Blog
/
/
January 13, 2025

Agent vs. Agentless Cloud Security: Why Deployment Methods Matter

Cloud security solutions can be deployed with agentless or agent-based approaches or use a combination of methods. Organizations must weigh which method applies best to the assets and data the tool will protect.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Kellie Regan
Director, Product Marketing - Cloud Security
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Jan 2025

The rapid adoption of cloud technologies has brought significant security challenges for organizations of all sizes. According to recent studies, over 70% of enterprises now operate in hybrid or multi-cloud environments, with 93% employing a multi-cloud strategy[1]. This complexity requires robust security tools, but opinions vary on the best deployment method—agent-based, agentless, or a combination of both.

Agent-based and agentless cloud security approaches offer distinct benefits and limitations, and organizations often make deployment choices based on their unique needs depending on the function of the specific assets covered, the types of data stored, and cloud architecture, such as hybrid or multi-cloud deployments.

For example, agentless solutions are increasingly favored for their ease of deployment and ability to provide broad visibility across dynamic cloud environments. These are especially useful for DevOps teams, with 64% of organizations citing faster deployment as a key reason for adopting agentless tools[2].

On the other hand, agent-based solutions remain the preferred choice for environments requiring deep monitoring and granular control, such as securing sensitive high-value workloads in industries like finance and healthcare. In fact, over 50% of enterprises with critical infrastructure report relying on agent-based solutions for their advanced protection capabilities[3].

As the debate continues, many organizations are turning to combined approaches, leveraging the strengths of both agent-based and agentless tools to address the full spectrum of their security needs for comprehensive coverage. Understanding the capabilities and limitations of these methods is critical to building an effective cloud security strategy that adapts to evolving threats and complex infrastructures.

Agent-based cloud security

Agent-based security solutions involve deploying software agents on each device or system that needs protection. Agent-based solutions are great choices when you need in-depth monitoring and protection capabilities. They are ideal for organizations that require deep security controls and real-time active response, particularly in hybrid and on-premises environments.

Key advantages include:

1. Real-time monitoring and protection: Agents detect and block threats like malware, ransomware, and anomalous behaviors in real time, providing ongoing protection and enforcing compliance by continuously monitoring workload activities.  Agents enable full control over workloads for active response such as blocking IP addresses, killing processes, disabling accounts, and isolating infected systems from the network, stopping lateral movement.

2. Deep visibility for hybrid environments: Agent-based approaches allow for full visibility across on-premises, hybrid, and multi-cloud environments by deploying agents on physical and virtual machines. Agents offer detailed insights into system behavior, including processes, files, memory, network connections, and more, detecting subtle anomalies that might indicate security threats. Host-based monitoring tracks vulnerabilities at the system and application level, including unpatched software, rogue processes, and unauthorized network activity.

3. Comprehensive coverage: Agents are very effective in hybrid environments (cloud and on-premises), as they can be installed on both physical and virtual machines.  Agents can function independently on each host device onto which they are installed, which is especially helpful for endpoints that may operate outside of constant network connectivity.

Challenges:

1. Resource-intensive: Agents can consume CPU, memory, and network resources, which may affect performance, especially in environments with large numbers of workloads or ephemeral resources.

2. Challenging in dynamic environments: Managing hundreds or thousands of agents in highly dynamic or ephemeral environments (e.g., containers, serverless functions) can be complex and labor-intensive.

3. Slower deployment: Requires agent installation on each workload or instance, which can be time-consuming, particularly in large or complex environments.  

Agentless cloud security

Agentless security does not require software agents to be installed on each device. Instead, it uses cloud infrastructure and APIs to perform security checks. Agentless solutions are highly scalable with minimal impact on performance, and ideal for cloud-native and highly dynamic environments like serverless and containerized. These solutions are great choices for your cloud-native and multi-cloud environments where rapid deployment, scalability, and minimal impact on performance are critical, but response actions can be handled through external tools or manual processes.

Key advantages include:

1. Scalability and ease of deployment: Because agentless security doesn’t require installation on each individual device, it is much easier to deploy and can quickly scale across a vast number of cloud assets. This approach is ideal for environments where resources are frequently created and destroyed (e.g., serverless, containerized workloads), as there is no need for agent installation or maintenance.

2. Reduced system overhead: Without the need to run local agents, agentless security minimizes the impact on system performance. This is crucial in high-performance environments.

3. Broad visibility: Agentless security connects via API to cloud service providers, offering near-instant visibility and threat detection. It provides a comprehensive view of your cloud environment, making it easier to manage and secure large and complex infrastructures.

Challenges

1. Infrastructure-level monitoring: Agentless solutions rely on cloud service provider logs and API calls, meaning that detection might not be as immediate as agent-based solutions. They collect configuration data and logs, focusing on infrastructure misconfigurations, identity risks, exposed resources, and network traffic, but lack visibility and access to detailed, system-level information such as running processes and host-level vulnerabilities.

2. Cloud-focused: Primarily for cloud environments, although some tools may integrate with on-premises systems through API-based data gathering. For organizations with hybrid cloud environments, this approach fragments visibility and security, leading to blind spots and increasing security risk.

3. Passive remediation: Typically provides alerts and recommendations, but lacks deep control over workloads, requiring manual intervention or orchestration tools (e.g., SOAR platforms) to execute responses. Some agentless tools trigger automated responses via cloud provider APIs (e.g., revoking permissions, adjusting security groups), but with limited scope.

Combined agent-based and agentless approaches

A combined approach leverages the strengths of both agent-based and agentless security for complete coverage. This hybrid strategy helps security teams achieve comprehensive coverage by:

  • Using agent-based solutions for deep, real-time protection and detailed monitoring of critical systems or sensitive workloads.
  • Employing agentless solutions for fast deployment, broader visibility, and easier scalability across all cloud assets, which is particularly useful in dynamic cloud environments where workloads frequently change.

The combined approach has distinct practical applications. For example, imagine a financial services company that deals with sensitive transactions. Its security team might use agent-based security for critical databases to ensure stringent protections are in place. Meanwhile, agentless solutions could be ideal for less critical, transient workloads in the cloud, where rapid scalability and minimal performance impact are priorities. With different data types and infrastructures, the combined approach is best.

Best of both worlds: The benefits of a combined approach

The combined approach not only maximizes security efficacy but also aligns with diverse operational needs. This means that all parts of the cloud environment are secured according to their risk profile and functional requirements. Agent-based deployment provides in-depth monitoring and active protection against threats, suitable for environments requiring tight security controls, such as financial services or healthcare data processing systems. Agentless deployment complements agents by offering broader visibility and easier scalability across diverse and dynamic cloud environments, ideal for rapidly changing cloud resources.

There are three major benefits from combining agent-based and agentless approaches.

1. Building a holistic security posture: By integrating both agent-based and agentless technologies, organizations can ensure that all parts of their cloud environments are covered—from persistent, high-risk endpoints to transient cloud resources. This comprehensive coverage is crucial for detecting and responding to threats promptly and effectively.

2. Reducing overhead while boosting scalability: Agentless systems require no software installation on each device, reducing overhead and eliminating the need to update and maintain agents on a large number of endpoints. This makes it easier to scale security as the organization grows or as the cloud environment changes.

3. Applying targeted protection where needed: Agent-based solutions can be deployed on selected assets that handle sensitive information or are critical to business operations, thus providing focused protection without incurring the costs and complexity of universal deployment.

Use cases for a combined approach

A combined approach gives security teams the flexibility to deploy agent-based and agentless solutions based on the specific security requirements of different assets and environments. As a result, organizations can optimize their security expenditures and operational efforts, allowing for greater adaptability in cloud security use cases.

Let’s take a look at how this could practically play out. In the combined approach, agent-based security can perform the following:

1. Deep monitoring and real-time protection:

  • Workload threat detection: Agent-based solutions monitor individual workloads for suspicious activity, such as unauthorized file changes or unusual resource usage, providing high granularity for detecting threats within critical cloud applications.
  • Behavioral analysis of applications: By deploying agents on virtual machines or containers, organizations can monitor behavior patterns and flag anomalies indicative of insider threats, lateral movement, or Advanced Persistent Threats (APTs).
  • Protecting high-sensitivity environments: Agents provide continuous monitoring and advanced threat protection for environments processing sensitive data, such as payment processing systems or healthcare records, leveraging capabilities like memory protection and file integrity monitoring.

2. Cloud asset protection:

  • Securing critical infrastructure: Agent-based deployments are ideal for assets like databases or storage systems that require real-time defense against exploits and ransomware.
  • Advanced packet inspection: For high-value assets, agents offer deep packet inspection and in-depth logging to detect stealthy attacks such as data exfiltration.
  • Customizable threat response: Agents allow for tailored security rules and automated responses at the workload level, such as shutting down compromised instances or quarantining infected files.

At the same time, agentless cloud security provides complementary benefits such as:

1. Broad visibility and compliance:

  • Asset discovery and management: Agentless systems can quickly scan the entire cloud environment to identify and inventory all assets, a crucial capability for maintaining compliance with regulations like GDPR or HIPAA, which require up-to-date records of data locations and usage.
  • Regulatory compliance auditing and configuration management: Quickly identify gaps in compliance frameworks like PCI DSS or SOC 2 by scanning configurations, permissions, and audit trails without installing agents. Using APIs to check configurations across cloud services ensures that all instances comply with organizational and regulatory standards, an essential aspect for maintaining security hygiene and compliance.
  • Shadow IT Detection: Detect and map unauthorized cloud services or assets that are spun up without security oversight, ensuring full inventory coverage.

2. Rapid environmental assessment:

  • Vulnerability assessment of new deployments: In environments where new code is frequently deployed, agentless security can quickly assess new instances, containers, or workloads in CI/CD pipelines for vulnerabilities and misconfigurations, enabling secure deployments at DevOps speed.
  • Misconfiguration alerts: Detect and alert on common cloud configuration issues, such as exposed storage buckets or overly permissive IAM roles, across cloud providers like AWS, Azure, and GCP.
  • Policy enforcement: Validate that new resources adhere to established security baselines and organizational policies, preventing security drift during rapid cloud scaling.

Combining agent-based and agentless approaches in cloud security not only maximizes the protective capabilities, but also offers flexibility, efficiency, and comprehensive coverage tailored to the diverse and evolving needs of modern cloud environments. This integrated strategy ensures that organizations can protect their assets more effectively while also adapting quickly to new threats and regulatory requirements.

Darktrace offers complementary and flexible deployment options for holistic cloud security

Powered by multilayered AI, Darktrace / CLOUD is a Cloud Detection and Response (CDR) solution that is agentless by default, with optional lightweight, host-based server agents for enhanced real-time actioning and deep inspection. As such, it can deploy in cloud environments in minutes and provide unified visibility and security across hybrid, multi-cloud environments.

With any deployment method, Darktrace supports multi-tenant, hybrid, and serverless cloud environments. Its Self-Learning AI learns the normal behavior across architectures, assets, and users to identify unusual activity that may indicate a threat. With this approach, Darktrace / CLOUD quickly disarms threats, whether they are known, unknown, or completely novel. It then accelerates the investigation process and responds to threats at machine speed.

Learn more about how Darktrace / CLOUD secures multi and hybrid cloud environments in the Solution Brief.

References:

1. Flexera 2023 State of the Cloud Report

2. ESG Research 2023 Report on Cloud-Native Security

3. Gartner, Market Guide for Cloud Workload Protection Platforms, 2023

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Kellie Regan
Director, Product Marketing - Cloud Security

More in this series

No items found.

Blog

/

/

January 6, 2026

How a leading bank is prioritizing risk management to power a resilient future

Default blog imageDefault blog image

As one of the region’s most established financial institutions, this bank sits at the heart of its community’s economic life – powering everything from daily transactions to business growth and long-term wealth planning. Its blend of physical branches and advanced digital services gives customers the convenience they expect and the personal trust they rely on. But as the financial world becomes more interconnected and adversaries more sophisticated, safeguarding that trust requires more than traditional cybersecurity. It demands a resilient, forward-leaning approach that keeps pace with rising threats and tightening regulatory standards.

A complex risk landscape demands a new approach

The bank faced a challenge familiar across the financial sector: too many tools, not enough clarity. Vulnerability scans, pen tests, and risk reports all produced data, yet none worked together to show how exposures connected across systems or what they meant for day-to-day operations. Without a central platform to link and contextualize this data, teams struggled to see how individual findings translated into real exposure across the business.

  • Fragmented risk assessments: Cyber and operational risks were evaluated in silos, often duplicated across teams, and lacked the context needed to prioritize what truly mattered.
  • Limited executive visibility: Leadership struggled to gain a complete, real-time view of trends or progress, making risk ownership difficult to enforce.
  • Emerging compliance pressure: This gap also posed compliance challenges under the EU’s Digital Operational Resilience Act (DORA), which requires financial institutions to demonstrate continuous oversight, effective reporting, and the ability to withstand and recover from cyber and IT disruptions.
“The issue wasn’t the lack of data,” recalls the bank’s Chief Technology Officer. “The challenge was transforming that data into a unified, contextualized picture we could act on quickly and decisively.”

As the bank advanced its digital capabilities and embraced cloud services, its risk environment became more intricate. New pathways for exploitation emerged, human factors grew harder to quantify, and manual processes hindered timely decision-making. To maintain resilience, the security team sought a proactive, AI-powered platform that could consolidate exposures, deliver continuous insight, and ensure high-value risks were addressed before they escalated.

Choosing Darktrace to unlock proactive cyber resilience

To reclaim control over its fragmented risk landscape, the bank selected Darktrace / Proactive Exposure Management™ for cyber risk insight. The solution’s ability to consolidate scanner outputs, pen test results, CVE data, and operational context into one AI-powered view made it the clear choice. Darktrace delivered comprehensive visibility the team had long been missing.

By shifting from a reactive model to proactive security, the bank aimed to:

  • Improve resilience and compliance with DORA
  • Prioritize remediation efforts with greater accuracy
  • Eliminate duplicated work across teams
  • Provide leadership with a complete view of risk, updated continuously
  • Reduce the overall likelihood of attack or disruption

The CTO explains: “We needed a solution that didn’t just list vulnerabilities but showed us what mattered most for our business – how risks connected, how they could be exploited, and what actions would create the biggest reduction in exposure. Darktrace gave us that clarity.”

Targeting the risks that matter most

Darktrace / Proactive Exposure Management offered the bank a new level of visibility and control by continuously analyzing misconfigurations, critical attack paths, human communication patterns, and high-value assets. Its AI-driven risk scoring allowed the team to understand which vulnerabilities had meaningful business impact, not just which were technically severe.

Unifying exposure across architectures

Darktrace aggregates and contextualizes data from across the bank’s security stack, eliminating the need to manually compile or correlate findings. What once required hours of cross-team coordination now appears in a single, continuously updated dashboard.

Revealing an adversarial view of risk

The solution maps multi-stage, complex attack paths across network, cloud, identity systems, email environments, and endpoints – highlighting risks that traditional CVE lists overlook.

Identifying misconfigurations and controlling gaps

Using Self-Learning AI, Darktrace / Proactive Exposure Management spots misconfigurations and prioritizes them based on MITRE adversary techniques, business context, and the bank’s unique digital environment.

Enhancing red-team and pen test effectiveness

By directing testers to the highest-value targets, Darktrace removes guesswork and validates whether defenses hold up against realistic adversarial behavior.

Supporting DORA compliance

From continuous monitoring to executive-ready reporting, the solution provides the transparency and accountability the bank needs to demonstrate operational resilience frameworks.

Proactive security delivers tangible outcomes

Since deploying Darktrace / Proactive Exposure Management, the bank has significantly strengthened its cybersecurity posture while improving operational efficiency.

Greater insight, smarter prioritization, stronger defensee

Security teams are now saving more than four hours per week previously spent aggregating and analyzing risk data. With a unified view of their exposure, they can focus directly on remediation instead of manually correlating multiple reports.

Because risks are now prioritized based on business impact and real-time operational context, they no longer waste time on low-value tasks. Instead, critical issues are identified and resolved sooner, reducing potential windows for exploitation and strengthening the bank’s ongoing resilience against both known and emerging threats.

“Our goal was to move from reactive to proactive security,” the CTO says. “Darktrace didn’t just help us achieve that, it accelerated our roadmap. We now understand our environment with a level of clarity we simply didn’t have before.”

Leadership clarity and stronger governance

Executives and board stakeholders now receive clear, organization-wide visibility into the bank’s risk posture, supported by consistent reporting that highlights trends, progress, and areas requiring attention. This transparency has strengthened confidence in the bank’s cyber resilience and enabled leadership to take true ownership of risk across the institution.

Beyond improved visibility, the bank has also deepened its overall governance maturity. Continuous monitoring and structured oversight allow leaders to make faster, more informed decisions that strategically align security efforts with business priorities. With a more predictable understanding of exposure and risk movement over time, the organization can maintain operational continuity, demonstrate accountability, and adapt more effectively as regulatory expectations evolve.

Trading stress for control

With Darktrace, leaders now have the clarity and confidence they need to report to executives and regulators with accuracy. The ability to see organization-wide risk in context provides assurance that the right issues are being addressed at the right time. That clarity is also empowering security analysts who no longer shoulder the anxiety of wondering which risks matter most or whether something critical has slipped through the cracks. Instead, they’re working with focus and intention, redirecting hours of manual effort into strategic initiatives that strengthen the bank’s overall resilience.

Prioritizing risk to power a resilient future

For this leading financial institution, Darktrace / Proactive Exposure Management has become the foundation for a more unified, data-driven, and resilient cybersecurity program. With clearer, business-relevant priorities, stronger oversight, and measurable efficiency gains, the bank has strengthened its resilience and met demanding regulatory expectations without adding operational strain.

Most importantly, it shifted the bank’s security posture from a reactive stance to a proactive, continuous program. Giving teams the confidence and intelligence to anticipate threats and safeguard the people and services that depend on them.

Continue reading
About the author
Kelland Goodin
Product Marketing Specialist

Blog

/

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI