Blog
/
Network
/
April 27, 2022

How Darktrace AI Blocked Emotet Malspam

Explore Darktrace AI's success in combating Emotet malspam, enhancing security and minimizing risks with cutting-edge artificial intelligence.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Zoe Tilsiter
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
27
Apr 2022


In January 2021, it was lauded that an international collaborative law enforcement operation had successfully dismantled Emotet’s infrastructure. This was one of the most prolific malware and banking Trojans which led to sensitive data loss, significant financial loss and reputational damage for its victims since early deployment in 2014.1

However, since November 2021, there have been signs of Emotet’s resurgence. Emotet has supposedly leveraged its former partner operators such as Trickbot, also discussed in another Darktrace blog, to rebuild its infrastructure by using already infected machines to download the new Emotet binary.2

Early signs of Emotet’s return appear to be synonymous with its original kill chain and attack vectors. Malware is deployed, compromising a device as a zombie machine. This device is then used to send outbound malspam campaigns. These campaigns can be masked as application installer packages or fake reply email chains to give the spam credibility. Once the malware spreads through this spam, it then attempts to infect other devices – both internally and outbound in other networks.3

In February 2022, Darktrace detected elements of this kill chain in a customer’s environment, notably observing the large volume of SMTP connections which are characteristic of an outbound spam campaign.

Figure 1: Timeline of attack showing the Emotet intrusion progress along the kill chain
Figure 2: A screenshot from VirusTotal, showing that the rare endpoint has been flagged as malicious by other security vendors


Bypassing the rest of the security stack

The attack used Living-off-the-Land techniques by making PowerShell connections via pre-existing user agents within the network. As PowerShell connections can be used for legitimate reasons, this activity appeared to bypass the rest of the customer’s security stack and was likely seen as approved by their tools. However, Darktrace detected that the device was using the PowerShell user agent to connect to an external location. This is rare in comparison to wider network behavior.

The customer’s pre-existing security did not block the outgoing SMTP connections made by the compromised device on unusual ports. However, Darktrace Antigena blocked 71% of outgoing connections on mail ports 25 and 587, significantly reducing the scale of the spam dissemination.

Darktrace insights and services

Darktrace quickly detected a range of anomalous behaviors from the new PowerShell use, uptake in C2 beaconing activity and spam. This can be highlighted via the spike in model breaches (Figure 3). Darktrace’s Cyber AI Analyst also launched an investigation into the device’s suspicious network scanning activity. This was essential for generating an incident summary which outlined the investigation process and technical details needed for the organization’s security team to act quickly (Figure 4).

Throughout the incident, Antigena autonomously responded to the initial breach device to enforce its ‘pattern of life’ without interrupting business processes. This significantly reduced the scope of the compromise by halting further lateral movement. In response to the malicious outbound email spam, Antigena enforced the device’s usual ‘pattern of life’ for thirty minutes and blocked connections to ports 25, 80 and 587 for one hour (Figure 5). Against the command-and-control activity, connections to 91.207.181[.]106 via port 8080 were also blocked for three hours.

The customer’s subscription to Darktrace’s Proactive Threat Notification (PTN) and Ask the Expert (ATE) services meant that this compromise was assisted by additional triage and alerting. PTN ensured that the Darktrace SOC team were quickly alerted to the breach, enabling analysts to perform a detailed investigation alongside the customer’s own security team. Simultaneously, the ATE service ensured the customer was provided with additional information to ensure the threat was less likely to happen again. This equipped the team with the vital information needed for them to act, and to restore quickly and precisely.

Figure 3: Darktrace reveals an anomalous spike in the device’s activity and associated model breaches during the attack period, represented by the dots on the graph


Figure 4: Excerpt of the AI Analyst report of the breach device’s network scanning activity
Figure 5: Antigena Network blocking external connection activity and enforcing the device’s ‘pattern of life’


The resurgence of Emotet shows how email continues to act as a crucial attack vector and source of compromise. In particular, widespread malspam campaigns remain adaptable and effective. The incident in this blog is yet another example highlighting the alarming mutability and networked nature of malware organizations. This allows them to return, even long after their dismantling. Fortunately, in this incident, Autonomous Response enabled this Emotet compromise to be minimized, while PTN and ATE services alerted and further supported the security team throughout.

Appendix

Darktrace model breaches

·    Device / Multiple Lateral Movement Model Breaches

·    Device / Large Number of Model Breaches

·    Device / Suspicious Network Scan Activity

·    Device / Network Scan

·    Device / External Address Scan

·    Device / Multiple C2 Model Breaches

·    Device / Large Number of Connections to New Endpoints

·    Device / Increased External Connectivity

·    Device / New User Agent and New IP

·    Device / New PowerShell User Agent

·    Compromise / Suspicious Beaconing Behavior

·    Compromise / Beacon to Young Endpoint

·    Compromise / Agent Beacon to New Endpoint

·    Compromise / Sustained SSL or HTTP Increase

·    Compromise / Suspicious Spam Activity

·    Anomalous Connection / Possible Outbound Spam

·    Anomalous Connection / Suspicious Expired SSL

·    Anomalous Connection / Rare External SSL Self-Signed

·    Anomalous Connection / Suspicious Self-Signed SSL

·    Anomalous Connection / Anomalous SSL without SNI to New External

·    Anomalous Connection / PowerShell to Rare External

·    AI Analyst / AI Analyst Investigation

·    Unusual Activity / Unusual External Activity

IoCs

MITRE ATT&CK Techniques Observed

Footnotes

1. https://www.cisa.gov/uscert/ncas/alerts/TA18-201A

2. https://blog.malwarebytes.com/threat-intelligence/2021/11/trickbot-helps-emotet-come-back-from-the-dead/

3. https://www.kaspersky.com/resource-center/threats/emotet

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Zoe Tilsiter
Cyber Analyst

More in this series

No items found.

Blog

/

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

runtime, cloud security, cnaapDefault blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

Network

/

January 12, 2026

Maduro Arrest Used as a Lure to Deliver Backdoor

maduro arrest used as lure to deliver backdoorDefault blog imageDefault blog image

Introduction

Threat actors frequently exploit ongoing world events to trick users into opening and executing malicious files. Darktrace security researchers recently identified a threat group using reports around the arrest of Venezuelan President Nicolàs Maduro on January 3, 2025, as a lure to deliver backdoor malware.

Technical Analysis

While the exact initial access method is unknown, it is likely that a spear-phishing email was sent to victims, containing a zip archive titled “US now deciding what’s next for Venezuela.zip”. This file included an executable named “Maduro to be taken to New York.exe” and a dynamic-link library (DLL), “kugou.dll”.  

The binary “Maduro to be taken to New York.exe” is a legitimate binary (albeit with an expired signature) related to KuGou, a Chinese streaming platform. Its function is to load the DLL “kugou.dll” via DLL search order. In this instance, the expected DLL has been replaced with a malicious one with the same name to load it.  

DLL called with LoadLibraryW.
Figure 1: DLL called with LoadLibraryW.

Once the DLL is executed, a directory is created C:\ProgramData\Technology360NB with the DLL copied into the directory along with the executable, renamed as “DataTechnology.exe”. A registry key is created for persistence in “HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Lite360” to run DataTechnology.exe --DATA on log on.

 Registry key added for persistence.
Figure 2. Registry key added for persistence.
Folder “Technology360NB” created.
Figure 3: Folder “Technology360NB” created.

During execution, a dialog box appears with the caption “Please restart your computer and try again, or contact the original author.”

Message box prompting user to restart.
Figure 4. Message box prompting user to restart.

Prompting the user to restart triggers the malware to run from the registry key with the command --DATA, and if the user doesn't, a forced restart is triggered. Once the system is reset, the malware begins periodic TLS connections to the command-and-control (C2) server 172.81.60[.]97 on port 443. While the encrypted traffic prevents direct inspection of commands or data, the regular beaconing and response traffic strongly imply that the malware has the ability to poll a remote server for instructions, configuration, or tasking.

Conclusion

Threat groups have long used geopolitical issues and other high-profile events to make malicious content appear more credible or urgent. Since the onset of the war in Ukraine, organizations have been repeatedly targeted with spear-phishing emails using subject lines related to the ongoing conflict, including references to prisoners of war [1]. Similarly, the Chinese threat group Mustang Panda frequently uses this tactic to deploy backdoors, using lures related to the Ukrainian war, conventions on Tibet [2], the South China Sea [3], and Taiwan [4].  

The activity described in this blog shares similarities with previous Mustang Panda campaigns, including the use of a current-events archive, a directory created in ProgramData with a legitimate executable used to load a malicious DLL and run registry keys used for persistence. While there is an overlap of tactics, techniques and procedures (TTPs), there is insufficient information available to confidently attribute this activity to a specific threat group. Users should remain vigilant, especially when opening email attachments.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

172.81.60[.]97
8f81ce8ca6cdbc7d7eb10f4da5f470c6 - US now deciding what's next for Venezuela.zip
722bcd4b14aac3395f8a073050b9a578 - Maduro to be taken to New York.exe
aea6f6edbbbb0ab0f22568dcb503d731  - kugou.dll

References

[1] https://cert.gov.ua/article/6280422  

[2] https://www.ibm.com/think/x-force/hive0154-mustang-panda-shifts-focus-tibetan-community-deploy-pubload-backdoor

[3] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

[4] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

Continue reading
About the author
Tara Gould
Malware Research Lead
Your data. Our AI.
Elevate your network security with Darktrace AI