling them to execute payloads under the guise of trusted software and bypassing traditional security controls.

Command-and-Control (C2)

The backdoor delivered by the threat actor leveraged LightNode VPS endpoints for C2, communicating over both HTTP and an unidentified TCP-based protocol. This dual-channel setup is consistent with Salt Typhoon’s known use of non-standard and layered protocols to evade detection. The HTTP communications displayed by the backdoor included POST requests with an Internet Explorer User-Agent header and Target URI patterns such as “/17ABE7F017ABE7F0”. One of the C2 hosts contacted by compromised endpoints was aar.gandhibludtric[.]com (38.54.63[.]75), a domain recently linked to Salt Typhoon [6].

Detection timeline

Darktrace produced high confidence detections in response to the early stages of the intrusion, with both the initial tooling and C2 activities being strongly covered by both investigations by Darktrace Cyber AI AnalystTM investigations and Darktrace models. Despite the sophistication of the threat actor, the intrusion activity identified and remediated before escalating beyond these early stages of the attack, with Darktrace’s timely high-confidence detections likely playing a key role in neutralizing the threat.

Cyber AI Analyst observations

Darktrace’s Cyber AI Analyst autonomously investigated the model alerts generated by Darktrace during the early stages of the intrusion. Through its investigations, Cyber AI Analyst discovered the initial tooling and C2 events and pieced them together into unified incidents representing the attacker’s progression.

Cyber AI Analyst weaved together separate events from the intrusion into broader incidents summarizing the attacker’s progression.
Figure 1: Cyber AI Analyst weaved together separate events from the intrusion into broader incidents summarizing the attacker’s progression.

Conclusion

Based on overlaps in TTPs, staging patterns, infrastructure, and malware, Darktrace assesses with moderate confidence that the observed activity was consistent with Salt Typhoon/Earth Estries (ALA GhostEmperor/UNC2286). Salt Typhoon continues to challenge defenders with its stealth, persistence, and abuse of legitimate tools. As attackers increasingly blend into normal operations, detecting behavioral anomalies becomes essential for identifying subtle deviations and correlating disparate signals. The evolving nature of Salt Typhoon’s tradecraft, and its ability to repurpose trusted software and infrastructure, ensures it will remain difficult to detect using conventional methods alone. This intrusion highlights the importance of proactive defense, where anomaly-based detections, not just signature matching, play a critical role in surfacing early-stage activity.

Credit to Nathaniel Jones (VP, Security & AI Strategy, FCISO), Sam Lister (Specialist Security Researcher), Emma Foulger (Global Threat Research Operations Lead), Adam Potter (Senior Cyber Analyst)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

IoC-Type-Description + Confidence

89.31.121[.]101 – IP Address – Possible C2 server

hxxp://89.31.121[.]101:443/WINMM.dll - URI – Likely SNAPPYBEE download

b5367820cd32640a2d5e4c3a3c1ceedbbb715be2 - SHA1 – Likely SNAPPYBEE download

hxxp://89.31.121[.]101:443/NortonLog.txt - URI - Likely DLL side-loading activity

hxxp://89.31.121[.]101:443/123.txt - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/123.tar - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/pdc.exe - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443//Dialog.dat - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/fltLib.dll - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/DisplayDialog.exe - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/DgApi.dll - URI - Likely DLL side-loading activity

hxxp://89.31.121[.]101:443/dbindex.dat - URI - Likely DLL side-loading activity

hxxp://89.31.121[.]101:443/1.txt - URI - Possible DLL side-loading activity

hxxp://89.31.121[.]101:443/imfsbDll.dll – Likely DLL side-loading activity

hxxp://89.31.121[.]101:443/imfsbSvc.exe - URI – Likely DLL side-loading activity

aar.gandhibludtric[.]com – Hostname – Likely C2 server

38.54.63[.]75 – IP – Likely C2 server

156.244.28[.]153 – IP – Possible C2 server

hxxp://156.244.28[.]153/17ABE7F017ABE7F0 - URI – Possible C2 activity

MITRE TTPs

Technique | Description

T1190 | Exploit Public-Facing Application - Citrix NetScaler Gateway compromise

T1105 | Ingress Tool Transfer – Delivery of backdoor to internal hosts

T1665 | Hide Infrastructure – Use of SoftEther VPN for C2

T1574.001 | Hijack Execution Flow: DLL – Execution of backdoor through DLL side-loading

T1095 | Non-Application Layer Protocol – Unidentified application-layer protocol for C2 traffic

T1071.001| Web Protocols – HTTP-based C2 traffic

T1571| Non-Standard Port – Port 443 for unencrypted HTTP traffic

Darktrace Model Alerts during intrusion

Anomalous File::Internal::Script from Rare Internal Location

Anomalous File::EXE from Rare External Location

Anomalous File::Multiple EXE from Rare External Locations

Anomalous Connection::Possible Callback URL

Antigena::Network::External Threat::Antigena Suspicious File Block

Antigena::Network::Significant Anomaly::Antigena Significant Server Anomaly Block

Antigena::Network::Significant Anomaly::Antigena Controlled and Model Alert

Antigena::Network::Significant Anomaly::Antigena Alerts Over Time Block

Antigena::Network::External Threat::Antigena File then New Outbound Block  

References

[1] https://www.cisa.gov/news-events/cybersecurity-advisories/aa25-239a

[2] https://www.trendmicro.com/en_gb/research/24/k/earth-estries.html

[3] https://www.trendmicro.com/content/dam/trendmicro/global/en/research/24/k/earth-estries/IOC_list-EarthEstries.txt

[4] https://www.trendmicro.com/en_gb/research/24/k/breaking-down-earth-estries-persistent-ttps-in-prolonged-cyber-o.html

[5] https://lab52.io/blog/deedrat-backdoor-enhanced-by-chinese-apts-with-advanced-capabilities/

[6] https://www.silentpush.com/blog/salt-typhoon-2025/

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content.

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

October 15, 2025

How a Major Civil Engineering Company Reduced MTTR across Network, Email and the Cloud with Darktrace

Default blog imageDefault blog image

Asking more of the information security team

“What more can we be doing to secure the company?” is a great question for any cyber professional to hear from their Board of Directors. After successfully defeating a series of attacks and seeing the potential for AI tools to supercharge incoming threats, a UK-based civil engineering company’s security team had the answer: Darktrace.

“When things are coming at you at machine speed, you need machine speed to fight it off – it’s as simple as that,” said their Information Security Manager. “There were incidents where it took us a few hours to get to the bottom of what was going on. Darktrace changed that.”

Prevention was also the best cure. A peer organization in the same sector was still in business continuity measures 18 months after an attack, and the security team did not want to risk that level of business disruption.

Legacy tools were not meeting the team’s desired speed or accuracy

The company’s native SaaS email platform took between two and 14 days to alert on suspicious emails, with another email security tool flagging malicious emails after up to 24 days. After receiving an alert, responses often took a couple of days to coordinate. The team was losing precious time.

Beyond long detection and response times, the old email security platform was no longer performing: 19% of incoming spam was missed. Of even more concern: 6% of phishing emails reached users’ inboxes, and malware and ransomware email was also still getting through, with 0.3% of such email-borne payloads reaching user inboxes.

Choosing Darktrace

“When evaluating tools in 2023, only Darktrace had what I was looking for: an existing, mature, AI-based cybersecurity solution. ChatGPT had just come out and a lot of companies were saying ‘AI this’ and ‘AI that’. Then you’d take a look, and it was all rules- and cases-based, not AI at all,” their Information Security Manager.

The team knew that, with AI-enabled attacks on the horizon, a cybersecurity company that had already built, fielded, and matured an AI-powered cyber defense would give the security team the ability to fend off machine-speed attacks at the same pace as the attackers.

Darktrace accomplishes this with multi-layered AI that learns each organization’s normal business operations. With this detailed level of understanding, Darktrace’s Self-Learning AI can recognize unusual activity that may indicate a cyber-attack, and works to neutralize the threat with precise response actions. And it does this all at machine speed and with minimal disruption.

On the morning the team was due to present its findings, the session was cancelled – for a good reason. The Board didn’t feel further discussion was necessary because the case for Darktrace was so conclusive. The CEO described the Darktrace option as ‘an insurance policy we can’t do without’.

Saving time with Darktrace / EMAIL

Darktrace / EMAIL reduced the discovery, alert, and response process from days or weeks to seconds .

Darktrace / EMAIL automates what was originally a time-consuming and repetitive process. The team has recovered between eight and 10 working hours a week by automating much of this process using / EMAIL.

Today, Darktrace / EMAIL prevents phishing emails from reaching employees’ inboxes. The volume of hostile and unsolicited email fell to a third of its original level after Darktrace / EMAIL was set up.

Further savings with Darktrace / NETWORK and Darktrace / IDENTITY

Since its success with Darktrace / EMAIL, the company adopted two more products from the Darktrace ActiveAI Security Platform – Darktrace / NETWORK and Darktrace / IDENTITY.

These have further contributed to cost savings. An initial plan to build a 24/7 SOC would have required hiring and retaining six additional analysts, rather than the two that currently use Darktrace, costing an additional £220,000 per year in salary. With Darktrace, the existing analysts have the tools needed to become more effective and impactful.

An additional benefit: Darktrace adoption has lowered the company’s cyber insurance premiums. The security team can reallocate this budget to proactive projects.

Detection of novel threats provides reassurance

Darktrace’s unique approach to cybersecurity added a key benefit. The team’s previous tool took a rules-based approach – which was only good if the next attack featured the same characteristics as the ones on which the tool was trained.

“Darktrace looks for anomalous behavior, and we needed something that detected and responded based on use cases, not rules that might be out of date or too prescriptive,” their Information Security Manager. “Our existing provider could take a couple of days to update rules and signatures, and in this game, speed is of the essence. Darktrace just does everything we need - without delay.”

Where rules-based tools must wait for a threat to emerge before beginning to detect and respond to it, Darktrace identifies and protects against unknown and novel threats, speeding identification, response, and recovery, minimizing business disruption as a result.

Looking to the future

With Darktrace in place, the UK-based civil engineering company team has reallocated time and resources usually spent on detection and alerting to now tackle more sophisticated, strategic challenges. Darktrace has also equipped the team with far better and more regularly updated visibility into potential vulnerabilities.

“One thing that frustrates me a little is penetration testing; our ISO accreditation mandates a penetration test at least once a year, but the results could be out of date the next day,” their Information Security Manager. “Darktrace / Proactive Exposure Management will give me that view in real time – we can run it daily if needed - and that’s going to be a really effective workbench for my team.”

As the company looks to further develop its security posture, Darktrace remains poised to evolve alongside its partner.

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI