Blog
/
/
September 11, 2023

Darktrace & FERC Order 887: Enhancing Cybersecurity

Understand Darktrace's role in supporting FERC Order 887 and its efforts to improve cybersecurity measures.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Jeffrey Macre
Principal Industrial Security Solutions Architect
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
Sep 2023

At a glance:

  • Darktrace/OT leverages machine learning to provide actionable preventative analytics, relevant real time anomaly based threat detection, and a variety of response capabilities as a full suite protection for OT/ICS operations Purdue levels 5-0.
  • Self-Learning AI detects and responds to cyber threats including malicious or non malicious insiders and supply chain attacks.
  • Darktrace/OT deploys passively within NERC CIP environments providing visibility without the need for any external connectivity or threat intelligence updates.

What is FERC?

The US Federal Energy Regulatory Commission (FERC) is responsible for the regulation of the wholesale electricity and natural gas transmission. FERC sits above the North American Electric Reliability Corporation (NERC) which is responsible for the development and enforcement of reliability standards for the US bulk power system. NERC CIP reliability standards are standards enforced by NERC to ensure the safety and protection of the bulk electric system.

What is FERC order 887?

In review of the CIP requirements, FERC identified a security gap. The gap was that there is no requirement for internal network security monitoring (INSM) within the security perimeters of CIP networked systems. Without this requirement and protections in place, if an attacker was to breach the security perimeter of the CIP networked environment, the victim organization would have no capability of detecting and alerting to what the adversary is doing within the security perimeter.  

FERC Order 887 is a final rule issued intended to direct NERC to develop new or modified reliability standards requiring internal network security monitoring INSM within Critical Infrastructure Protection (CIP) networked environments. A focus is placed on anomaly based detection used within the security perimeter so that threats without known rules and signatures associated, including insider threat and supply chain attacks, can be detected based on anomalous network activity within the CIP networked environment.

FERC order 887 specifically focuses on the need for addressing the INSM gap for BES high impact power generation systems with CIP networked environments with and without external connectivity and medium impact systems with external connectivity.

FERC Order 887 Requirements

1. Any new or modified CIP Reliability Standards should address the need for responsible entities to develop baselines of their network traffic inside their CIP-networked environment for BES Medium impact with external routable network connectivity and high impact with or without external routable network connectivity.

2. Any new or modified CIP Reliability Standards should address the need for responsible entities to monitor for and detect unauthorized activity, connections, devices, and software inside the CIP-networked environment. This should be done so that sophisticated threats including those that may already have persistent access to CIP networked systems, insider threats and supply chain threats can be detected at earlier stages.

3. Any new or modified CIP Reliability Standards should require responsible entities to identify anomalous activity to a high level of confidence by:  (1) logging network traffic (we note that packet capture is one means of accomplishing this goal); (2) maintaining logs and other data collected regarding network traffic.

How does Darktrace support FERC order 887?

For security professionals to satisfy FERC order 887, it is ideal to deploy an INSM that leverages anomaly based detection and is capable of detecting insider threats and supply chain attacks within CIP networked environments in medium and high impact power generation sites. Additionally, the INSM has to be able to function within high impact sites without any external network connectivity.

Darktrace/OT leverages machine learning to provide actionable preventative analytics, relevant real time anomaly based threat detection, and a variety of response capabilities as a full suite protection for OT/ICS operations Purdue levels 5-0, helping security professionals accommodate for FERC order 887 requirements.

Anomaly Based Detection

Darktrace establishes baseline and normal network activity via passive traffic analysis when monitoring the CIP-networked OT system. The baseline or “pattern of life” is then used to detect anomalies within the environment including unauthorized activity, connections, devices, and software inside the CIP-networked environment via anomaly-based detection.  

Darktrace’s AI technology uses unsupervised machine learning to identify anomalous activity to a high statistical level of confidence by logging network traffic via packet capture and maintaining logs and other data collected regarding network traffic inherently within the platform for 1 year.

All log data stored by Darktrace can be exported to other systems so that it can be stored longer than 1 year. If you need to retain logs for more than 1 year, Darktrace can offload the logs to retain indefinitely.

Figure 1: AI Analyst Incident reporting an unusual reprogram command using the MODBUS protocol. The incident includes a plain English summary, relevant technical information, and the investigation process used by the AI.

Self-Learning AI

Darktrace/OT analyzes network traffic passively and learns the normal pattern of life of the these assets and their details (make, model, firmware, protocols, etc.). Darktrace/OT does not need any data or threat feeds from external sources because the AI builds an innate understanding of self without third-party support.

Darktrace is capable of detecting sophisticated novel malware-based attacks as well as supply chain attacks, insider threats, and other attacks where the adversary has established foothold or persistent legitimized access to systems and cannot be detected by rules and signatures-based detection systems.

Darktrace/OT is an intelligent decision-making engine that uses its evolving understanding of your industrial organization to prompt targeted, non-disruptive action to contain emerging attacks, actively responding to security events occurring within the security perimeter autonomously or via human confirmation using TCP/resets or Darktrace can respond at security boundaries via various integrations with network security tools including firewalls and OT zero trust solutions.

Figure 2: The Darktrace Threat Visualizer allows security analysts and OT engineers to visualize and replay incidents in real time.

Deploys in Isolation Without External Connectivity

Darktrace/OT can deploy passively without the need for any external network connectivity into any low, medium, or high impact power generation facilities and maintain 100 percent integrity of the existing segmentation including fully air gapped environments.

Once Darktrace/OT is deployed, Darktrace immediately begins monitoring, learning, and analyzing the raw OT network traffic (east/west and north/south) within the CIP-networked environment creating a live data flow topology and baseline of network connectivity.

Because all data-processing and analytics are performed locally on the Darktrace appliance, there is no requirement for Darktrace to have a connection out to the internet. As a result, Darktrace/OT provides visibility and threat detection to air-gapped or highly segmented networks without jeopardizing their integrity. If a human or machine displays even the most nuanced forms of threatening behavior, the solution can illuminate this in real time.

Attack Case Study: Insider Threat

In the real-world example below, Darktrace/OT detected a subtle deviation from normal behavior when a reprogram command was sent by an engineering workstation to a PLC controlling a pump, an action an insider threat with legitimized access to OT systems would take to alter the physical process without any malware involved. In this instance, AI Analyst, Darktrace’s investigation tool that triages events to reveal the full security incident, detected the event as unusual based on multiple metrics including the source of the command, the destination device, the time of the activity, and the command itself.  

As a result, AI Analyst created a complete security incident, with a natural language summary, the technical details of the activity, and an investigation process explaining how it came to its conclusion. By leveraging Explainable AI, a security team can quickly triage and escalate Darktrace incidents in real time before it becomes disruptive, and even when performed by a trusted insider.

Figure 3: AI Analyst Incident reporting an unusual reprogram command using the MODBUS protocol. The incident includes a plain English summary, relevant technical information, and the investigation process used by the AI.

Credit to Daniel Simonds and Oakley Cox for their contribution to this blog.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Jeffrey Macre
Principal Industrial Security Solutions Architect

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI