How Changing Online Habits Have Created New Email Attacks
New email behaviors such as increased subscriptions and remote presentation tools have given rise to a new wave of email cyber-attacks. Learn more here.
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.
Share
14
Apr 2020
For several weeks now, we’ve seen how cyber-criminals have used the ongoing global health crisis as a ‘fearware’ topic to mount and spread their attacks. But as more and more of the world’s population works from home, and as consumption of digital content subsequently increases, hackers are finding novel ways to exploit the full range of human emotions through sophisticated email attacks.
From attackers creating ‘digital fake’ campaigns that offer ‘advice’ for those self-isolating, to threat-actors masquerading behind trusted websites to launch malware, the last few weeks have demonstrated how quickly cyber-criminals can adapt their techniques in the email realm. This blog presents four ways hackers are changing their tactics in light of current trends and changing behaviors, and how security teams can react to defend against these developments.
Increased subscription
With a marked increase in digital subscription to entertainment sites and news sources, it should come as no surprise that spammers and hackers have doubled down on using fake newsletter subscriptions in their email attacks.
For security tools such as gateways and inboxes that look at the historic mail-flow, a new email subscription to a newsletter can look very much like any other – especially when the email passes all existing security tests and verifications. A brand new campaign or domain may not have been identified as malicious yet, and thus is allowed into the recipient’s inbox.
Analyzing emails within the broader business context gives a full understanding of the circumstances in which it was received. This requires looking beyond the inbox and considering the user’s ‘pattern of life’ across all touchpoints across the digital ecosystem. In the case of benign subscription emails, a user will have recently visited the domain of the sender and requested the email newsletter. There is an action ahead of receiving the email – requesting it.
Drawing insights from both email traffic and the user’s wider ‘pattern of life’ across the digital business, AI can tell the difference between an email newsletter that has and has not been requested. This simple act alone can help security teams understand when a user has voluntarily signed up for a newsletter versus when they have been targeted by a malicious attack, enabling them to respond appropriately.
Rapid adoption of remote presentation sites
As remote working sees a rapid rise, there has been a sharp increase in the number of people using presentation creation sites. Darktrace has recently picked up on a large number of attacks in which these trusted sites have been exploited to openly host malicious links. Malicious payloads are embedded within presentations, which are then shared in emails that go undetected by gateway tools.
Figure 1: Canva and Infogram, two presentation sites leveraged in this latest string of attacks
Several indicators suggest that this activity originates from a single, well-organized threat-actor or group, including the rotational targeting of presentation sites (Canva, Infogram, Axel, Piktochart, and Sway), the highly-focused nature of the attack type (taking place within the space of two weeks), and the consistent nature of these emails. These emails were seen across a large number of deployments, which appeared to utilize a strikingly similar fake eFax notification format.
Worryingly, the emails appear to display none of the typical ‘trademark’ identifiers often seen for phishing emails, such as spoofed or impersonated email addresses or suspicious link strings. For this reason, they go undetected by products such as Microsoft’s spam and phishing tools. As such, they are currently being delivered to recipients’ inboxes without any alteration or addition of safety features.
This activity appears to represent a significant and currently unrecognized external threat. Whilst the novel nature of the activity allowed it to easily bypass legacy tools, a more nuanced understanding of the human behind the email address allowed Darktrace’s AI to uniquely identify this series of emails as highly threatening. The technology recognized that the links and domains were highly unusual, not only in the context of the recipients’ normal behavior, but the ‘pattern of life’ of their peer group and the organization at large.
An unprecedented convergence of personal and professional
While IT and compliance teams are having to find ways to keep digital environments secure in remote working conditions, users are also changing their own behavior – not only in terms of devices and tools accessed, but also in what content and files are consumed and interacted with. This convergence of the personal and the professional, and the resulting expansion in the attack surface, presents a new set of challenges to security teams. Compromised email credentials and hijacked accounts become even harder to spot.
Securing these environments requires technology that can adapt to the new way of working, without having to explicitly reconfigure or re-write the rules. Digital activity has changed overnight, and will only continue to change – security tools that cannot adapt and grow with that change will fast become redundant. By continuously learning and evolving its understanding of every user and device, AI is being relied upon to protect workers, especially as we now shift our behavior to use more cloud-based communication and collaboration tools.
Adaptive AI-powered attacks
A recent Forrester report found that over half of security professionals expect AI-augmented cyber-attacks to be made evident to the public within the next twelve months. One way this is likely to manifest itself is with the automation of well-crafted spear phishing campaigns.
As attackers use AI to better understand the type of content that each user interacts with, along with the prevalent emotions that drive each individual user, malware or malicious links can be masked in content that is highly targeted to specific users. Individuals who are actively seeking information on particular topics, or are more likely to share and forward light-hearted, humorous content may be targeted more frequently or aggressively.
Using AI to study the target, hackers can leverage insights at a speed and scale never seen before. With sophisticated domain spoofing, indiscriminate writing styles, and carefully hidden malicious links, human analysts and traditional security tools alike will stand little chance.
To prepare for this next wave of attacks, security teams themselves are relying on AI that analyzes emails in light of behaviors across email platforms and the organization at large. Rather than analyzing emails in isolation and at a single point in time, Cyber AI correlates insights over time, and continuously revisits emails many thousands of times as new evidence emerges.
While traditional defenses ask whether elements of an email have been observed in historical attacks, Antigena Email is the only solution that can reliably ask whether it would be unusual for a recipient to interact with a given email in the context of their normal ‘pattern of life’, as well as that of their peers and the wider organization. This contextual knowledge allows the AI to make highly accurate decisions and neutralize the full range of email attacks – from ‘clean’ spoofing emails that seek to wire a fraudulent payment to sophisticated spear phishing attempts.
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Customer Case Study: Leading Petrochemical Manufacturer
Headquartered in Saudi Arabia, this industry leading petrochemical manufacturer serves customers in more than 80 countries across diverse markets throughout Europe, Africa, Latin America, the Middle East, China, and Southeast Asia.
Cyber resiliency critical to growth strategy
This leading petrochemical manufacturer’s vision is to be one of the major global players in the production and marketing of designated petrochemicals and downstream products. The company aims to significantly increase its capacity to up to a million metric tons within the next few years.
With cyber-attacks on critical infrastructure increasing 30% globally last year, cyber resiliency is essential to supporting the company’s strategic business goals of:
Maximizing production through efficient asset utilization
Maximizing sales by conducting 90% of its business outside Saudi Arabia
Optimizing resources and processes by integrating with UN Global Compact principles for sustainability and efficiency
Growing its business portfolio by engaging in joint ventures to diversify production and add value to the economy
However, the industry leader faced several challenges in its drive to fortify its cybersecurity defenses.
Visibility gaps delay response time
The company’s existing security setup provided limited visibility to the in-house security team, hindering its ability to detect anomalous network and user activity in real time. This resulted in delayed responses to potential incidents, making proactive issue resolution difficult and any remediation in the event of a successful attack costly and time-consuming.
Manual detection drains resources
Without automated detection and response capabilities, the organization’s security team had to manually monitor for suspicious activity – a time-consuming and inefficient approach that strained resources and left the organization vulnerable. This made it difficult for the team to stay current with training or acquire new skills and certifications, which are core to the ethos of both the company’s owners and the team itself.
Cyber-attacks on critical infrastructure increasing
The petrochemical manufacturer is part of a broader ecosystem of companies, making the protection of its supply chain – both upstream and downstream – critical. With several manufacturing entities and multiple locations, the customer’s internal structure is complex and challenging to secure. As cyber-attacks on critical infrastructure escalate, it needed a more comprehensive approach to safeguard its business and the wider ecosystem.
Keeping and growing skills and focus in-house
To strengthen its cybersecurity strategy, the company considered two options:
Make a significant initial and ongoing investment in a Security Operations Center (SOC), which would involve skills development outside the company and substantial management overhead.
Use a combination of new, automated tools and an outsourced Managed Detection and Response (MDR) service to reduce the burden on internal security specialists and allow the company to invest in upskilling its staff so they can focus on more strategic tasks.
Faced with this choice between entirely outsourcing security and augmenting the security team with new capabilities, the customer chose the second option, selecting Darktrace to automate the company’s monitoring, detection, and response. Today, the petrochemical manufacturer is using:
To alleviate the burden on its lean security team, the company augmented its in-house capabilities with Darktrace’s Managed Detection & Response service. This support acts as an extension of its SOC, providing 24/7 monitoring, investigation, and escalation of high-priority threats. With Darktrace’s global SOC managing alert triage and autonomously containing threats, the organization’s internal team can focus on strategic initiatives. The result is a stronger security posture and increased capacity to proactively address evolving cyber risks – without expanding headcount or sacrificing visibility.
A unique approach to AI
In its search for a new security platform, the company’s Director of Information Technology said Darktrace’s autonomous response capability, coupled with Self-Learning AI-driven threat reduction, were two big reasons for selecting Darktrace over competing products and services.
AI was a huge factor – no one else was doing what Darktrace was doing with [AI].”
Demonstrated visibility
Before Darktrace, the customer had no visibility into the network activity to and from remote worker devices. Some employees need the ability to connect to its networks at any time and from any location, including the Director of Information Technology. The trial deployment of Darktrace / ENDPOINT was a success and gave the team peace of mind that, no matter the location or device, high-value remote workers were protected by Darktrace.
Modular architecture
Darktrace's modular architecture allowed the company to deploy security controls across its complex, multi-entity environment. The company’s different locations run on segregated networks but are still interconnected and need to be protected. Darktrace / NETWORK provides a unified view and coordinated security response across the organization’s entire network infrastructure, including endpoint devices.
Results
The petrochemical manufacturer is using Darktrace across all of its locations and has achieved total visibility across network and user activity. “Darktrace is increasing in value every day,” said the Director of Information Technology.
I don’t have a big team, and Darktrace makes our lives very, very easy, not least the automation of some of the tasks that require constant manual review.”
Time savings frees analysts to focus on proactive security
Darktrace / NETWORK provides continuous, AI-driven monitoring and analysis of the company’s network activity, user behavior, and threat patterns, establishing a baseline of what normal activity looks like, and then alerting analysts to any deviations from normal traffic, activity, and behaviors. Darktrace’s autonomous response capabilities speed up response to detected threats, meaning intervention from the security team is required for fewer incidents and alerts.
In October 2024 alone, Darktrace Cyber AI Analyst saved the team 810 investigation hours, and autonomously responded to 180 anomalous behaviors that were uncovered during the investigations. With Darktrace managing the majority of threat detection and response efforts, the security team has been able to change its day-to-day activity from manual review of traffic and alerts and belated response to activity, to proactively fortifying its detection and response posture and upskilling to meet evolving requirements.
Layered email protection reduces phishing threats
The company’s email infrastructure posed a challenge due to petrochemical industry regulations requiring on-premises email servers, with some security delivered via Microsoft Azure. By integrating Darktrace / EMAIL into the Azure stack, the organization has reduced the volume of phishing emails its users receive by 5%.
“Now we have one more layer of security related to email – every email goes through two filters. If something is not being caught or traced by Azure, it is being detected by Darktrace,” said the Director of Information Technology. “As a result, we’re now seeing only about 15% to 20% of the phishing emails we used to receive before implementing Darktrace.”
Preparing for a secure future
The time saved using Darktrace has helped the security team take proactive steps, including preparing for new cyber resilience regulations for Saudi Arabia’s Critical National Infrastructure, as mandated by the National Cybersecurity Authority (NCA).
“The team now has ample time to prepare policies and procedures that meet the new NCA regulations and, in some cases, enhance the requirements of the new law,” said the Director of Information Technology. “All of this is possible because they don’t need to keep watch; Darktrace takes on so much of that task for them.”
Tracking CVE-2025-31324: Darktrace’s detection of SAP Netweaver exploitation before and after disclosure
Introduction: Exploiting SAP platforms
Global enterprises depend extensively on SAP platforms, such as SAP NetWeaver and Visual Composer, to run critical business processes worldwide. These systems; however, are increasingly appealing targets for well-resourced adversaries:
In March 2025, CISA issued an alert confirming active exploitation of a 2017 SAP NetWeaver vulnerability (CVE‑2017‑12637), enabling attackers to perform directory traversal and exfiltrate sensitive files, including credentials, from internet-facing systems
CVE-2025-31324 affects SAP’s NetWeaver Visual Composer, a web-based software modeling tool. SAP NetWeaver is an application server and development platform that runs and connects SAP and non-SAP applications across different technologies [2]. It is commonly used by process specialists to develop application components without coding in government agencies, large enterprises, and by critical infrastructure operators [4].
CVE-2025-31324 affects SAP’s Netweaver Visual Composer Framework 7.1x (all SPS) and above [4]. The vulnerability in a Java Servlet (/irj/servlet_jsp) would enable an unauthorized actor to upload arbitrary files to the /developmentserver/metadatauploader endpoint, potentially resulting in remote code execution (RCE) and full system compromise [3]. The issue stems from an improper authentication and authorization check in the SAP NetWeaver Application Server Java systems [4].
What is the severity rating of CVE-2025-31324?
The vulnerability, first disclosed on April 24, 2025, carries the highest severity rating (CVSS v3 score: 10.0) and could allow remote attackers to upload malicious files without requiring authentication [1][5]. Although SAP released a workaround on April 8, many organizations are hesitant to take their business-critical SAP NetWeaver systems offline, leaving them exposed to potential exploitation [2].
How is CVE-2025-31324 exploited?
The vulnerability is exploitable by sending specifically crafted GET, POST, or HEAD HTTP requests to the /developmentserver/metadatauploader URL using either HTTP or HTTPS. Attackers have been seen uploading malicious files (.jsp, .java, or .class files to paths containing “\irj\servlet_jsp\irj\”), most of them being web shells, to publicly accessible SAP NetWeaver systems.
External researchers observed reconnaissance activity targeting this vulnerability in late January 2025, followed by a surge in exploitation attempts in February. The first confirmed compromise was reported in March [4].
Multiple threat actors have reportedly targeted the vulnerability, including Chinese Advanced Persistent Threats (APTs) groups Chaya_004 [7], UNC5221, UNC5174, and CL-STA-0048 [8], as well as ransomware groups like RansomEXX, also known as Storm-2460, BianLian [4] or Qilin [6] (the latter two share the same indicators of compromise (IoCs)).
Following the initial workaround published on April 8, SAP released a security update addressing CVE-2025-31324 and subsequently issued a patch on May 13 (Security Note 3604119) to resolve the root cause of the vulnerability [4].
Darktrace’s coverage of CVE-2025-31324 exploitation
Darktrace has observed activity indicative of threat actors exploiting CVE-2025-31324, including one instance detected before the vulnerability was publicly disclosed.
In April 2025, the Darktrace Threat Research team investigated activity related to the CVE-2025-31324 on SAP devices and identified two cases suggesting active exploitation of the vulnerability. One case was detected prior to the public disclosure of the vulnerability, and the other just two days after it was published.
Early detection of CVE 2025-31324 by Darktrace
Figure 1: Timeline of events for an internet-facing system, believed to be a SAP device, exhibiting activity indicative of CVE-2025-31324 exploitation.
On April 18, six days prior to the public disclosure of CVE-2025-31324, Darktrace began to detect unusual activity on a device belonging to a logistics organization in the Europe, the Middle East and Africa (EMEA) region. Multiple IoCs observed during this incident have since been linked via OSINT to the exploitation of CVE-2025-31324. Notably, however, this reporting was not available at the time of detection, highlighting Darktrace’s ability to detect threats agnostically, without relying on threat intelligence.
The device was observed making domain name resolution request for the Out-of-Band Application Security Testing (OAST) domain cvvr9gl9namk9u955tsgaxy3upyezhnm6.oast[.]online. OAST is often used by security teams to test if exploitable vulnerabilities exist in a web application but can similarly be used by threat actors for the same purpose [9].
Four days later, on April 22, Darktrace observed the same device, an internet-facing system believed to be a SAP device, downloading multiple executable (.exe) files from several Amazon Simple Storage Service (S3). Darktrace’s Threat Research team later found these files to be associated with the KrustyLoader malware [23][24][25].
KrustyLoader is known to be associated with the Chinese threat actor UNC5221, also known as UTA0178, which has been reported to aggressively target devices exposed to the internet [10] [14] [15]. It is an initial-stage malware which downloads and launches a second-stage payload – Sliver C2. Sliver is a similar tool to Cobalt Strike (an open-source post-exploitation toolkit). It is used for command-and-control (C2) connections [11][12]13]. After its successful download, KrustyLoader deletes itself to evade detection. It has been reported that multiple Chinese APT groups have deployed KrustyLoader on SAP Netweaver systems post-compromise [8].
The actors behind KrustyLoader have also been associated with the exploitation of zero-day vulnerabilities in other enterprise systems, including Ivanti devices [12]. Notably, in this case, one of the Amazon S3 domains observed (abode-dashboard-media.s3.ap-south-1.amazonaws[.]com ) had previously been investigated by Darktrace’s Threat Research team as part of their investigation into Ivanti Connect Secure (CS) and Policy Secure (PS) appliances.
In addition to the download of known malicious files, Darktrace also detected new IoCs, including several executable files that could not be attributed to any known malware families or previous attacks, and for which no corresponding OSINT reporting was available.
Post-CVE publication detection
Exploit Validation
Between April 27 and 29, Darktrace observed unusual activity from an SAP device on the network of a manufacturing customer in EMEA.
Figure 2: Darktrace / NETWORK’s detection of an SAP device performing a large volume of suspicious activity between April 27 and April 29.
The device was observed making DNS requests for OAST domains (e.g. aaaaaaaa.d06qqn7pu5a6u25tv9q08p5xhbjzw33ge.oast[.]online and aaaaaaaaaaa.d07j2htekalm3139uk2gowmxuhapkijtp.oast[.]pro), suggesting that a threat actor was testing for exploit validation [9].
Figure 3: Darktrace / NETWORK’s detection of a SAP device making suspicious domain name resolution requests for multiple OAST domains.
Privilege escalation tool download attempt
One day later, Darktrace observed the same device attempting to download an executable file from hxxp://23.95.123[.]5:666/xmrigCCall/s.exe (SHA-1 file hash: e007edd4688c5f94a714fee036590a11684d6a3a).
Darktrace / NETWORK identified the user agents Microsoft-CryptoAPI/10.0 and CertUtil URL Agent during the connections to 23.95.123[.]5. The connections were made over port 666, which is not typically used for HTTP connections.
Multiple open-source intelligence (OSINT) vendors have identified the executable file as either JuicyPotato or SweetPotato, both Windows privilege escalation tools[16][17][18][19]. The file hash and the unusual external endpoint have been associated with the Chinese APT group Gelsemium in the past, however, many threat actors are known to leverage this tool in their attacks [20] [21].
Figure 4: Darktrace’s Cyber AI Analyst’s detection of a SAP device downloading a suspicious executable file from hxxp://23.95.123[.]5:666/xmrigCCall/s.exe on April 28, 2025.
Darktrace deemed this activity highly suspicious and triggered an Enhanced Monitoring model alert, a high-priority security model designed to detect activity likely indicative of compromise. As the customer was subscribed to the Managed Threat Detection service, Darktrace’s Security Operations Centre (SOC) promptly investigated the alert and notified the customer for swift remediation. Additionally, Darktrace’s Autonomous Response capability automatically blocked connections to the suspicious IP, 23.95.123[.]5, effectively containing the compromise in its early stages.
Figure 5: Actions taken by Darktrace’s Autonomous Response to block connections to the suspicious external endpoint 23.95.123[.]5. This event log shows that the connections to 23.95.123[.]5 were made over a rare destination port for the HTTP protocol and that new user agents were used during the connections.
Conclusion
The exploitation of CVE-2025-31324 to compromise SAP NetWeaver systems highlights the persistent threat posed by vulnerabilities in public-facing assets. In this case, threat actors leveraged the flaw to gain an initial foothold, followed by attempts to deploy malware linked to groups affiliated with China [8][20].
Crucially, Darktrace demonstrated its ability to detect and respond to emerging threats even before they are publicly disclosed. Six days prior to the public disclosure of CVE-2025-31324, Darktrace detected unusual activity on a device believed to be a SAP system, which ultimately represented an early detection of the CVE. This detection was made possible through Darktrace’s behavioral analysis and anomaly detection, allowing it to recognize unexpected deviations in device behavior without relying on signatures, rules or known IoCs. Combined with its Autonomous Response capability, this allowed for immediate containment of suspicious activity, giving security teams valuable time to investigate and mitigate the threat.
Credit to Signe Zaharka (Principal Cyber Analyst), Emily Megan Lim, (Senior Cyber Analyst) and Ryan Traill (Analyst Content Lead)
Appendices
List of IoCs
23.95.123[.]5:666/xmrigCCall/s.exe - URL- JuicyPotato/SweetPotato - high confidence
29274ca90e6dcf5ae4762739fcbadf01- MD5 file hash - JuicyPotato/SweetPotato - high confidence