Blog
/
/
January 13, 2025

Agent vs. Agentless Cloud Security: Why Deployment Methods Matter

Cloud security solutions can be deployed with agentless or agent-based approaches or use a combination of methods. Organizations must weigh which method applies best to the assets and data the tool will protect.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Kellie Regan
Director, Product Marketing - Cloud Security
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Jan 2025

The rapid adoption of cloud technologies has brought significant security challenges for organizations of all sizes. According to recent studies, over 70% of enterprises now operate in hybrid or multi-cloud environments, with 93% employing a multi-cloud strategy[1]. This complexity requires robust security tools, but opinions vary on the best deployment method—agent-based, agentless, or a combination of both.

Agent-based and agentless cloud security approaches offer distinct benefits and limitations, and organizations often make deployment choices based on their unique needs depending on the function of the specific assets covered, the types of data stored, and cloud architecture, such as hybrid or multi-cloud deployments.

For example, agentless solutions are increasingly favored for their ease of deployment and ability to provide broad visibility across dynamic cloud environments. These are especially useful for DevOps teams, with 64% of organizations citing faster deployment as a key reason for adopting agentless tools[2].

On the other hand, agent-based solutions remain the preferred choice for environments requiring deep monitoring and granular control, such as securing sensitive high-value workloads in industries like finance and healthcare. In fact, over 50% of enterprises with critical infrastructure report relying on agent-based solutions for their advanced protection capabilities[3].

As the debate continues, many organizations are turning to combined approaches, leveraging the strengths of both agent-based and agentless tools to address the full spectrum of their security needs for comprehensive coverage. Understanding the capabilities and limitations of these methods is critical to building an effective cloud security strategy that adapts to evolving threats and complex infrastructures.

Agent-based cloud security

Agent-based security solutions involve deploying software agents on each device or system that needs protection. Agent-based solutions are great choices when you need in-depth monitoring and protection capabilities. They are ideal for organizations that require deep security controls and real-time active response, particularly in hybrid and on-premises environments.

Key advantages include:

1. Real-time monitoring and protection: Agents detect and block threats like malware, ransomware, and anomalous behaviors in real time, providing ongoing protection and enforcing compliance by continuously monitoring workload activities.  Agents enable full control over workloads for active response such as blocking IP addresses, killing processes, disabling accounts, and isolating infected systems from the network, stopping lateral movement.

2. Deep visibility for hybrid environments: Agent-based approaches allow for full visibility across on-premises, hybrid, and multi-cloud environments by deploying agents on physical and virtual machines. Agents offer detailed insights into system behavior, including processes, files, memory, network connections, and more, detecting subtle anomalies that might indicate security threats. Host-based monitoring tracks vulnerabilities at the system and application level, including unpatched software, rogue processes, and unauthorized network activity.

3. Comprehensive coverage: Agents are very effective in hybrid environments (cloud and on-premises), as they can be installed on both physical and virtual machines.  Agents can function independently on each host device onto which they are installed, which is especially helpful for endpoints that may operate outside of constant network connectivity.

Challenges:

1. Resource-intensive: Agents can consume CPU, memory, and network resources, which may affect performance, especially in environments with large numbers of workloads or ephemeral resources.

2. Challenging in dynamic environments: Managing hundreds or thousands of agents in highly dynamic or ephemeral environments (e.g., containers, serverless functions) can be complex and labor-intensive.

3. Slower deployment: Requires agent installation on each workload or instance, which can be time-consuming, particularly in large or complex environments.  

Agentless cloud security

Agentless security does not require software agents to be installed on each device. Instead, it uses cloud infrastructure and APIs to perform security checks. Agentless solutions are highly scalable with minimal impact on performance, and ideal for cloud-native and highly dynamic environments like serverless and containerized. These solutions are great choices for your cloud-native and multi-cloud environments where rapid deployment, scalability, and minimal impact on performance are critical, but response actions can be handled through external tools or manual processes.

Key advantages include:

1. Scalability and ease of deployment: Because agentless security doesn’t require installation on each individual device, it is much easier to deploy and can quickly scale across a vast number of cloud assets. This approach is ideal for environments where resources are frequently created and destroyed (e.g., serverless, containerized workloads), as there is no need for agent installation or maintenance.

2. Reduced system overhead: Without the need to run local agents, agentless security minimizes the impact on system performance. This is crucial in high-performance environments.

3. Broad visibility: Agentless security connects via API to cloud service providers, offering near-instant visibility and threat detection. It provides a comprehensive view of your cloud environment, making it easier to manage and secure large and complex infrastructures.

Challenges

1. Infrastructure-level monitoring: Agentless solutions rely on cloud service provider logs and API calls, meaning that detection might not be as immediate as agent-based solutions. They collect configuration data and logs, focusing on infrastructure misconfigurations, identity risks, exposed resources, and network traffic, but lack visibility and access to detailed, system-level information such as running processes and host-level vulnerabilities.

2. Cloud-focused: Primarily for cloud environments, although some tools may integrate with on-premises systems through API-based data gathering. For organizations with hybrid cloud environments, this approach fragments visibility and security, leading to blind spots and increasing security risk.

3. Passive remediation: Typically provides alerts and recommendations, but lacks deep control over workloads, requiring manual intervention or orchestration tools (e.g., SOAR platforms) to execute responses. Some agentless tools trigger automated responses via cloud provider APIs (e.g., revoking permissions, adjusting security groups), but with limited scope.

Combined agent-based and agentless approaches

A combined approach leverages the strengths of both agent-based and agentless security for complete coverage. This hybrid strategy helps security teams achieve comprehensive coverage by:

  • Using agent-based solutions for deep, real-time protection and detailed monitoring of critical systems or sensitive workloads.
  • Employing agentless solutions for fast deployment, broader visibility, and easier scalability across all cloud assets, which is particularly useful in dynamic cloud environments where workloads frequently change.

The combined approach has distinct practical applications. For example, imagine a financial services company that deals with sensitive transactions. Its security team might use agent-based security for critical databases to ensure stringent protections are in place. Meanwhile, agentless solutions could be ideal for less critical, transient workloads in the cloud, where rapid scalability and minimal performance impact are priorities. With different data types and infrastructures, the combined approach is best.

Best of both worlds: The benefits of a combined approach

The combined approach not only maximizes security efficacy but also aligns with diverse operational needs. This means that all parts of the cloud environment are secured according to their risk profile and functional requirements. Agent-based deployment provides in-depth monitoring and active protection against threats, suitable for environments requiring tight security controls, such as financial services or healthcare data processing systems. Agentless deployment complements agents by offering broader visibility and easier scalability across diverse and dynamic cloud environments, ideal for rapidly changing cloud resources.

There are three major benefits from combining agent-based and agentless approaches.

1. Building a holistic security posture: By integrating both agent-based and agentless technologies, organizations can ensure that all parts of their cloud environments are covered—from persistent, high-risk endpoints to transient cloud resources. This comprehensive coverage is crucial for detecting and responding to threats promptly and effectively.

2. Reducing overhead while boosting scalability: Agentless systems require no software installation on each device, reducing overhead and eliminating the need to update and maintain agents on a large number of endpoints. This makes it easier to scale security as the organization grows or as the cloud environment changes.

3. Applying targeted protection where needed: Agent-based solutions can be deployed on selected assets that handle sensitive information or are critical to business operations, thus providing focused protection without incurring the costs and complexity of universal deployment.

Use cases for a combined approach

A combined approach gives security teams the flexibility to deploy agent-based and agentless solutions based on the specific security requirements of different assets and environments. As a result, organizations can optimize their security expenditures and operational efforts, allowing for greater adaptability in cloud security use cases.

Let’s take a look at how this could practically play out. In the combined approach, agent-based security can perform the following:

1. Deep monitoring and real-time protection:

  • Workload threat detection: Agent-based solutions monitor individual workloads for suspicious activity, such as unauthorized file changes or unusual resource usage, providing high granularity for detecting threats within critical cloud applications.
  • Behavioral analysis of applications: By deploying agents on virtual machines or containers, organizations can monitor behavior patterns and flag anomalies indicative of insider threats, lateral movement, or Advanced Persistent Threats (APTs).
  • Protecting high-sensitivity environments: Agents provide continuous monitoring and advanced threat protection for environments processing sensitive data, such as payment processing systems or healthcare records, leveraging capabilities like memory protection and file integrity monitoring.

2. Cloud asset protection:

  • Securing critical infrastructure: Agent-based deployments are ideal for assets like databases or storage systems that require real-time defense against exploits and ransomware.
  • Advanced packet inspection: For high-value assets, agents offer deep packet inspection and in-depth logging to detect stealthy attacks such as data exfiltration.
  • Customizable threat response: Agents allow for tailored security rules and automated responses at the workload level, such as shutting down compromised instances or quarantining infected files.

At the same time, agentless cloud security provides complementary benefits such as:

1. Broad visibility and compliance:

  • Asset discovery and management: Agentless systems can quickly scan the entire cloud environment to identify and inventory all assets, a crucial capability for maintaining compliance with regulations like GDPR or HIPAA, which require up-to-date records of data locations and usage.
  • Regulatory compliance auditing and configuration management: Quickly identify gaps in compliance frameworks like PCI DSS or SOC 2 by scanning configurations, permissions, and audit trails without installing agents. Using APIs to check configurations across cloud services ensures that all instances comply with organizational and regulatory standards, an essential aspect for maintaining security hygiene and compliance.
  • Shadow IT Detection: Detect and map unauthorized cloud services or assets that are spun up without security oversight, ensuring full inventory coverage.

2. Rapid environmental assessment:

  • Vulnerability assessment of new deployments: In environments where new code is frequently deployed, agentless security can quickly assess new instances, containers, or workloads in CI/CD pipelines for vulnerabilities and misconfigurations, enabling secure deployments at DevOps speed.
  • Misconfiguration alerts: Detect and alert on common cloud configuration issues, such as exposed storage buckets or overly permissive IAM roles, across cloud providers like AWS, Azure, and GCP.
  • Policy enforcement: Validate that new resources adhere to established security baselines and organizational policies, preventing security drift during rapid cloud scaling.

Combining agent-based and agentless approaches in cloud security not only maximizes the protective capabilities, but also offers flexibility, efficiency, and comprehensive coverage tailored to the diverse and evolving needs of modern cloud environments. This integrated strategy ensures that organizations can protect their assets more effectively while also adapting quickly to new threats and regulatory requirements.

Darktrace offers complementary and flexible deployment options for holistic cloud security

Powered by multilayered AI, Darktrace / CLOUD is a Cloud Detection and Response (CDR) solution that is agentless by default, with optional lightweight, host-based server agents for enhanced real-time actioning and deep inspection. As such, it can deploy in cloud environments in minutes and provide unified visibility and security across hybrid, multi-cloud environments.

With any deployment method, Darktrace supports multi-tenant, hybrid, and serverless cloud environments. Its Self-Learning AI learns the normal behavior across architectures, assets, and users to identify unusual activity that may indicate a threat. With this approach, Darktrace / CLOUD quickly disarms threats, whether they are known, unknown, or completely novel. It then accelerates the investigation process and responds to threats at machine speed.

Learn more about how Darktrace / CLOUD secures multi and hybrid cloud environments in the Solution Brief.

References:

1. Flexera 2023 State of the Cloud Report

2. ESG Research 2023 Report on Cloud-Native Security

3. Gartner, Market Guide for Cloud Workload Protection Platforms, 2023

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Kellie Regan
Director, Product Marketing - Cloud Security

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI