Blog
/
Email
/
March 8, 2024

Malicious Use of Dropbox in Phishing Attacks

Understand the tactics of phishing attacks that exploit Dropbox and learn how to recognize and mitigate these emerging cybersecurity threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Ryan Traill
Analyst Content Lead
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
08
Mar 2024

Evolving Phishing Attacks

While email has long been the vector of choice for carrying out phishing attacks, threat actors, and their tactics, techniques, and procedures (TTPs), are continually adapting and evolving to keep pace with the emergence of new technologies that represent new avenues to exploit. As previously discussed by the Darktrace analyst team, several novel threats relating to the abuse of commonly used services and platforms were observed throughout 2023, including the rise of QR Code Phishing and the use of Microsoft SharePoint and Teams in phishing campaigns.

Dropbox Phishing Attacks

It should, therefore, come as no surprise that the malicious use of other popular services has gained traction in recent years, including the cloud storage platform Dropbox.

With over 700 million registered users [1], Dropbox has established itself as a leading cloud storage service celebrated for its simplicity in file storage and sharing, but in doing so it has also inadvertently opened a new avenue for threat actors to exploit. By leveraging the legitimate infrastructure of Dropbox, threat actors are able to carry out a range of malicious activities, from convincing their targets to unknowingly download malware to revealing sensitive information like login credentials.

Darktrace Detection of Dropbox Phishing Attack

Darktrace detected a malicious attempt to use Dropbox in a phishing attack in January 2024, when employees of a Darktrace customer received a seemingly innocuous email from a legitimate Dropbox address. Unbeknownst to the employees, however, a malicious link had been embedded in the contents of the email that could have led to a widespread compromise of the customer’s Software-as-a-Service (SaaS) environment. Fortunately for this customer, Darktrace / EMAIL quickly identified the suspicious emails and took immediate actions to stop them from being opened. If an email was accessed by an employee, Darktrace / IDENTITY was able to recognize any suspicious activity on the customer’s SaaS platform and bring it to the immediate detection of their security team.

Attack overview

Initial infection  

On January 25, 2024, Darktrace / EMAIL observed an internal user on a customer’s SaaS environment receiving an inbound email from ‘no-reply@dropbox[.]com’, a legitimate email address used by the Dropbox file storage service.  Around the same time 15 other employees also received the same email.

The email itself contained a link that would lead a user to a PDF file hosted on Dropbox, that was seemingly named after a partner of the organization. Although the email and the Dropbox endpoint were both legitimate, Darktrace identified that the PDF file contained a suspicious link to a domain that had never previously been seen on the customer’s environment, ‘mmv-security[.]top’.  

Darktrace understood that despite being sent from a legitimate service, the email’s initiator had never previously corresponded with anyone at the organization and therefore treated it with suspicion. This tactic, whereby a legitimate service sends an automated email using a fixed address, such as ‘no-reply@dropbox[.]com’, is often employed by threat actors attempting to convince SaaS users to follow a malicious link.

As there is very little to distinguish between malicious or benign emails from these types of services, they can often evade the detection of traditional email security tools and lead to disruptive account takeovers.

As a result of this detection, Darktrace / EMAIL immediately held the email, stopping it from landing in the employee’s inbox and ensuring the suspicious domain could not be visited. Open-source intelligence (OSINT) sources revealed that this suspicious domain was, in fact, a newly created endpoint that had been reported for links to phishing by multiple security vendors [2].

A few days later on January 29, the user received another legitimate email from ‘no-reply@dropbox[.]com’ that served as a reminder to open the previously shared PDF file. This time, however, Darktrace / EMAIL moved the email to the user’s junk file and applied a lock link action to prevent the user from directly following a potentially malicious link.

Figure 1: Anomaly indicators associated with the suspicious emails sent by ’no.reply@dropbox[.]com’, and the corresponding actions performed by Darktrace / EMAIL

Unfortunately for the customer in this case, their employee went on to open the suspicious email and follow the link to the PDF file, despite Darktrace having previously locked it.

Figure 2: Confirmation that the SaaS user read the suspicious email and followed the link to the PDF file hosted on Dropbox, despite it being junked and link locked.

Darktrace / NETWORK subsequently identified that the internal device associated with this user connected to the malicious endpoint, ‘mmv-security[.]top’, a couple of days later.

Further investigation into this suspicious domain revealed that it led to a fake Microsoft 365 login page, designed to harvest the credentials of legitimate SaaS account holders. By masquerading as a trusted organization, like Microsoft, these credential harvesters are more likely to appear trustworthy to their targets, and therefore increase the likelihood of stealing privileged SaaS account credentials.  

Figure 3: The fake Microsoft login page that the user was directed to after clicking the link in the PDF file.

Suspicious SaaS activity

In the days following the initial infection, Darktrace / IDENTITY began to observe a string of suspicious SaaS activity being performed by the now compromised Microsoft 365 account.

Beginning on January 31, Darktrace observed a number of suspicious SaaS logins from multiple unusual locations that had never previously accessed the account, including 73.95.165[.]113. Then on February 1, Darktrace detected unusual logins from the endpoints 194.32.120[.]40 and 185.192.70[.]239, both of which were associated with ExpressVPN indicating that threat actors may have been using a virtual private network (VPN) to mask their true location.

FIgure 4: Graph Showing several unusual logins from different locations observed by Darktrace/Apps on the affected SaaS account.

Interestingly, the threat actors observed during these logins appeared to use a valid multi-factor authentication (MFA) token, indicating that they had successfully bypassed the customer’s MFA policy. In this case, it appears likely that the employee had unknowingly provided the attackers with an MFA token or unintentionally approved a login verification request. By using valid tokens and meeting the necessary MFA requirements, threat actors are often able to remain undetected by traditional security tools that view MFA as the silver bullet. However, Darktrace’s anomaly-based approach to threat detection allows it to quickly identify unexpected activity on a device or SaaS account, even if it occurs with legitimate credentials and successfully passed authentication requirements, and bring it to the attention of the customer’s security team.

Shortly after, Darktrace observed an additional login to the SaaS account from another unusual location, 87.117.225[.]155, this time seemingly using the HideMyAss (HMA) VPN service. Following this unusual login, the actor was seen creating a new email rule on the compromised Outlook account. The new rule, named ‘….’, was intended to immediately move any emails from the organization’s accounts team directly to the ‘Conversation History’ mailbox folder. This is a tactic often employed by threat actors during phishing campaigns to ensure that their malicious emails (and potential responses to them) are automatically moved to less commonly visited mailbox folders in order to remain undetected on target networks. Furthermore, by giving this new email rule a generic name, like ‘….’ it is less likely to draw the attention of the legitimate account holder or the organizations security team.

Following this, Darktrace / EMAIL observed the actor sending updated versions of emails that had previously been sent by the legitimate account holder, with subject lines containing language like “Incorrect contract” and “Requires Urgent Review”, likely in an attempt to illicit some kind of follow-up action from the intended recipient.  This likely represented threat actors using the compromised account to send further malicious emails to the organization’s accounts team in order to infect additional accounts across the customer’s SaaS environment.

Unfortunately, Darktrace's Autonomous Response was not deployed in the customer’s SaaS environment in this instance, meaning that the aforementioned malicious activity did not lead to any mitigative actions to contain the compromise. Had RESPOND been enabled in autonomous response mode at the time of the attack, it would have quickly moved to log out and disable the suspicious actor as soon as they had logged into the SaaS environment from an unusual location, effectively shutting down this account takeover attempt at the earliest opportunity.

Nevertheless, Darktrace / EMAIL's swift identification and response to the suspicious phishing emails, coupled with Darktrace / IDENTITY's detection of the unusual SaaS activity, allowed the customer’s security team to quickly identify the offending SaaS actor and take the account offline before the attack could escalate further

Conclusion

As organizations across the world continue to adopt third-party solutions like Dropbox into their day-to-day business operations, threat actors will, in turn, continue to seek ways to exploit these and add them to their arsenal. As illustrated in this example, it is relatively simple for attackers to abuse these legitimate services for malicious purposes, all while evading detection by endpoint users and security teams alike.

By leveraging these commonly used platforms, malicious actors are able to carry out disruptive cyber-attacks, like phishing campaigns, by taking advantage of legitimate, and seemingly trustworthy, infrastructure to host malicious files or links, rather than relying on their own infrastructure. While this tactic may bypass traditional security measures, Darktrace’s Self-Learning AI enables it to recognize unusual senders within an organization’s email environment, even if the email itself seems to have come from a legitimate source, and prevent them from landing in the target inbox. In the event that a SaaS account does become compromised, Darktrace is able to identify unusual login locations and suspicious SaaS activities and bring them to the attention of the customer for remediation.

In addition to the prompt identification of emerging threats, Darktrace's Autonomous Response is uniquely placed to take swift autonomous action against any suspicious activity detected within a customer’s SaaS environment, effectively containing any account takeover attempts in the first instance.

Credit to Ryan Traill, Threat Content Lead, Emily Megan Lim, Cyber Security Analyst

Appendices

Darktrace Model Detections  

- Model Breach: SaaS / Access::Unusual External Source for SaaS Credential Use

- Model Breach: SaaS / Unusual Activity::Multiple Unusual External Sources For SaaS Credential

- Model Breach: SaaS / Access::Unusual External Source for SaaS Credential Use

- Model Breach: SaaS / Access::Unusual External Source for SaaS Credential Use

- Model Breach: SaaS / Unusual Activity::Multiple Unusual SaaS Activities

- Model Breach: SaaS / Unusual Activity::Unusual MFA Auth and SaaS Activity

- Model Breach: SaaS / Compromise::Unusual Login and New Email Rule

- Model Breach: SaaS / Compliance::Anomalous New Email Rule

- Model Breach: SaaS / Compliance::New Email Rule

- Model Breach: SaaS / Compromise::SaaS Anomaly Following Anomalous Login

- Model Breach: Device / Suspicious Domain

List of Indicators of Compromise (IoCs)

Domain IoC

mmv-security[.]top’ - Credential Harvesting Endpoint

IP Address

73.95.165[.]113 - Unusual Login Endpoint

194.32.120[.]40 - Unusual Login Endpoint

87.117.225[.]155 - Unusual Login Endpoint

MITRE ATT&CK Mapping

DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS

T1078.004 - Cloud Accounts

DISCOVERY

T1538 - Cloud Service Dashboard

RESOURCE DEVELOPMENT

T1586 - Compromise Accounts

CREDENTIAL ACCESS

T1539 - Steal Web Session Cookie

PERSISTENCE

T1137 - Outlook Rules

INITIAL ACCESS

T156.002 Spearphishing Link

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Ryan Traill
Analyst Content Lead

More in this series

No items found.

Blog

/

Email

/

September 30, 2025

Out of Character: Detecting Vendor Compromise and Trusted Relationship Abuse with Darktrace

vendor email compromiseDefault blog imageDefault blog image

What is Vendor Email Compromise?

Vendor Email Compromise (VEC) refers to an attack where actors breach a third-party provider to exploit their access, relationships, or systems for malicious purposes. The initially compromised entities are often the target’s existing partners, though this can extend to any organization or individual the target is likely to trust.

It sits at the intersection of supply chain attacks and business email compromise (BEC), blending technical exploitation with trust-based deception. Attackers often infiltrate existing conversations, leveraging AI to mimic tone and avoid common spelling and grammar pitfalls. Malicious content is typically hosted on otherwise reputable file sharing platforms, meaning any shared links initially seem harmless.

While techniques to achieve initial access may have evolved, the goals remain familiar. Threat actors harvest credentials, launch subsequent phishing campaigns, attempt to redirect invoice payments for financial gain, and exfiltrate sensitive corporate data.

Why traditional defenses fall short

These subtle and sophisticated email attacks pose unique challenges for defenders. Few busy people would treat an ongoing conversation with a trusted contact with the same level of suspicion as an email from the CEO requesting ‘URGENT ASSISTANCE!’ Unfortunately, many traditional secure email gateways (SEGs) struggle with this too. Detecting an out-of-character email, when it does not obviously appear out of character, is a complex challenge. It’s hardly surprising, then, that 83% of organizations have experienced a security incident involving third-party vendors [1].  

This article explores how Darktrace detected four different vendor compromise campaigns for a single customer, within a two-week period in 2025.  Darktrace / EMAIL successfully identified the subtle indicators that these seemingly benign emails from trusted senders were, in fact, malicious. Due to the configuration of Darktrace / EMAIL in this customer’s environment, it was unable to take action against the malicious emails. However, if fully enabled to take Autonomous Response, it would have held all offending emails identified.

How does Darktrace detect vendor compromise?

The answer lies at the core of how Darktrace operates: anomaly detection. Rather than relying on known malicious rules or signatures, Darktrace learns what ‘normal’ looks like for an environment, then looks for anomalies across a wide range of metrics. Despite the resourcefulness of the threat actors involved in this case, Darktrace identified many anomalies across these campaigns.

Different campaigns, common traits

A wide variety of approaches was observed. Individuals, shared mailboxes and external contractors were all targeted. Two emails originated from compromised current vendors, while two came from unknown compromised organizations - one in an associated industry. The sender organizations were either familiar or, at the very least, professional in appearance, with no unusual alphanumeric strings or suspicious top-level domains (TLDs). Subject line, such as “New Approved Statement From [REDACTED]” and “[REDACTED] - Proposal Document” appeared unremarkable and were not designed to provoke heightened emotions like typical social engineering or BEC attempts.

All emails had been given a Microsoft Spam Confidence Level of 1, indicating Microsoft did not consider them to be spam or malicious [2]. They also passed authentication checks (including SPF, and in some cases DKIM and DMARC), meaning they appeared to originate from an authentic source for the sender domain and had not been tampered with in transit.  

All observed phishing emails contained a link hosted on a legitimate and commonly used file-sharing site. These sites were often convincingly themed, frequently featuring the name of a trusted vendor either on the page or within the URL, to appear authentic and avoid raising suspicion. However, these links served only as the initial step in a more complex, multi-stage phishing process.

A legitimate file sharing site used in phishing emails to host a secondary malicious link.
Figure 1: A legitimate file sharing site used in phishing emails to host a secondary malicious link.
Another example of a legitimate file sharing endpoint sent in a phishing email and used to host a malicious link.
Figure 2: Another example of a legitimate file sharing endpoint sent in a phishing email and used to host a malicious link.

If followed, the recipient would be redirected, sometimes via CAPTCHA, to fake Microsoft login pages designed to capturing credentials, namely http://pub-ac94c05b39aa4f75ad1df88d384932b8.r2[.]dev/offline[.]html and https://s3.us-east-1.amazonaws[.]com/s3cure0line-0365cql0.19db86c3-b2b9-44cc-b339-36da233a3be2ml0qin/s3cccql0.19db86c3-b2b9-44cc-b339-36da233a3be2%26l0qn[.]html#.

The latter made use of homoglyphs to deceive the user, with a link referencing ‘s3cure0line’, rather than ‘secureonline’. Post-incident investigation using open-source intelligence (OSINT) confirmed that the domains were linked to malicious phishing endpoints [3] [4].

Fake Microsoft login page designed to harvest credentials.
Figure 3: Fake Microsoft login page designed to harvest credentials.
Phishing kit with likely AI-generated image, designed to harvest user credentials. The URL uses ‘s3cure0line’ instead of ‘secureonline’, a subtle misspelling intended to deceive users.
Figure 4: Phishing kit with likely AI-generated image, designed to harvest user credentials. The URL uses ‘s3cure0line’ instead of ‘secureonline’, a subtle misspelling intended to deceive users.

Darktrace Anomaly Detection

Some senders were unknown to the network, with no previous outbound or inbound emails. Some had sent the email to multiple undisclosed recipients using BCC, an unusual behavior for a new sender.  

Where the sender organization was an existing vendor, Darktrace recognized out-of-character behavior, in this case it was the first time a link to a particular file-sharing site had been shared. Often the links themselves exhibited anomalies, either being unusually prominent or hidden altogether - masked by text or a clickable image.

Crucially, Darktrace / EMAIL is able to identify malicious links at the time of processing the emails, without needing to visit the URLs or analyze the destination endpoints, meaning even the most convincing phishing pages cannot evade detection – meaning even the most convincing phishing emails cannot evade detection. This sets it apart from many competitors who rely on crawling the endpoints present in emails. This, among other things, risks disruption to user experience, such as unsubscribing them from emails, for instance.

Darktrace was also able to determine that the malicious emails originated from a compromised mailbox, using a series of behavioral and contextual metrics to make the identification. Upon analysis of the emails, Darktrace autonomously assigned several contextual tags to highlight their concerning elements, indicating that the messages contained phishing links, were likely sent from a compromised account, and originated from a known correspondent exhibiting out-of-character behavior.

A summary of the anomalous email, confirming that it contained a highly suspicious link.
Figure 5: Tags assigned to offending emails by Darktrace / EMAIL.

Figure 6: A summary of the anomalous email, confirming that it contained a highly suspicious link.

Out-of-character behavior caught in real-time

In another customer environment around the same time Darktrace / EMAIL detected multiple emails with carefully crafted, contextually appropriate subject lines sent from an established correspondent being sent to 30 different recipients. In many cases, the attacker hijacked existing threads and inserted their malicious emails into an ongoing conversation in an effort to blend in and avoid detection. As in the previous, the attacker leveraged a well-known service, this time ClickFunnels, to host a document containing another malicious link. Once again, they were assigned a Microsoft Spam Confidence Level of 1, indicating that they were not considered malicious.

The legitimate ClickFunnels page used to host a malicious phishing link.
Figure 7: The legitimate ClickFunnels page used to host a malicious phishing link.

This time, however, the customer had Darktrace / EMAIL fully enabled to take Autonomous Response against suspicious emails. As a result, when Darktrace detected the out-of-character behavior, specifically, the sharing of a link to a previously unused file-sharing domain, and identified the likely malicious intent of the message, it held the email, preventing it from reaching recipients’ inboxes and effectively shutting down the attack.

Figure 8: Darktrace / EMAIL’s detection of malicious emails inserted into an existing thread.*

*To preserve anonymity, all real customer names, email addresses, and other identifying details have been redacted and replaced with fictitious placeholders.

Legitimate messages in the conversation were assigned an Anomaly Score of 0, while the newly inserted malicious emails identified and were flagged with the maximum score of 100.

Key takeaways for defenders

Phishing remains big business, and as the landscape evolves, today’s campaigns often look very different from earlier versions. As with network-based attacks, threat actors are increasingly leveraging legitimate tools and exploiting trusted relationships to carry out their malicious goals, often staying under the radar of security teams and traditional email defenses.

As attackers continue to exploit trusted relationships between organizations and their third-party associates, security teams must remain vigilant to unexpected or suspicious email activity. Protecting the digital estate requires an email solution capable of identifying malicious characteristics, even when they originate from otherwise trusted senders.

Credit to Jennifer Beckett (Cyber Analyst), Patrick Anjos (Senior Cyber Analyst), Ryan Traill (Analyst Content Lead), Kiri Addison (Director of Product)

Appendices

IoC - Type - Description + Confidence  

- http://pub-ac94c05b39aa4f75ad1df88d384932b8.r2[.]dev/offline[.]html#p – fake Microsoft login page

- https://s3.us-east-1.amazonaws[.]com/s3cure0line-0365cql0.19db86c3-b2b9-44cc-b339-36da233a3be2ml0qin/s3cccql0.19db86c3-b2b9-44cc-b339-36da233a3be2%26l0qn[.]html# - link to domain used in homoglyph attack

MITRE ATT&CK Mapping  

Tactic – Technique – Sub-Technique  

Initial Access - Phishing – (T1566)  

References

1.     https://gitnux.org/third-party-risk-statistics/

2.     https://learn.microsoft.com/en-us/defender-office-365/anti-spam-spam-confidence-level-scl-about

3.     https://www.virustotal.com/gui/url/5df9aae8f78445a590f674d7b64c69630c1473c294ce5337d73732c03ab7fca2/detection

4.     https://www.virustotal.com/gui/url/695d0d173d1bd4755eb79952704e3f2f2b87d1a08e2ec660b98a4cc65f6b2577/details

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content

Continue reading
About the author

Blog

/

OT

/

October 1, 2025

Announcing Unified OT Security with Dedicated OT Workflows, Segmentation-Aware Risk Insights, and Next-Gen Endpoint Visibility for Industrial Teams

Default blog imageDefault blog image

The challenge of convergence without clarity

Convergence is no longer a roadmap idea, it is the daily reality for industrial security teams. As Information Technology (IT) and Operational Technology (OT) environments merge, the line between a cyber incident and an operational disruption grows increasingly hard to define. A misconfigured firewall rule can lead to downtime. A protocol misuse might look like a glitch. And when a pump stalls but nothing appears in the Security Operations Center (SOC) dashboard, teams are left asking: is this operational or is this a threat?

The lack of shared context slows down response, creates friction between SOC analysts and plant engineers, and leaves organizations vulnerable at exactly the points where IT and OT converge. Defenders need more than alerts, they need clarity that both sides can trust.

The breakthrough with Darktrace / OT

This latest Darktrace / OT release was built to deliver exactly that. It introduces shared context between Security, IT, and OT operations, helping reduce friction and close the security gaps at the intersection of these domains.

With a dedicated dashboard built for operations teams, extended visibility into endpoints for new forms of detection and CVE collection, expanded protocol coverage, and smarter risk modeling aligned to segmentation policies, teams can now operate from a shared source of truth. These enhancements are not just incremental upgrades, they are foundational improvements designed to bring clarity, efficiency, and trust to converged environments.

A dashboard built for OT engineers

The new Operational Overview provides OT engineers with a workspace designed for them, not for SOC analysts. It brings asset management, risk insights and operational alerts into one place. Engineers can now see activity like firmware changes, controller reprograms or the sudden appearance of a new workstation on the network, providing a tailored view for critical insights and productivity gains without navigating IT-centric workflows. Each device view is now enriched with cross-linked intelligence, make, model, firmware version and the roles inferred by Self-Learning AI, making it easier to understand how each asset behaves, what function it serves, and where it fits within the broader industrial process. By suppressing IT-centric noise, the dashboard highlights only the anomalies that matter to operations, accelerating triage, enabling smoother IT/OT collaboration, and reducing time to root cause without jumping between tools.

This is usability with purpose, a view that matches OT workflows and accelerates response.

Figure 1: The Operational Overview provides an intuitive dashboard summarizing all OT Assets, Alerts, and Risk.

Full-spectrum coverage across endpoints, sensors and protocols

The release also extends visibility into areas that have traditionally been blind spots. Engineering workstations, Human-Machine Interfaces (HMIs), contractor laptops and field devices are often the entry points for attackers, yet the hardest to monitor.

Darktrace introduces Network Endpoint eXtended Telemetry (NEXT) for OT, a lightweight collector built for segmented and resource-constrained environments. NEXT for OT uses Endpoint sensors to capture localized network, and now process-level telemetry, placing it in context alongside other network and asset data to:

  1. Identify vulnerabilities and OS data, which is leveraged by OT Risk Management for risk scoring and patching prioritization, removing the need for third-party CVE collection.
  1. Surface novel threats using Self-Learning AI that standalone Endpoint Detection and Response (EDR) would miss.
  1. Extend Cyber AI Analyst investigations through to the endpoint root cause.

NEXT is part of our existing cSensor endpoint agent, can be deployed standalone or alongside existing EDR tools, and allows capabilities to be enabled or disabled depending on factors such as security or OT team objectives and resource utilization.

Figure 2: Darktrace / OT delivers CVE patch priority insights by combining threat intelligence with extended network and endpoint telemetry

The family of Darktrace Endpoint sensors also receive a boost in deployment flexibility, with on-prem server-based setups, as well as a Windows driver tailored for zero-trust and high-security environments.

Protocol coverage has been extended where it matters most. Darktrace now performs protocol analysis of a wider range of GE and Mitsubishi protocols, giving operators real-time visibility into commands and state changes on Programmable Logic Controllers (PLCs), robots and controllers. Backed by Self-Learning AI, this inspection does more than parse traffic, it understands what normal looks like and flags deviations that signal risk.

Integrated risk and governance workflows

Security data is only valuable when it drives action. Darktrace / OT delivers risk insights that go beyond patching, helping teams take meaningful steps even when remediation isn't possible. Risk is assessed not just by CVE presence, but by how network segmentation, firewall policies, and attack path logic neutralize or contain real-world exposure. This approach empowers defenders to deprioritize low-impact vulnerabilities and focus effort where risk truly exists. Building on the foundation introduced in release 6.3, such as KEV enrichment, endpoint OS data, and exploit mapping, this release introduces new integrations that bring Darktrace / OT intelligence directly into governance workflows.

Fortinet FortiGate firewall ingestion feeds segmentation rules into attack path modeling, revealing real exposure when policies fail and closing feeds into patching prioritization based on a policy to CVE exposure assessment.

  • ServiceNow Configuration Management Database (CMDB) sync ensures asset intelligence stays current across governance platforms, eliminating manual inventory work.

Risk modeling has also been made more operationally relevant. Scores are now contextualized by exploitability, asset criticality, firewall policy, and segmentation posture. Patch recommendations are modeled in terms of safety, uptime and compliance rather than just Common Vulnerability Scoring System (CVSS) numbers. And importantly, risk is prioritized across the Purdue Model, giving defenders visibility into whether vulnerabilities remain isolated to IT or extend into OT-critical layers.

Figure 3: Attack Path Modeling based on NetFlow and network topology reveals high risk points of IT/OT convergence.

The real-world impact for defenders

In today’s environments, attackers move fluidly between IT and OT. Without unified visibility and shared context, incidents cascade faster than teams can respond.

With this release, Darktrace / OT changes that reality. The Operational Overview gives Engineers a dashboard they can use daily, tailored to their workflows. SOC analysts can seamlessly investigate telemetry across endpoints, sensors and protocols that were once blind spots. Operators gain transparency into PLCs and controllers. Governance teams benefit from automated integrations with platforms like Fortinet and ServiceNow. And all stakeholders work from risk models that reflect what truly matters: safety, uptime and compliance.

This release is not about creating more alerts. It is about providing more clarity. By unifying context across IT and OT, Darktrace / OT enables defenders to see more, understand more and act faster.

Because in environments where safety and uptime are non-negotiable, clarity is what matters most.

Join us for our live event where we will discuss these product innovations in greater detail

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI