Blog
/
/
November 17, 2019

An Education In Detecting Ransomware Without Any Signatures

Learn how to detect ransomware without any malware signatures. See how Darktrace is one of the leading fighters against ransomware and other cyber risks.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
17
Nov 2019

Across Darktrace’s global customer base, ransomware is rapidly on the rise. And unlike the indiscriminate ransomware worms — like WannaCry and BadRabbit — that we’ve discussed in the past, the trend of today’s attacks is toward selective “big game hunting.” The Ryuk ransomware incident I blogged about last month demonstrates how criminals now seek to exploit the particular vulnerabilities of their strategic targets.

Despite the increasing sophistication of these attacks, however, detecting them is ultimately just a classification problem — albeit a highly complex and consequential one. To understand what makes this problem difficult, consider three ways of identifying ransomware. The first and most common way is to cross-reference new activity with the digital ‘signatures’ of known malware strains, catching attacks that the security community has already catalogued. Of course, such fixed signatures are blind to the novel malware variants that dominate the modern threat landscape.

The second level uses supervised machine learning, which entails training an AI on lots of historical examples of ransomware attacks in an attempt to find their commonalities. While this approach can, in theory, detect ransomware that isn’t identical to training data, the supervised learning approach is essentially just signatures on steroids, failing to flag malicious behavior that is fundamentally unlike anything seen before. Rather, addressing the ransomware epidemic once and for all requires unsupervised machine learning. By understanding how each particular employee and device functions while ‘on the job’ — without any signatures or training data — Cyber AI does just that.

An education in ransomware

When a world-leading education institution was hit with a strain of the Dharma ransomware family this past October, Darktrace Cyber AI immediately alerted on the attack using this learnt knowledge of the institution itself — rather than with signatures. The following timeline details each phase of the incident:

Figure 1: An overview of the attack.

In summary, the threat-actors brute-forced their way into the institution’s network by exploiting a server that lacked protection against such RDP brute-forcing — compromising an admin’s credentials. They then proceeded to scan the network until they located an open port 445, whereupon they moved laterally using the PsExec tool that allows for remote administration. The initially compromised server copied the ransomware, named “system.exe,” to hidden SMB shares on the other machines via the SMB protocol. Finally, that ransomware began encrypting data on all of these devices.

Cyber AI traced every step of the above attack by contrasting it with the institution’s normal online behavior. The graph below shows the infected server’s activity throughout the entire incident.

Figure 2: Every colored dot represents a high-confidence Darktrace alert indicating significantly anomalous activity.

Beyond just detecting the attack, however, Darktrace’s AI Autonomous Response tool, Antigena, would have taken targeted action to neutralize it within seconds. When hit with machine-speed threats like ransomware, human security teams need such AI tools to contain the damage, as Antigena would have done:

An alternate reality with Autonomous Response

The attack would have gone quite differently had it been met with Autonomous Response. To start with, Antigena would have blocked the threat-actor’s repeated login attempts over RDP, since these attempts originated from external IP addresses that had never communicated with the organization before. Antigena works by enforcing the normal ‘pattern of life’ for each impacted user and device, meaning that it would not have blocked IP addresses that regularly communicate with the RDP server. This ensures that activity necessary to daily operations isn’t interrupted during even serious threats.

Figure 3: Darktrace alerts on one of the multiple unusual IP addresses that attempted brute-forcing.

By this point, the threat would already have been neutralized by the blocked brute-forcing. But had the attackers somehow still managed to scan the network for open SMB services, Antigena would have intervened once again to surgically restrict that behavior, as Darktrace recognized that the infected server almost never scanned the internal network.

Figure 4: Darktrace alerts on the anomalous scanning behavior, which Antigena would have autonomously blocked.

Continuing on with the hypothetical, though, the server now employs PsExec to move laterally to other devices — activity that Darktrace identified as anomalous immediately. Antigena would have escalated its response at this point, stopping all outbound connections from the server for several hours. Ultimately, Autonomous Response would have completely disarmed the threat, as it has successfully demonstrated on millions of occasions already.

Uncovering the Unpredictable

It has never been easier for threat-actors to devise novel ransomware strains and to gain access to new command & control domains. Using fixed signatures, IP blacklists, and predefined assumptions is therefore insufficient, since no security tool can predict the next fundamentally unpredictable attack. Only Cyber AI — which learns what’s normal for each unique user and device it defends — is equipped for such a challenge.

Of course, detection alone won’t cut it. Modern ransomware is increasingly automated; in this particular case, the entire incident took less than two hours, from the initial brute-forcing to the concluding encryption. And although Darktrace alerted on the threat in real time, the security team was occupied with other tasks, leading to a compromise. That’s where Autonomous Response has become business-critical across every industry — it’s on guard 24/7, even when the security team can’t be.

To learn more about how Autonomous Response neutralizes ransomware without relying on signatures, check out our white paper: The Evolution of Autonomous Response: Fighting Back in a New Era of Cyber-Threat.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI