ブログ
/
Network
/
April 27, 2022

How Darktrace AI Blocked Emotet Malspam

Explore Darktrace AI's success in combating Emotet malspam, enhancing security and minimizing risks with cutting-edge artificial intelligence.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Zoe Tilsiter
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
27
Apr 2022


In January 2021, it was lauded that an international collaborative law enforcement operation had successfully dismantled Emotet’s infrastructure. This was one of the most prolific malware and banking Trojans which led to sensitive data loss, significant financial loss and reputational damage for its victims since early deployment in 2014.1

However, since November 2021, there have been signs of Emotet’s resurgence. Emotet has supposedly leveraged its former partner operators such as Trickbot, also discussed in another Darktrace blog, to rebuild its infrastructure by using already infected machines to download the new Emotet binary.2

Early signs of Emotet’s return appear to be synonymous with its original kill chain and attack vectors. Malware is deployed, compromising a device as a zombie machine. This device is then used to send outbound malspam campaigns. These campaigns can be masked as application installer packages or fake reply email chains to give the spam credibility. Once the malware spreads through this spam, it then attempts to infect other devices – both internally and outbound in other networks.3

In February 2022, Darktrace detected elements of this kill chain in a customer’s environment, notably observing the large volume of SMTP connections which are characteristic of an outbound spam campaign.

Figure 1: Timeline of attack showing the Emotet intrusion progress along the kill chain
Figure 2: A screenshot from VirusTotal, showing that the rare endpoint has been flagged as malicious by other security vendors


Bypassing the rest of the security stack

The attack used Living-off-the-Land techniques by making PowerShell connections via pre-existing user agents within the network. As PowerShell connections can be used for legitimate reasons, this activity appeared to bypass the rest of the customer’s security stack and was likely seen as approved by their tools. However, Darktrace detected that the device was using the PowerShell user agent to connect to an external location. This is rare in comparison to wider network behavior.

The customer’s pre-existing security did not block the outgoing SMTP connections made by the compromised device on unusual ports. However, Darktrace Antigena blocked 71% of outgoing connections on mail ports 25 and 587, significantly reducing the scale of the spam dissemination.

Darktrace insights and services

Darktrace quickly detected a range of anomalous behaviors from the new PowerShell use, uptake in C2 beaconing activity and spam. This can be highlighted via the spike in model breaches (Figure 3). Darktrace’s Cyber AI Analyst also launched an investigation into the device’s suspicious network scanning activity. This was essential for generating an incident summary which outlined the investigation process and technical details needed for the organization’s security team to act quickly (Figure 4).

Throughout the incident, Antigena autonomously responded to the initial breach device to enforce its ‘pattern of life’ without interrupting business processes. This significantly reduced the scope of the compromise by halting further lateral movement. In response to the malicious outbound email spam, Antigena enforced the device’s usual ‘pattern of life’ for thirty minutes and blocked connections to ports 25, 80 and 587 for one hour (Figure 5). Against the command-and-control activity, connections to 91.207.181[.]106 via port 8080 were also blocked for three hours.

The customer’s subscription to Darktrace’s Proactive Threat Notification (PTN) and Ask the Expert (ATE) services meant that this compromise was assisted by additional triage and alerting. PTN ensured that the Darktrace SOC team were quickly alerted to the breach, enabling analysts to perform a detailed investigation alongside the customer’s own security team. Simultaneously, the ATE service ensured the customer was provided with additional information to ensure the threat was less likely to happen again. This equipped the team with the vital information needed for them to act, and to restore quickly and precisely.

Figure 3: Darktrace reveals an anomalous spike in the device’s activity and associated model breaches during the attack period, represented by the dots on the graph


Figure 4: Excerpt of the AI Analyst report of the breach device’s network scanning activity
Figure 5: Antigena Network blocking external connection activity and enforcing the device’s ‘pattern of life’


The resurgence of Emotet shows how email continues to act as a crucial attack vector and source of compromise. In particular, widespread malspam campaigns remain adaptable and effective. The incident in this blog is yet another example highlighting the alarming mutability and networked nature of malware organizations. This allows them to return, even long after their dismantling. Fortunately, in this incident, Autonomous Response enabled this Emotet compromise to be minimized, while PTN and ATE services alerted and further supported the security team throughout.

Appendix

Darktrace model breaches

·    Device / Multiple Lateral Movement Model Breaches

·    Device / Large Number of Model Breaches

·    Device / Suspicious Network Scan Activity

·    Device / Network Scan

·    Device / External Address Scan

·    Device / Multiple C2 Model Breaches

·    Device / Large Number of Connections to New Endpoints

·    Device / Increased External Connectivity

·    Device / New User Agent and New IP

·    Device / New PowerShell User Agent

·    Compromise / Suspicious Beaconing Behavior

·    Compromise / Beacon to Young Endpoint

·    Compromise / Agent Beacon to New Endpoint

·    Compromise / Sustained SSL or HTTP Increase

·    Compromise / Suspicious Spam Activity

·    Anomalous Connection / Possible Outbound Spam

·    Anomalous Connection / Suspicious Expired SSL

·    Anomalous Connection / Rare External SSL Self-Signed

·    Anomalous Connection / Suspicious Self-Signed SSL

·    Anomalous Connection / Anomalous SSL without SNI to New External

·    Anomalous Connection / PowerShell to Rare External

·    AI Analyst / AI Analyst Investigation

·    Unusual Activity / Unusual External Activity

IoCs

MITRE ATT&CK Techniques Observed

Footnotes

1. https://www.cisa.gov/uscert/ncas/alerts/TA18-201A

2. https://blog.malwarebytes.com/threat-intelligence/2021/11/trickbot-helps-emotet-come-back-from-the-dead/

3. https://www.kaspersky.com/resource-center/threats/emotet

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Zoe Tilsiter
Cyber Analyst

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Default blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Default blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ