Blog
/
/
September 13, 2022

Compliance Threat: RedLine Information Stealer

Darktrace reveals the compliance risks posed by the RedLine information stealer. Read about their analysis and how to defend against this cyber threat.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Steven Sosa
Analyst Team Lead
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
13
Sep 2022

With the continued rise of malware as a service (MaaS), it is now easier than ever to find and deploy information stealers [1]. Given this, it is crucial that companies begin to prioritize good cyber hygiene, and address compliance issues within their environments. Thanks to MaaS, attackers with little to no experience can amplify what might seem like a low-risk attack, into a significant compromise. This blog will investigate a compromise that could have been mitigated with better cyber hygiene and enhanced awareness around compliance issues.

Figure 1: Timeline of the attack

In May 2022 Darktrace DETECT/Network identified a device linked with multiple compliance alerts for ‘torrent’ activity within a Latin American telecommunications company. This culminated in the device downloading a suspicious executable file from an archived webpage. At first, analysis of the downloaded file indicated that it could be a legitimate, albeit outdated software relevant to the client’s industry vertical (SNMPc management tool for GeoDesy GD-300). However, as this was the first event before further suspicious activities, it was also possible that the software downloaded was packaged with malware and marked an initial compromise. Since early April, the device had regularly breached compliance alerts for both BitTorrent and uTorrent (a BitTorrent client). These connections occurred over a common torrenting port, 6881, and may have represented the infection vector.  

Figure 2: View of archived webpage which the suspicious executable was downloaded from

Shortly after the executable was downloaded, Darktrace DETECT alerted a new outbound SSH connection with the following notice in Advanced Search: ‘SSH::Heuristic_Login_Success’. This was highlighted because the breach device did not commonly make connections over this protocol and the destination was a never-before-seen Bulgarian IP address (79.142.70[.]239). The connection lasted 4 minutes, and the device downloaded 31.36 MB of data. 

Following this, the breach device was seen making unusual HTTP connections to rare Russian and Danish endpoints using suspicious user agents. The Russian endpoint was noted for hosting a text file (‘incricinfo[.]com') that listed a single domain which was recently registered. The connections to the Danish endpoint were made to an IP with a URI that OSINT connected to the use of the BeamWinHTTP loader [2]. This loader can be used to download and execute other malware strains, in particular information stealers [3]. 

Figure 3: Screenshot of Russian endpoint with link to incricinfo[.]com 
Figure 4: Cyber AI Analyst highlighting the unusual HTTP connectivity that occurred prior to the multiple suspicious file downloads

At the same time as the connections with the unusual user agents, the device was also seen downloading an executable file from the endpoint, ‘Yuuichirou-hanma[.]s3[.]pl-waw[.]scw[.]cloud’. Analysis of the file indicated that it may be used to deploy further malware and potentially unwanted programs (PUPs). BeamWinHTTP also causes installation of these PUPs which helps to load more nefarious programs and spread compromise. 

This behavior was then seen as the device downloaded 5 different executable files from the endpoint, ‘hakhaulogistics[.]com’. This domain is linked to a Vietnamese logistics company that Darktrace had marked as new within the environment; it is possible that this domain was compromised and being used to host malicious infrastructure. At the point of compromise, several of the downloads were labeled as malicious by popular OSINT [4]. Additionally, at least one of the files was explicitly linked to the RedLine Information Stealer.  

Shortly after, the device made connections to a known Tor relay node. Tor is commonly used as an avenue for C2 communication as it offers a way for attackers to anonymize and obfuscate their activity. It was at this point that the first Proactive Threat Notification (PTN) for this activity occurred. This ensured immediate follow-up investigation from Darktrace SOC and a timeline of events and impacted devices were issued to the customer’s security team directly. 

Figure 5: Cyber AI Analyst highlighting the unusual executable downloads as well as the subsequent Tor connections. The file poweroff[.]exe has been highlighted by several OSINT sources as being potentially malicious

By this point, Darktrace had identified a large volume of unusual outbound HTTP POSTs to a variety of endpoints that seemed to have no obvious function or service. Following these POST requests, the compromised device was seen initiating a long SSL connection to the domain, ‘www[.]qfhwji6fnpiad3gs[.]com’, which is likely to have be generated by an algorithm (DGA). Lastly, a little while after the SSL connections, the device was seen downloading another executable file from the Russian domain ‘test-hf[.]su’. Research on the file again suggested that it was associated with RedLine Stealer [5].  

Figure 6: AIA highlighting additional unusual HTTP connections that were linked with the numeric exe download

Dangers of Non-Compliance 

Whilst the RedLine compromise was a matter of customer concern, the gap in their security was not visibility but rather best practice. It is important to note that prior to these events, the device was commonly seen sending and receiving connections associated with torrenting. In the past it has been observed that RedLine Stealer masquerades as ‘cracked’ software (software that has had its copy protection removed) [6]. In this instance, the initial download of the false ‘SNMPc’ executable may have been proof of this behavior. 

This is a reminder that torrenting is also extremely popular as a peer-to-peer vector for transferring malicious files. Combined with the possibility of network throttling or unapproved VPN use, torrents are usually considered non-compliant within corporate settings. Whether the events here were kickstarted due to a user unwittingly downloading malicious software, or exposure to a malicious actor via BitTorrent use, both cases represent a user circumventing existing compliance controls or a lack of compliance control in general. It is important for organizations to make sure that their users are acting in ways that limit the company’s exposure to nefarious actors. Companies should routinely encourage proper cyber hygiene and implement access controls that block certain activities such as torrenting if threats like these are to be stopped in the future.  

Regardless of what users are doing, Darktrace is positioned to detect and take action on compliance breaches and activity resulting from lack of compliance. The variety of C2 domains used in this blog incident were too quick for most security tools to alert on or for human teams to triage. However, this was no problem for Cyber AI analyst, which was able to draw together aspects of the attack across the kill chain and save a significant amount of time for both the customer security team and Darktrace SOC analysts. If active, Darktrace RESPOND could have blocked activities like the initial BitTorrent connections and incoming download, but with the right preventative measures, it wouldn’t have to. Darktrace PREVENT works continuously to harden defenses and preempt attackers, closing any vulnerabilities before they can be exploited. This includes performing attack surface management, attack path modelling, and security awareness training. In this case, Darktrace PREVENT could have highlighted torrenting activity as part of a potentially harmful attack path and recommended the best actions to mitigate it.

‘No Prior Experience required’ 

In the past, only highly skilled attackers could create and use the tools needed to attack organizations. With Ransomware-as-a-Service (RaaS) proving highly profitable, however, it is no surprise that malware is also becoming a lucrative business. As SaaS can help legitimate companies with no development experience to use and maintain apps, MaaS can help attackers with little to no hacking experience compromise organizations and achieve their goals. RedLine Stealer is readily available, and not prohibitively expensive, meaning attacks can be carried out more frequently, and on a wider range of victims. The incident explored in this blog is proof of this, and a strong indication that security comes not only from strong visibility but also compliance and best practice too. With a powerful defensive tool like PREVENT, security teams can save time while feeling confident that they are keeping ahead of these aspects of security.

Thanks to Adam Stevens for his contributions to this blog.

Appendices

Darktrace Model Breaches

·      Anomalous Connection / Multiple HTTP POSTs to Rare Hostname 

·      Anomalous Connection / New User Agent to IP Without Hostname

·      Anomalous File / EXE from Rare External Location

·      Anomalous File / Multiple EXE from Rare External 

·      Anomalous File / Numeric Exe Download

·      Anomalous Server Activity / New User Agent from Internet Facing System

·      Compliance / SSH to Rare External Destination

·      Compromise / Anomalous File then Tor 

·      Compromise / Possible Tor Usage 

·      Device / Initial Breach Chain Compromise

·      Device / Long Agent Connection to New Endpoint

References

[1] https://blog.sonicwall.com/en-us/2021/12/the-rise-and-growth-of-malware-as-a-service/

[2] https://asec.ahnlab.com/en/33679/  

[3] https://asec.ahnlab.com/en/20930/

[4] https://www.virustotal.com/gui/file/acfc06b4bcda03ecf4f9dc9b27c510b58ae3a6a9baf1ee821fc624467944467b & https://www.virustotal.com/gui/file/dad6311f96df65f40d9599c84907bae98306f902b1489b03768294b7678a5e79 

[5] https://www.virustotal.com/gui/file/ff7574f9f1d15594e409bee206f5db6c76db7c90dda2ae4f241b77cd0c7b6bf6

[6] https://asec.ahnlab.com/en/30445/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Steven Sosa
Analyst Team Lead

More in this series

No items found.

Blog

/

Network

/

November 26, 2025

CastleLoader & CastleRAT: Behind TAG150’s Modular Malware Delivery System

CastleLoader & CastleRAT: Behind TAG150’s Modular Malware Delivery SystemDefault blog imageDefault blog image

What is TAG-150?

TAG-150, a relatively new Malware-as-a-Service (MaaS) operator, has been active since March 2025, demonstrating rapid development and an expansive, evolving infrastructure designed to support its malicious operations. The group employs two custom malware families, CastleLoader and CastleRAT, to compromise target systems, with a primary focus on the United States [1]. TAG-150’s infrastructure included numerous victim-facing components, such as IP addresses and domains functioning as command-and-control (C2) servers associated with malware families like SecTopRAT and WarmCookie, in addition to CastleLoader and CastleRAT [2].

As of May 2025, CastleLoader alone had infected a reported 469 devices, underscoring the scale and sophistication of TAG-150’s campaign [1].

What are CastleLoader and CastleRAT?

CastleLoader is a loader malware, primarily designed to download and install additional malware, enabling chain infections across compromised systems [3]. TAG-150 employs a technique known as ClickFix, which uses deceptive domains that mimic document verification systems or browser update notifications to trick victims into executing malicious scripts. Furthermore, CastleLoader leverages fake GitHub repositories that impersonate legitimate tools as a distribution method, luring unsuspecting users into downloading and installing malware on their devices [4].

CastleRAT, meanwhile, is a remote access trojan (RAT) that serves as one of the primary payloads delivered by CastleLoader. Once deployed, CastleRAT grants attackers extensive control over the compromised system, enabling capabilities such as keylogging, screen capturing, and remote shell access.

TAG-150 leverages CastleLoader as its initial delivery mechanism, with CastleRAT acting as the main payload. This two-stage attack strategy enhances the resilience and effectiveness of their operations by separating the initial infection vector from the final payload deployment.

How are they deployed?

Castleloader uses code-obfuscation methods such as dead-code insertion and packing to hinder both static and dynamic analysis. After the payload is unpacked, it connects to its command-and-control server to retrieve and running additional, targeted components.

Its modular architecture enables it to function both as a delivery mechanism and a staging utility, allowing threat actors to decouple the initial infection from payload deployment. CastleLoader typically delivers its payloads as Portable Executables (PEs) containing embedded shellcode. This shellcode activates the loader’s core module, which then connects to the C2 server to retrieve and execute the next-stage malware.[6]

Following this, attackers deploy the ClickFix technique, impersonating legitimate software distribution platforms like Google Meet or browser update notifications. These deceptive sites trick victims into copying and executing PowerShell commands, thereby initiating the infection kill chain. [1]

When a user clicks on a spoofed Cloudflare “Verification Stepprompt, a background request is sent to a PHP script on the distribution domain (e.g., /s.php?an=0). The server’s response is then automatically copied to the user’s clipboard using the ‘unsecuredCopyToClipboard()’ function. [7].

The Python-based variant of CastleRAT, known as “PyNightShade,” has been engineered with stealth in mind, showing minimal detection across antivirus platforms [2]. As illustrated in Figure 1, PyNightShade communicates with the geolocation API service ip-api[.]com, demonstrating both request and response behavior

Packet Capture (PCAP) of PyNightShade, the Python-based variant of CastleRAT, communicating with the geolocation API service ip-api[.]com.
Figure 1: Packet Capture (PCAP) of PyNightShade, the Python-based variant of CastleRAT, communicating with the geolocation API service ip-api[.]com.

Darktrace Coverage

In mid-2025, Darktrace observed a range of anomalous activities across its customer base that appeared linked to CastleLoader, including the example below from a US based organization.

The activity began on June 26, when a device on the customer’s network was observed connecting to the IP address 173.44.141[.]89, a previously unseen IP for this network along with the use of multiple user agents, which was also rare for the user.  It was later determined that the IP address was a known indicator of compromise (IoC) associated with TAG-150’s CastleRAT and CastleLoader operations [2][5].

Figure 2: Darktrace’s detection of a device making unusual connections to the malicious endpoint 173.44.141[.]89.

The device was observed downloading two scripts from this endpoint, namely ‘/service/download/data_5x.bin’ and ‘/service/download/data_6x.bin’, which have both been linked to CastleLoader infections by open-source intelligence (OSINT) [8]. The archives contains embedded shellcode, which enables attackers to execute arbitrary code directly in memory, bypassing disk writes and making detection by endpoint detection and response (EDR) tools significantly more difficult [2].

 Darktrace’s detection of two scripts from the malicious endpoint.
Figure 3: Darktrace’s detection of two scripts from the malicious endpoint.

In addition to this, the affected device exhibited a high volume of internal connections to a broad range of endpoints, indicating potential scanning activity. Such behavior is often associated with reconnaissance efforts aimed at mapping internal infrastructure.

Darktrace / NETWORK correlated these behaviors and generated an Enhanced Monitoring model, a high-fidelity security model designed to detect activity consistent with the early stages of an attack. These high-priority models are continuously monitored and triaged by Darktrace’s Security Operations Center (SOC) as part of the Managed Threat Detection and Managed Detection & Response services, ensuring that subscribed customers are promptly alerted to emerging threats.

Darktrace detected an unusual ZIP file download alongside the anomalous script, followed by internal connectivity. This activity was correlated under an Enhanced Monitoring model.
Figure 4: Darktrace detected an unusual ZIP file download alongside the anomalous script, followed by internal connectivity. This activity was correlated under an Enhanced Monitoring model.

Darktrace Autonomous Response

Fortunately, Darktrace’s Autonomous Response capability was fully configured, enabling it to take immediate action against the offending device by blocking any further connections external to the malicious endpoint, 173.44.141[.]89. Additionally, Darktrace enforced a ‘group pattern of life’ on the device, restricting its behavior to match other devices in its peer group, ensuring it could not deviate from expected activity, while also blocking connections over 443, shutting down any unwanted internal scanning.

Figure 5: Actions performed by Darktrace’s Autonomous Response to contain the ongoing attack.

Conclusion

The rise of the MaaS ecosystem, coupled with attackers’ growing ability to customize tools and techniques for specific targets, is making intrusion prevention increasingly challenging for security teams. Many threat actors now leverage modular toolkits, dynamic infrastructure, and tailored payloads to evade static defenses and exploit even minor visibility gaps. In this instance, Darktrace demonstrated its capability to counter these evolving tactics by identifying early-stage attack chain behaviors such as network scanning and the initial infection attempt. Autonomous Response then blocked the CastleLoader IP delivering the malicious ZIP payload, halting the attack before escalation and protecting the organization from a potentially damaging multi-stage compromise

Credit to Ahmed Gardezi (Cyber Analyst) Tyler Rhea (Senior Cyber Analyst)
Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

  • Anomalous Connection / Unusual Internal Connections
  • Anomalous File / Zip or Gzip from Rare External Location
  • Anomalous File / Script from Rare External Location
  • Initial Attack Chain Activity (Enhanced Monitoring Model)

MITRE ATT&CK Mapping

  • T15588.001 - Resource Development – Malware
  • TG1599 – Defence Evasion – Network Boundary Bridging
  • T1046 – Discovery – Network Service Scanning
  • T1189 – Initial Access

List of IoCs
IoC - Type - Description + Confidence

  • 173.44.141[.]89 – IP – CastleLoader C2 Infrastructure
  • 173.44.141[.]89/service/download/data_5x.bin – URI – CastleLoader Script
  • 173.44.141[.]89/service/download/data_6x.bin – URI  - CastleLoader Script
  • wsc.zip – ZIP file – Possible Payload

References

[1] - https://blog.polyswarm.io/castleloader

[2] - https://www.recordedfuture.com/research/from-castleloader-to-castlerat-tag-150-advances-operations

[3] - https://www.pcrisk.com/removal-guides/34160-castleloader-malware

[4] - https://www.scworld.com/brief/malware-loader-castleloader-targets-devices-via-fake-github-clickfix-phishing

[5] https://www.virustotal.com/gui/ip-address/173.44.141.89/community

[6] https://thehackernews.com/2025/07/castleloader-malware-infects-469.html

[7] https://www.cryptika.com/new-castleloader-attack-using-cloudflare-themed-clickfix-technique-to-infect-windows-computers/

[8] https://www.cryptika.com/castlebot-malware-as-a-service-deploys-range-of-payloads-linked-to-ransomware-attacks/

Continue reading
About the author

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

managing OT remote access with zero trust control and ai driven detectionDefault blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI